北京航空航天大学五系流体力学实验染色液流动显示实验报告

合集下载

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

流体演示实验实验报告

流体演示实验实验报告

流体演示实验实验报告流体演示实验实验报告一、引言流体力学是研究流体运动的力学学科,其应用广泛且深入。

为了更好地理解流体力学的基本原理和现象,我们进行了一系列流体演示实验。

本实验报告旨在总结实验过程、分析实验数据,并对实验结果进行讨论。

二、实验目的1. 通过观察流体在不同条件下的行为,理解流体的基本性质和行为规律。

2. 利用实验数据,验证流体力学的基本方程和理论模型。

3. 培养实验操作和数据处理的能力。

三、实验装置与方法本次实验主要使用了以下装置和方法:1. 流体容器:采用透明的玻璃容器,便于观察流体的运动。

2. 流体介质:使用水作为流体介质,因其流动性好且易观察。

3. 流体控制装置:通过调节阀门、泵等装置,控制流体的流量和压力。

4. 流体测量设备:使用流量计、压力计等设备,测量流体的流量和压力。

5. 观察工具:借助显微镜、放大镜等工具,观察流体的微观行为。

四、实验过程与结果1. 流体的黏性实验我们将一小滴染料加入水中,并观察其在水中的扩散情况。

结果显示,染料逐渐扩散开来,形成一个较大的扩散圈。

这表明水具有一定的黏性,即流体的内部存在摩擦力,阻碍了其自由扩散。

2. 流体的压力传递实验我们将一个小孔打在容器的侧面,并从孔处注入水。

观察到水会从孔口喷出,喷出的高度与注入水的高度成正比关系。

这说明流体的压力会沿着容器内的各个方向传递,且传递的速度相同。

3. 流体的流动实验我们调节流体控制装置,使水从一端流入容器,然后从另一端流出。

观察到水在容器内形成了一个明显的流动状态,且流速在不同位置处不同。

这表明流体在受力作用下会产生流动,并且流速与位置有关。

4. 流体的表面张力实验我们在容器中加入一些肥皂水,并在其表面放置一根细棍。

观察到肥皂水的表面形成了一个凹陷,细棍也被吸附在表面上。

这说明肥皂水具有较大的表面张力,能够使表面呈现一定的弹性。

五、实验讨论与分析通过以上实验结果,我们可以得出以下结论:1. 流体具有黏性,内部存在摩擦力,阻碍了其自由扩散。

计算流体力学上机实验报告

计算流体力学上机实验报告

《计算流体力学》上机实验报告班级:姓名:学号:北京航空航天大学流体力学研究所上机实验名称两平行平板间不可压缩流体绕物体的平面无旋流动一、实验目的通过具体算例,熟悉和掌握使用CFD方法获取给定流场的流动参数。

二、实验内容、方法及步骤1.流动问题描述如下图所示,考虑在平行放置的两平板之间流过的理想不可压缩流体绕方形物体的平面无旋流动。

2.求解区域H;绕流物体是边长为2的正方形,设两平行平板之间的距离为6L。

根据流动的对称性,可取流上游来流入口位置与物体中心的距离为3动区域的四分之一作为求解区域,如下图所示。

3. 控制方程对于不可压缩流体的平面无旋流动,流函数 在区域 内满足Laplace 方程22220xy4. 边界条件(1)OABC 是一条流线,规定0OABC;(2)对 OE 上任意一点 0,P y ,有Py ;(3) ED 也是一条流线,所以2EDH ; (4)根据对称性,在 CD 上有0CDx。

5. 定解问题对于这里考虑的流动,可用下述定解问题来描述22220 , 0 , , , 20 , x yOABC y OE HED CDx在 内在上在上在上在 上6. 求解区域的离散化 - 计算网格将单位长度等分成n 份,记1h n ,于是求解区域沿x 方向可划分成M L n 个网格,用0,1,2,3,,j M 来标记;沿y 方向可划分成2HNn 个网格,用0,1,2,3,,k N 来标记。

这些网格点可分成三类:(1)当 01j L n 且 0k N ,或者当 1L njM 且 n k N 时,网格点落在流场内部,称为内点。

这些网格点上的流函数需通过求解方程组来计算; (2)当 1Ln j M 且 0k n 时,网格点落在正方形物体内部,网格点上不存在流场,无需计算;(3)其余的网格点落在流场的边界上,称为边界点。

这些网格点上的流函数直接由边界条件给定,也无需计算。

7. 定解问题的离散化 - 差分格式Laplace 方程22220xy的差分近似为1,,1,,1,,122220j kj k j kj k j k j k hh边界条件0x的差分近似为,1,0j kj kh8. 内点上流函数的计算- 迭代算法在实际的计算中,内点的数量非常多,计算流函数需要求解大型的代数方程组。

北京航空航天大学五系流体力学实验染色液流动显示实验报告

北京航空航天大学五系流体力学实验染色液流动显示实验报告

研究生《流体力学实验》——飞机标模染色液流动显示实验报告班级姓名实验日期指导教师北京航空航天大学流体力学研究所一、实验目的1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。

2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。

二、基本原理流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。

水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。

染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。

染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合);3.染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。

本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。

三、实验装置及模型1.实验模型飞机标模由机身、机翼、尾翼构成,见图2。

机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。

各部分表面都布有染色液出孔。

2.实验风洞北航1.2米多用途低速串联水平回流式水洞。

该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。

设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。

主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。

流体力学实验

流体力学实验

2.1 雷诺试验一、实验目的(一) 观察流体在管道中的流动状态; (二) 测定几种状态下的雷诺数; (三) 了解流态与雷诺数的关系。

二、实验原理雷诺数计算公式 νπυμρd Qvd vd Re 4=== d=0.014m三、准备工作实验前将综合实验台各阀门关闭,开启水泵,保证少量溢流。

用温度计测量水温。

四、实验步骤(一)观察流态打开颜料水,其与实验管中水迅速混合成淡颜色水,此时为紊流,随着出水阀门的不断关小,颜料水与雷诺实验管中的水掺混程度逐渐减弱,直至颜料水与雷诺实验管形成一条清晰的线流,此时为层流。

(二)测量几种状态下的雷诺数全开出水阀门,逐渐关小出水阀门,在观察流态的同时,在每一状态下(层流或紊流)测量体积流量和水温,并计算出相应的雷诺数。

处理数据并绘制雷诺数与体积流量关系曲线图。

(三)测定下临界雷诺数当阀门关小到某一程度,管内颜料水开始成为一条直线时,即由紊流变为层流的下临界状态,记录此时的相关数据,并求出下临界雷诺数。

五、实验记录表1 实验数据六、实验结果讨论(一)雷诺数与体积流量关系曲线图(二)下临界雷诺数2.2 伯努利方程实验一、实验目的(一)观察能量转换情况,对实验出现的现象加以分析,加深对伯努利方程的理解;(二)掌握一种测量流量流体速度的原理。

二、实验原理粘流伯努利方程w h gv gp z gv gp z +++=++222222221111αραρ测速原理h g u ∆=2三、准备工作开启水泵注满水,调节上水阀门使水箱水位始终保持不变,并有少量溢流。

四、实验条件以管径轴心位置最低处为基准面。

五、实验步骤(一)理解伯努利方程调节出水阀门至一定开度,测定能量方程实验管的四个断面四组测压管的液柱高度,并用计量水箱(尺)和秒表测流量;改变阀门开度,重复上述方法进行测试,将数据记入表1。

(二)测速:能量方程实验管上的四组测压管上四组测压管的任一组都相当于一个皮托管,可测得瞬时流速(轴心处)。

流体力学实验报告

流体力学实验报告

附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。

2.掌握一种测量流体流速的方法。

二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。

2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。

三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。

图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。

2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。

3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。

5.整理实验数据。

五、注意事项数据测定必须待流体流动稳定时方可读数。

六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。

(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。

流体实验综合实验报告

流体实验综合实验报告

实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。

2. 掌握流体力学实验的基本方法和步骤。

3. 培养学生的实验操作技能和数据处理能力。

4. 培养学生严谨的科学态度和团队合作精神。

二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。

实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。

三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。

2. 数据采集系统:用于采集实验数据。

3. 计算机软件:用于数据处理和分析。

四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。

2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。

b. 在管道不同位置安装压力计,测量压力值。

c. 在管道出口处安装流量计,测量流量值。

d. 记录实验数据,包括流量、压力、管道直径等。

3. 实验数据处理:a. 利用伯努利方程计算流速。

b. 利用连续性方程计算流量。

c. 分析实验数据,验证理论公式。

4. 实验结果分析:a. 分析流速分布、压力分布的特点。

b. 分析流量测量误差。

c. 总结实验结论。

五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。

b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。

c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。

六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。

液体流动状态实验报告

液体流动状态实验报告

一、实验目的1. 理解液体在管道内流动的两种状态:层流和湍流。

2. 掌握判断液体流动状态的方法,即雷诺数(Re)的计算。

3. 通过实验观察不同流动状态下液体的流动特征,加深对流体力学基本概念的理解。

二、实验原理液体的流动状态分为层流和湍流两种。

层流是指液体流动呈现层状,粘结力起主导作用,液体质点受粘性的约束,流动时能量损失少;湍流是指液体流动呈现混杂状,惯性力起主导作用,粘结力的制约作用减弱,流动时能量损失大。

雷诺数(Re)是判断液体流动状态的重要参数,当Re小于一定值时,流动状态为层流;当Re大于一定值时,流动状态为湍流。

三、实验仪器与材料1. 实验装置:管道、阀门、流量计、计时器等。

2. 实验材料:水、红墨水、秒表等。

四、实验步骤1. 准备实验装置,确保管道畅通无阻。

2. 打开阀门,让水充满管道,关闭阀门。

3. 将红墨水滴入管道中,观察红墨水在管道中的流动状态。

4. 记录红墨水在管道中的流动时间,计算平均流速。

5. 根据公式Re = (ρvd)/μ计算雷诺数,其中ρ为液体密度,v为平均流速,d为管道直径,μ为液体粘度。

6. 改变管道直径或液体流速,重复步骤3-5,观察不同条件下液体的流动状态。

7. 分析实验结果,总结液体流动状态与雷诺数之间的关系。

五、实验结果与分析1. 当雷诺数Re小于2000时,液体流动状态为层流。

此时,红墨水在管道中呈直线流动,没有漩涡和波动,流动稳定。

2. 当雷诺数Re大于4000时,液体流动状态为湍流。

此时,红墨水在管道中呈漩涡状流动,波动较大,流动不稳定。

3. 当雷诺数Re在2000到4000之间时,液体流动状态为过渡流。

此时,红墨水在管道中既有直线流动,又有漩涡和波动,流动状态介于层流和湍流之间。

实验结果表明,液体的流动状态与雷诺数密切相关。

当雷诺数较小时,液体流动稳定,能量损失小;当雷诺数较大时,液体流动不稳定,能量损失大。

六、实验结论通过本次实验,我们掌握了判断液体流动状态的方法,即雷诺数的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生《流体力学实验》
——飞机标模染色液流动显示
实验报告
班级
姓名
实验日期
指导教师
北京航空航天大学流体力学研究所
一、实验目的
1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。

2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡
系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。

二、基本原理
流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。

水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。

染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。

染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合);
3.
染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。

本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。

三、实验装置及模型
1.实验模型
飞机标模由机身、机翼、尾翼构成,见图2。

机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。

各部分表面都布有染色液出孔。

2.实验风洞
北航1.2米多用途低速串联水平回流式水洞。

该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。

设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。

主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。

四、实验步骤
1.实验准备,将染色液注入系统;
2.开启水洞,水流速度稳定到10cm/s;
3.调整攻角;
4.待流场稳定后,调节染色液流量,得到清晰的流动结构显示形态;
5.待流动稳定后,观察稳定的流态,拍摄照片;
6. 将攻角分别调整到0 o,5o,10o,15o,20o,25o,30o,35o,40o,45o,50o,55o,60o,重复步骤5,直到所要求的攻角状态实验全部完成。

五、实验结果报告
1.实验条件:
①水温t=20o C;
水的运动粘性系数υ=0.878×10-6米2秒;
附:水的运动粘性系数随温度的变化:
②水流速度 U = 0.1 米/秒;
③特征长度C=0.115m (C为模型机翼平均弦长)
计算:雷诺数 Re = UC /υ= 1.310×104;
2.实验结果和分析
结合实验观测结果,描述和分析:
1.边条涡的形态随迎角的变化;不同攻角状态下边条涡对主翼流动(包括与主翼涡系的相
互干扰及其对主翼流动分离等)的影响。

2.机头涡的形态及其随攻角变化特性。

其中各集中涡(机头涡、边条涡和主翼涡)的形态及其随攻角变化特性包括:随攻角增加,各集中涡的形成、发展(强度变化)、破裂现象及其破裂点位置变化等的规律性。

本实验结果用相机和DV分别从模型侧面和上面拍摄侧视图和俯视图,以便更好地观察涡的结构。

实验结果如下:
在迎角下,机身没有出现涡结构,整个流场的流动平稳。

随着迎角增加到,在图中可以看到在边条的前缘形成了对称的前缘脱体涡。

当迎角增加到时,边条前缘形成的脱体涡仍只对内翼流动产生影响。

在时,边条涡的强度达到足够强,且边条涡向主翼两端流动;主翼上发生了流动分离,通过侧图可以看到,边条涡具有抑制流动分离的作用,并出现机头涡。

迎角继续增加到,边条涡发生破裂,破裂点如图所示,由于边条涡的破裂,对外翼的诱导作用大大减弱。

从图中可以看到,边条涡的破裂点位置往前移动,已经非常靠近前缘折点。

此时,流体流过机头后发生分离形成一对对称的漩涡。

边条涡的破裂点位置继续往前移动,基本已在折点处的前方。

在下,机头涡仍然呈现对称性。

大致在机身中部位置发生破裂。

边条涡的破裂点往前方移动,很靠近边条翼的前缘。

机头涡的破裂位置前移。

边条涡的破裂点往前方移动,基本靠近产生的位置。

边条涡一产生,基本就发生了破裂。

机头涡仍然呈现对称状态。

边条涡一产生,就发生了破裂。

在下,由于迎角很大,边条涡破裂点基本就在产生的位置,机头涡在此迎角下,大部分还呈现对称状态。

当迎角为时,边条涡和机头涡耦合在一起;而流动的不对称性则进一步加剧,边条涡和机头涡耦合在一起向主翼的一端偏斜,三秒后向另一端偏斜,可见流动的不稳定性进一步加剧。

综上,在迎角为以前,边条翼产生的边条涡都是沿着主翼的内翼部分往后延伸,在时,出现边条涡,并开始沿着翼展方向对外翼流场产生作用,此时边条涡增加了主翼边界层抵抗分离的能力,此有利干扰引起了涡升力。

当迎角达到时,边条涡在主翼上发生破裂,破裂点在主翼中间位置,往后随着迎角继续增大,破裂点一直往前移动,直至产生位置。

机头涡在大约时产生,且呈现对称状态。

漩涡破裂点也是随着迎角的增大而前移,在,涡都基本呈现对称,达到,涡系呈现非对称状态,涡在上下方向有运动,破裂点位置也在交替往复运动。

八.思考题
1.染色液流动显示实验中,为得到可靠的流动显示结果,有哪些问题需要注意?
色液的物理性质(如比重和运动粘性系数等)要求尽量和水接近以满足跟随性要求。

染色液物理性质与水接近,流量稳定,避免射流,拍摄角度要好,避免倒影反光等的影响。

2.边条对机翼流动和飞机气动性能有何影响?
一定角度内提供较大涡升力,对主翼流场也有较大影响,减阻增升,可为战斗机提供高机动性。

3.机头涡的非对称性是如何产生的,对飞机气动力会带来哪些影响?
模型不对称和雷诺数影响造成的不对称分离是形成非对称漩涡流型的原因。

只要机头稍有不对称(包括物面粗糙程度)将引起边界层转捩不对称从而导致边界层的分离不对称,最后形成非对称的机头涡。

当迎角增加到一定值后,即使侧滑角为零,在机身上会受到一定大小的侧向力。

4.尖前缘后掠翼大攻角流动为何对Re数变化不敏感?飞机的飞行环境是空气,不同于水,但飞机大攻角流动及涡系干扰的流动问题为何能够在水中进行模拟?
尖前缘分离点固定,本实验气动力系数与Re数无关,相似参数一致就可以,Re数影响分离位置。

相似准则与介质无关,位于自相似区。

参考文献:
[1]范洁川. 近代流动显示技术. 国防工业出版社,2002
[2]夏雪湔,邓学蓥. 工程分离流动力学. 北京航空航天大学出版社,1991
[3]StaceyLt., Cotton J. and Bjarke LJ. Flow-Visualization Study of the X-29A Aircraft at High Angles of Attack Using a 1/48-Scale Model. NASA TM 104268, 1994.。

相关文档
最新文档