2019高一数学:函数部分的知识点总结语文

合集下载

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结一、函数的概念1.函数的定义:函数是一个映射关系,它把一个自变量的值映射到一个因变量的值上。

2.函数的符号表示:一般情况下用f(x)表示函数,其中x称为自变量,f(x)称为因变量。

也可以用其他字母代替f(x)表示函数。

3.函数的定义域和值域:函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。

4.函数的图像:函数的图像是由一系列点(x, f(x))在平面上的集合。

这些点表示了函数的各个自变量和因变量的对应关系。

5.基本初等函数:常见的基本初等函数包括多项式函数、指数函数、对数函数、三角函数、反三角函数和分段函数等。

二、函数的性质1.奇偶性:如果对于任何x,有f(-x) = -f(x),则称函数具有奇函数性质;如果对于任何x,有f(-x) = f(x),则函数具有偶函数性质。

2.周期性:如果存在正数T,使得对于函数中的任意x,都有f(x+T) = f(x),则称函数具有周期性。

3.单调性:如果对于函数中的任意x1和x2(x1 < x2),都有f(x1) < f(x2),则称函数单调递增;如果对于函数中的任意x1和x2(x1 < x2),都有f(x1) > f(x2),则称函数单调递减。

4.最值:函数在定义域内取得的最大值和最小值。

三、反函数1.反函数的概念:如果函数f的定义域D和值域R分别是实数集,且对每个y ∈ R,方程f(x) = y在D中有唯一实数解x,则称函数f具有反函数。

反函数常用f^(-1)(y)表示。

2.反函数的求法:考虑将f(x) = y看作一个关于x的函数,通过解出x得到反函数f^(-1)(y)。

四、复合函数1.复合函数的概念:当一个函数的自变量不再是单独的变量x,而是由另一个函数所决定时,这个函数就成为复合函数。

2.复合函数的符号表示:设有两个函数f(x)和g(x),则它们的复合函数可以表示为(f ◦g)(x),也可以表示为f(g(x))。

高中数学函数知识点总结

高中数学函数知识点总结

高中数学函数知识点总结高中数学中函数是重要的一部分内容,以下是对高中数学函数知识点的总结:一、函数的定义及性质1.函数的定义:函数是一个特殊的关系,它把一个集合的元素(自变量)对应到另一个集合的元素(因变量)上,且对于每一个自变量,都存在唯一一个因变量与之对应。

2.定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

3.奇偶性:如果对于定义域内任意的x,有f(-x)=f(x),则称函数f(x)是偶函数;如果对于定义域内任意的x,有f(-x)=-f(x),则称函数f(x)是奇函数。

4.前置性:如果对于定义域内的x1和x2,如果x1<x2,则有f(x1)<f(x2),则称函数f(x)具有递增性。

5.有界性:如果存在一个常数M,对于定义域内的所有x,有,f(x),≤M,则称函数f(x)具有界。

二、函数的图像及性质1.基本函数图像:包括线性函数、二次函数、指数函数、对数函数、幂函数等。

这些函数的图像呈现线性、抛物线、指数曲线、对数曲线等不同形状。

2.函数的平移:函数f(x-a)表示函数f(x)向右移动a个单位;函数f(x)+b表示函数f(x)上移b个单位。

3.函数的对称:关于x轴对称或者y轴对称。

4.函数的周期性:如果存在一个正数T,对于任意的x,有f(x+T)=f(x),则称函数f(x)是周期函数。

三、函数的运算1.函数的和、差、积、商:对于定义域相同的两个函数f(x)和g(x),可以定义它们的和、差、积、商。

2.复合函数:如果函数g(x)的值域是函数f(x)的定义域,那么可以定义复合函数h(x)=f(g(x))。

3.函数的反函数:如果f(x)是定义域上的一一对应函数,那么可以定义它的反函数f^(-1)(x),反函数和原函数的图像关于y=x对称。

四、常见函数的性质1. 线性函数:y = kx + b(k和b为常数),图像是一条直线,斜率k描述了函数的变化速率。

2. 二次函数:y = ax^2 + bx + c(a、b和c为常数),图像是一个抛物线,开口方向和开口程度由a的正负和大小决定。

高一函数知识点总结归纳

高一函数知识点总结归纳

高一函数知识点总结归纳高中数学的学习难度主要在于概念的深入和方法的抽象。

高一是数学学习的起步阶段,更是重中之重。

今天小编在这给大家整理了高一函数知识点总结,接下来随着小编一起来看看吧!高一函数知识点总结1高一数学函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵ 伸缩变换:在x前加上系数。

⑶ 对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y 与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

函数知识点高一笔记总结

函数知识点高一笔记总结

函数知识点高一笔记总结函数是数学中的一个重要概念,在高中数学中占据着重要的地位。

通过学习函数,我们可以更好地理解数学中的关系以及解决问题的方法。

下面是关于函数知识点的高一笔记总结。

一、函数的定义和表示法函数是一种特殊的关系,每个自变量对应唯一一个因变量。

函数可以用以下几种表示法表示:1. 符号表示:用f(x)表示函数,其中f为函数名,x为自变量。

2. 表格表示:用一个表格列出自变量和对应的因变量的值。

3. 图像表示:将函数的自变量和因变量的值画在坐标系上,形成函数的图像。

二、函数的性质函数具有以下几个重要的性质:1. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是函数的输出值的集合。

2. 奇偶性:函数可以是奇函数或偶函数。

奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

3. 单调性:函数可以是递增的或递减的。

递增函数满足当x₁ < x₂时,f(x₁) < f(x₂);递减函数满足当x₁ < x₂时,f(x₁) > f(x₂)。

4. 极值点:函数的极值点是函数在定义域内的局部最大值点或最小值点。

三、常见函数类型高中数学中经常会遇到的函数类型包括:1. 线性函数:函数的图像是一条直线,可以表示为y = kx + b,其中k为斜率,b为截距。

2. 幂函数:函数的图像是一条平滑的曲线,可以表示为y =ax^b,其中a和b为常数。

3. 指数函数:函数的图像是以常数e为底的指数曲线,可以表示为y = ab^x,其中a和b为常数。

4. 对数函数:函数是指数函数的反函数,可以表示为y =logb(x),其中b为底数。

四、函数的运算函数之间可以进行常见的运算,包括:1. 函数的和、差、积和商:两个函数的和(差)是将对应的自变量值相加(相减),对应的因变量值也相加(相减);函数的积是将对应的自变量值相乘,对应的因变量值也相乘;函数的商是将对应的自变量值相除,对应的因变量值也相除。

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结

函数的知识点总结及拓展函数的概念一.函数的概念:1.概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

2.函数三要素:①定义域:x的取值范围的集合;②值域:y的取值范围的集合;③对应关系:y与x的对应关系。

二.区间:设a,b∈R,且a<b,规定如下:三.函数的定义域和值域:1.函数定义域:①分母不为0;②被开方数大于等于0,a(a≥0);③a0=1(a≠0);④a-n=na⎪⎭⎫⎝⎛1(a≠0)。

2.复合函数的定义域:(1)若已知f (x)的定义域为[a,b],其复合函数f [g(x)]的定义域由不等式a≤g(x)≤b解出即可。

(2)若已知f [g(x)]的定义域为[a,b],求f (x)的定义域,相当于当x∈[a,b]时,求g(x)的值域(即f (x)的定义域)。

3.求值域的基本方法:(1)配方法:涉及到二次函数的相关问题可用配方法;(2)换元法:通过换元把一个复杂的函数变为简单易求值域的函数;(3)分离常数法:适用与分子分母次数为一次分式函数;(4)单调性法:利用函数单调性求最大值或最小值;(5)数形结合法:结合函数图像求值域;(6)判别式法:分子和分母有一个是二次的分式函数都可通用;(7)不等式法:利用基本不等式求函数的值域;(8)导数法:适用与高次多项式函数。

函数的性质一.函数的单调性:1.单调性的定义:①f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)< f (x2);②f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)> f (x2)。

2.单调性的判定:(1)定义法:一般要将式子f (x1)-f (x2)化为几个因式作积或商的形式,然后判断正负;(2)图像法:结合函数图像判断单调性;(3)复合函数单调性判定:①首先将原函数y =f [g(x)]分解为基本函数,内函数μ=g(x)与外函数y =f [μ];②分别判定内、外函数在各自定义域内的单调性;③根据“同增异减”来判定原函数在其定义域内的单调性。

高一数学函数知识点总结范本(4篇)

高一数学函数知识点总结范本(4篇)

高一数学函数知识点总结范本函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:注意如下结论的运用:(2)f(____)、g(____)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(____)+g(____)是奇函数,f(____)·g(____)是偶函数,类似地有“奇±奇=奇”“奇____奇=偶”,“偶±偶=偶”“偶____偶=偶”“奇____偶=奇”;(3)奇偶函数的复合函数的奇偶性通常是偶函数;(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.(3)若奇函数f(____)在____=0处有意义,则f(0)=0成立.(4)若f(____)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(____)的定义域关于原点对称,则F(____)=f(____)+f(-____)是偶函数,G(____)=f(____)-f(-____)是奇函数.(6)奇偶性的推广函数y=f(____)对定义域内的任一____都有f(a+____)=f(a-____),则y=f(____)的图象关于直线____=a对称,即y=f(a+____)为偶函数.函数y=f(____)对定义域内的任-____都有f(a+____)=-f(a-____),则y=f(____)的图象关于点(a,0)成中心对称图形,即y=f(a+____)为奇函数.高一数学函数知识点总结范本(二)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结范本(三)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

高一函数知识点总结7篇

高一函数知识点总结7篇

高一函数知识点总结7篇第1篇示例:高中一年级的数学学习内容丰富多彩,其中函数是一个重要的知识点。

函数作为数学中的一种基本概念,在数学和其他学科中都有着广泛的应用。

下面我们就来总结一下高一函数知识点。

一、函数的概念和性质1. 函数的概念:函数是一个对应关系,它将一个自变量映射到一个因变量。

通俗地说,就是一个输入对应一个输出。

2. 定义域和值域:函数的定义域是所有可能的输入值组成的集合,值域是所有可能的输出值组成的集合。

3. 一次函数:一次函数的一般形式为y=ax+b,其中a和b为常数,a不为0。

4. 二次函数:二次函数的一般形式为y=ax²+bx+c,其中a、b、c为常数,a不为0。

5. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

6. 单调性和极值:函数在定义域内单调递增或单调递减,当导数为0时函数取得极值。

1. 函数的图像:函数的图像是函数在坐标系中的表现,通常用曲线或者直线来表示。

2. 函数的对称性:函数图像关于y轴对称则为偶函数,关于原点对称则为奇函数。

3. 函数的周期性:周期函数可以表示为f(x+T)=f(x),其中T为函数的周期。

4. 函数的增减性:函数在某一区间上单调递增或单调递减。

5. 函数的奇偶性:函数的奇偶性可以通过f(-x)和f(x)的关系来确定。

三、函数的求导与应用1. 导数的概念:导数表示函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。

2. 导数的运算:导数的运算法则包括常数法则、幂法则、和差法则、复合函数求导等。

3. 函数的极值:函数在导数为0的点处取得极值,通过导数可判断临界点。

4. 函数的凹凸性:函数在凹和凸区间内的导数有一定的性质,通过二阶导数可判断凹凸性。

5. 泰勒展开:泰勒展开可以将一个函数在某一点处展开成无穷级数,用于近似计算。

第2篇示例:高一函数知识点总结函数是数学中一个非常重要的概念,它可以帮助我们描述数学规律和研究各种问题。

高一数学函数总结(优选3篇)

高一数学函数总结(优选3篇)

高一数学函数总结(优选3篇)【第1篇】总结高一数学函数的知识点1.高中数学必修一函数的基本性质——函数的概念:设a、b是非空的数集,假如根据某个确定的对应关系f,使对于集合a中的任意一个数*,在集合b中都有唯一确定的数f(*)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(*),*∈a.其中,*叫做自变量,*的取值范围a叫做函数的定义域;与*的值相对应的y值叫做函数值,函数值的集合{f(*)| *∈a }叫做函数的值域.留意:假如只给出解析式y=f(*),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 * 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数需要大于零;(4) 指数、对数式的底需要大于零且不等于 1.(5) 假如函数是由一些基本函数通过四那么运算结合而成的 . 那么,它的定义域是使各部分都有意义的 * 的值组成的集合 .(6)指数为零底不能等于零构成函数的三要素:定义域、对应关系和值域再留意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决断的,所以,假如两个函数的定义域和对应关系完全全都,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全全都,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域全都 (两点需要同时具备) 值域补充( 1 )、函数的值域取决于定义域和对应法那么,不论采用什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟识掌控一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解繁复函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:径直法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 高中数学必修一函数的基本性质——函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数 y=f(*) , (* ∈a)中的 * 为横坐标,函数值 y 为纵坐标的点 p(* , y) 的集合 c ,叫做函数 y=f(*),(* ∈a)的图象.c 上每一点的坐标 (* , y) 均满意函数关系 y=f(*) ,反过来,以满意 y=f(*) 的每一组有序实数对 * 、 y 为坐标的点 (* , y) ,均在 c 上 . 即记为 c={ p(*,y) | y= f(*) , * ∈a }图象 c 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 y 轴的直线最多只有一个交点的假设干条曲线或离散点组成 .(2) 画法a、描点法:依据函数解析式和定义域,求出 *,y 的一些对应值并列表,以 (*,y) 为坐标在坐标系内描出相应的点p(*, y) ,最末用平滑的曲线将这些点连接起来 .b、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的`思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学:函数部分的知识点总结高一数学:函数部分的知识点总结?
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x)
(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2?a?的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4?a?的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数
y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则
y=f(x)是周期为2 的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+); (2) l og a N=
( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”; (4) a log a N= N ( a>0,a≠1,N>0 );
8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--
1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;。

相关文档
最新文档