二阶、三阶行列式及n阶行列式的概念.ppt23页PPT
合集下载
第一节 二阶与三阶行列式

a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
n 阶行列式定义
将n2个数排成n行n列的数表,按下列规
则计算出的数,即
D ( 1) a1 p1 a 2 p2 a np n n! a n1 a nn
2 D1 ( 1) ( 1) 1 x1 , 2 D ( 1) ( 2) 2
( 1) D2 x2 2 ( 1) ( 2) D
2
1 , 2
2 2 ( 1) ( 1) D3 x3 2 D ( 1) ( 2)
ci 2 ai 1b12 ai 2b22 ainbn 2 , (i 1,2,, n)
D
a11 a 21 a n1 1
a12 a1n a 22 a 2 n a n 2 a nn 1 1
再证唯一性.假设
x j c j , j 1,2,, n 也是(1)的解.
在(2)两端同时乘以cj
a11 a1 j c j a1n cjD an1 anj c j ann
a11 (a11c1 a1 j c j a1n cn ) a1n an1 (an1c1 anj c j anncn ) ann
例6.2 问λ在什么条件下,方程组
ì λx1 + x2 = 0, ï ï í ï ï î x1 + λx2 = 0
有非零解?
解 由定理6.5知,若方程组有非零解,则其系数行列
式必为零.
D
1
1
0 2 1 0,
第二章 行列式

2011-9-1 5
pi 这个元素的逆序数是 τi,即:
τ ( p1 p2 …pn)= τ 1 + τ 2 +…+ τ n
就是这个排列的逆序数 逆序数。 逆序数 例1 求排列13…(2n − 1)24…(2n)的逆序数。 解:在该排列中,1 ~(2n−1)中每个奇数的逆 序数全为0,2的逆序数为(n − 1),4的逆序数为 (n − 2),…,(2n − 2)的逆境序数为1,2n的逆序数 为0,于是该排列的逆序数为 τ=(n-1)+(n-2)+…+1+0=n(n-1)/2
τ1 =τ (l1l2 Lln )
2011-9-1
τ2 = τ (s1s2 L sn )
19
这就表明,对换乘积项中两元素的位置, 这就表明,对换乘积项中两元素的位置, 从而行标排列与列标排列同时做了相应的对 换,但行标排列与列标排列的逆序数之和的 奇偶性并不改变。 奇偶性并不改变。
2011-9-1
2011-9-1
... ... ... ... ... ... ... ...
0 0 = a11a22...ann ... ann a1n a2n = a11a22...ann ... ann
17
3)次上三角行列式 次上三角行列式
4)次下三角行列式 次下三角行列式
2011-9-1
18
定理2: 阶行列式 阶行列式D= 定理 :n阶行列式 aij的一般项可以记为
λn
0 0 = λλ2...λn 1 ...
=1+ 2 + ... + (n − 2) + (n −1) n (n −1) = 2
λ1
0 = (−1) ... 0
pi 这个元素的逆序数是 τi,即:
τ ( p1 p2 …pn)= τ 1 + τ 2 +…+ τ n
就是这个排列的逆序数 逆序数。 逆序数 例1 求排列13…(2n − 1)24…(2n)的逆序数。 解:在该排列中,1 ~(2n−1)中每个奇数的逆 序数全为0,2的逆序数为(n − 1),4的逆序数为 (n − 2),…,(2n − 2)的逆境序数为1,2n的逆序数 为0,于是该排列的逆序数为 τ=(n-1)+(n-2)+…+1+0=n(n-1)/2
τ1 =τ (l1l2 Lln )
2011-9-1
τ2 = τ (s1s2 L sn )
19
这就表明,对换乘积项中两元素的位置, 这就表明,对换乘积项中两元素的位置, 从而行标排列与列标排列同时做了相应的对 换,但行标排列与列标排列的逆序数之和的 奇偶性并不改变。 奇偶性并不改变。
2011-9-1
2011-9-1
... ... ... ... ... ... ... ...
0 0 = a11a22...ann ... ann a1n a2n = a11a22...ann ... ann
17
3)次上三角行列式 次上三角行列式
4)次下三角行列式 次下三角行列式
2011-9-1
18
定理2: 阶行列式 阶行列式D= 定理 :n阶行列式 aij的一般项可以记为
λn
0 0 = λλ2...λn 1 ...
=1+ 2 + ... + (n − 2) + (n −1) n (n −1) = 2
λ1
0 = (−1) ... 0
一二阶与三阶行列式-PPT精品文档

引进记号
三阶行列式
a11 D a 21 a 31
a12 a 22 a 32
a13
a a a a a a a a a a 23 11 22 33 12 23 31 13 21 32
a 33
a a a a a a a a a 13 22 31 12 21 33 11 23 32
a 11 A a 21 a 31
a 12 a 22 a 32
a 13 a 23 a11a22a33 a12a23a31a13a21a32 a 33 a13a22a31a12a21a33a11a23a32
例:
2 1 1
0 4 8
1 1 3
118 0(1 ) (1 ) 4 )3 2(
a b b a 1 a 11 11 2 1 21 x 2 a a a a A a 21 11 22 12 21
a 12 a 22
b1 b2
2.
a11x1 a12x2 a13x3 b 1 类似地,为讨论三元线性方程组 a21x a22x2 a23x3 b 1 2 a x a x a x b 31 1 32 2 33 3 3
a 13 a 23 a 33
a 14 a 24 a 34
a21 a23 a24 M12 a31 a33 a34 a41 a43 a44
1 2 M A 1 M 12 12 12
a 43 aa444 4
a11 a12 a13 M44 a21 a22 a23 a31 a32 a33
a 12 a 22
算出来是一个数。
(2) 记忆方法:对角线法则 主对角线上两元素之积 - 副对角线上两元素之积
A
三阶行列式
a11 D a 21 a 31
a12 a 22 a 32
a13
a a a a a a a a a a 23 11 22 33 12 23 31 13 21 32
a 33
a a a a a a a a a 13 22 31 12 21 33 11 23 32
a 11 A a 21 a 31
a 12 a 22 a 32
a 13 a 23 a11a22a33 a12a23a31a13a21a32 a 33 a13a22a31a12a21a33a11a23a32
例:
2 1 1
0 4 8
1 1 3
118 0(1 ) (1 ) 4 )3 2(
a b b a 1 a 11 11 2 1 21 x 2 a a a a A a 21 11 22 12 21
a 12 a 22
b1 b2
2.
a11x1 a12x2 a13x3 b 1 类似地,为讨论三元线性方程组 a21x a22x2 a23x3 b 1 2 a x a x a x b 31 1 32 2 33 3 3
a 13 a 23 a 33
a 14 a 24 a 34
a21 a23 a24 M12 a31 a33 a34 a41 a43 a44
1 2 M A 1 M 12 12 12
a 43 aa444 4
a11 a12 a13 M44 a21 a22 a23 a31 a32 a33
a 12 a 22
算出来是一个数。
(2) 记忆方法:对角线法则 主对角线上两元素之积 - 副对角线上两元素之积
A
线性代数-行列式PPT课件

矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。
二章行列式ppt课件

a11x1+a12x2+a13x3=b1
a11 a12 a13
a21x1+a22x2+a23x3=b2
a21 a22 a23
a31x1+a32x2+a33x3=b3
定义3.2 三阶行列式
a11 a12 a13 a21 a22 a23
a31 a32 a33
对角线 法则
a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
132 1 0 1, 奇排列 负号,
a a a 11
12
13
a a a (1) a a a . 21
22
23
( p1 p2 p3 ) 1 p1 2 p2 3 p3
a a a 31
32
33
定义 6 由 n2 个数组成的 n 阶行列式等于所有
取自不同行不同列的 n 个元素的乘积
的代数和
说明: (1)项数:2阶行列式含2项, 3阶行列式含6项, 这恰好就是2!,3!. (2)每项构成: 2阶和3阶行列式的每项分别是位于 不同行不同列的2个和3个元素的乘积. (3)各项符号: 2阶行列式含2项,其中1正1负, 3阶 行列式6项,3正3负.
对角线法则只适用于二阶与三阶行列式.
1 4 2 例1 计算行列式 D 3 0 3 .
例4 证明
a11
a12
an1,1 an1
an1,2
a1n
n( n1)
1
a a 2 1n 2,n1
上面的行列式中,未写出的元素都是0。
an1,2an1
证: 行列式的值为
二阶和三阶行列式

a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41
完
a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D
高等数学线性代数行列式教学ppt(1)

例1 计算下列排列的逆序数.
1) 217986354
解: 2 1 7 9 8 6 3 5 4 01 00 13 4 45
t 5 4 4 3 1 0 0 1 0 18
1.2 行列式的性质
一、行列式的性质 二、利用性质计算行列式
返回
一、行列式的性质
a11
记D
a22
ann
a11
DT
a22
ann
行列式 DT 称为行列式 D 的转置行列式.
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此行 列式的性质凡是对行成立的对列也同样成立.
a11 a12 a1n 上三角行列式 0 a22 a2n
0 0 ann
a11a22 ann .
性质2 互换行列式的两行(列),行列式变号.
an1 an2
ann an1 an2
a1n bin . ann
性质6 把行列式的第 j 行(列)元素的 k 倍加到第 i 行(列)的对应元素上去,行列式值不变.
1
2 2, 1
2 2r1r2 1
2 2.
34
34 58
二、利用性质计算行列式
计算行列式常用方法:利用运算 ri krj把行列式 化为上三角形行列式,从而算得行列式的值.
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
1) 217986354
解: 2 1 7 9 8 6 3 5 4 01 00 13 4 45
t 5 4 4 3 1 0 0 1 0 18
1.2 行列式的性质
一、行列式的性质 二、利用性质计算行列式
返回
一、行列式的性质
a11
记D
a22
ann
a11
DT
a22
ann
行列式 DT 称为行列式 D 的转置行列式.
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此行 列式的性质凡是对行成立的对列也同样成立.
a11 a12 a1n 上三角行列式 0 a22 a2n
0 0 ann
a11a22 ann .
性质2 互换行列式的两行(列),行列式变号.
an1 an2
ann an1 an2
a1n bin . ann
性质6 把行列式的第 j 行(列)元素的 k 倍加到第 i 行(列)的对应元素上去,行列式值不变.
1
2 2, 1
2 2r1r2 1
2 2.
34
34 58
二、利用性质计算行列式
计算行列式常用方法:利用运算 ri krj把行列式 化为上三角形行列式,从而算得行列式的值.
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
同济大学《线性代数》 PPT课件

称为三阶行列式.
二阶行列式的对角线法则 并不适用!
三阶行列式的计算 ——对角线法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
结论 三阶行列式可以用二阶行列式表示.
思考题 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第j 列划后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作 M ij .
验证 1 7 5 6 6 2 196
175 3 5 8 196
358
662
175 175 于是 6 6 2 3 5 8
358 662
推论1 如果行列式有两行(列)完全相同,则此行列式为零.
证明 互换相同的两行,有 D D,所以
. D0
性质3 行列式的某一行(列)中所有的元素都乘以同一个
结论 因为行标和列标可唯一标识行列式的元素,所以行列 式中每一个元素都分别对应着一个余子式和一个代数余子式.
二、行列式按行(列)展开法则
定理1 行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即
D
ai1
Ai1
ai 2
Ai
2
L