n阶行列式按行展开的定义
n 阶行列式的定义与性质

a a
12
1n
a a
n
22
2n
a a ...a a . 11 22
nn
ii
i1
a a a
n1
n2
nn
例 2 计算 n 阶行列式
a a a
11
12
1n
0 a a
22
2
n
.
0 0 a nn
解 分析
展开式中项的一般形式是 a1 p1a2 p2 anpn . pn n, pn1 n 1, pn3 n 3, p2 2, p1 1,
a11 a12 a1n
ai1 ai2 ain
a j1 a j2 a jn
an1 an2 ann
a11 a12 a1n
a j1 a j2 a jn
ai1 ai2 ain
an1 an2 ann
证明 根据行列式的定义及定理 1.1
左端
(1)
(
a j1 ji j j jn ) 1 j1
an1 an2 ann
设 n 阶行列式 D 的第 i 行与第 k 行相同,于 是将第 i 行与第 k 行互换,行列式不变;但由性 质 4个知,它们又应当反号即有 D=-D ,即 2 个 D=0个,故 D=0.。
性质 6 如果行列式中两行(两列)的对应元 素成比例,那么行列式为 0 .
证明 a11 a12 a1n
an1 an2 ann
右端
说明
利用行列式的性质可简化行列式的计算,基 本思路是根据性质把行列式化成为上三角形 行列式,它等于变换后的行列式的主对角元 素的乘积。
例5 解
计算行列式
1 9 13 7 2 5 1 3 3 1 5 5 2 8 7 10
n阶行列式的定义及性质

注 在计算行列式 中, 经常需要用初等 变换来“打洞”, 可 以看出“打洞”中 起主要作用的是性 质5.
•命题
(1) A 初 B, 则|A|与|B|要么同时为0, 要么同时不为0.
(2)设n阶方阵A满足|A|≠0, 且A经过有限次初等行变换变 成行简化阶梯矩阵R, 则R=En.
❖性质7
a2n
an1 an2 ann
简记为det(aij) 其中p1p2 pn为自然数1 2 n的一个排列 t为这个排列的逆序数 ∑表示对所有排列p1p2 pn取和.
在n阶行列式D中 数aij为行列式D的(i j)元.
特别规定一阶行列式|(a)|的值就是a.
❖三阶行列式的结构二:
a12 a1n
a11 a12 a1n a11 a12 a1n
(2) ai1 bi1 ai2 bi2 ain bin ai1 ai2 ain bi1 bi2 bin .
an1
an2 ann an1 an2 ann an1 an2 ann
1 2 3 4
1 0 7 2
例
设
A
0
7
9 1
2 4
5
,
则Hale Waihona Puke 6AT 23
9 2
1 4
1. 8
2
1
8
3
4 5 6 3
(1)A的第3列元素3,2,4,8正好是AT的第3行元素; (2)A的第3列元素的余子式
0 9 51 2 41 2 41 2 4
7 1 6,7 1 6,0 9 5,0 9 5
2 1 32 1 32 1 37 1 6
行列式某一行(列)的元素与另一行(列)的对应元素的代
数余子式乘积之和等于零. 即
按行展开定理

按行展开定理是数学中的一个重要定理,它涉及到数学中的行列式和矩阵,是线性代数中的重要内容。
本文将详细介绍按行展开定理的定义、应用及其举例。
一、按行展开定理的定义按行展开定理又称为余子式定理,是一种计算行列式的方法。
行列式是一个方阵的一种特殊的数值,是线性代数中的重要内容。
行列式可以用来计算矩阵的逆、解线性方程组等问题。
按行展开定理的定义是:对于一个n阶行列式,可以选择其中的任意一行或一列,然后将该行或列上的元素与其所在行列式的余子式相乘,再将所得到的结果相加,即可得到该行列式的值。
二、按行展开定理的应用按行展开定理是计算行列式的一种重要方法,它可以用来求解线性方程组、计算矩阵的逆等问题。
在实际应用中,按行展开定理常常与高斯消元法一起使用,用来求解线性方程组的解。
三、按行展开定理的举例下面我们通过一个例子来说明按行展开定理的应用。
假设有如下的一个3阶行列式:$$\begin{vmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{vmatrix}$$我们选择第一行进行展开,则有:$$\begin{vmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{vmatrix}=1\times\begin{vmatrix}5 & 6\\8 & 9\end{vmatrix}-2\times\begin{vmatrix}4 & 6\\7 & 9\end{vmatrix}+3\times\begin{vmatrix}4 & 5\\7 & 8\end{vmatrix}$$其中,第一个余子式为:$$\begin{vmatrix}5 & 6\\8 & 9\end{vmatrix}=5\times9-6\times8=-3 $$第二个余子式为:$$\begin{vmatrix}4 & 6\\7 & 9\end{vmatrix}=4\times9-6\times7=-2$$第三个余子式为:$$\begin{vmatrix}4 & 5\\7 & 8\end{vmatrix}=4\times8-5\times7=3$$因此,按行展开定理得到:$$\begin{vmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{vmatrix}=1\times(-3)-2\times(-2)+3\times3=-6$$因此,该3阶行列式的值为-6。
n阶行列式:§2.5 行列式依行(列)展开

aij 0
0
D1 a1 j
M ij
aij M ij
anj
注意到行列式中任两行(列)的对换改变行列式的符号,故
D 1 i1 j1 D1 1 i j aij M ij aij Aij
3、行列式依行(列)展开
定理2.5.1 行列式 Dn等于它的任意一行(列)中所有元素与
其代数余子式乘积的和,即有
a j1 a j2
ain
中,某一行(列)中元素
a jn
an1 an2
ann
与另一行(列)中对应元素的代数余子式乘积之和等于零,即有
ai1Aj1 ai2 Aj2 ain Ajn 0, i j.
a1s A1t a2s A2t ans Ant 0, s t.
a11 a12
a1n
ai1 ai2
abcd
例2.5.1. 在行列式 D g s
h t
p u
q v 中,求元素p和s的余子式
wx y z 和代数余子式。
二、行列式依行(列)展开
先考虑比较特殊的情况,即一个n阶行列式中某一行(列) 除一个元素外,其余元素都为零的情况,这时有以下引理。
a11
a1 j
a1n
引理:如果行列式 D ai1
例2.5.4 计算范德蒙行列式
11
11
a1
a2
Dn a12 a22
an1
an
a2 n1
an 2
a a n1 1
n1 2
a a n1 n1
n1 n
解:
依次从第n-1行起到 第一行,每行乘以
= Dn (-an )加到下一行
Dn ai1Ai1 ai2 Ai2 ain Ain , 1 i n,
行列式按行列展开定理讲解学习

行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
3、n阶行列式

18
线性代数
n阶行列式
证明 1)是显然的。 2)若记i ai ,n i 1 , 则依行列式定义
1 2
a n1 a 2 , n 1
t n n1 21
n n1 2
a1n
n
1
1
a1na2,n1 an1
证毕
19
12 n .
n阶行列式
2、余子式与代数余子式
例如
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
线性代数
n阶行列式
例
计算对角行列式
0 0 0 4 0 0 3 0
1 0 0 0
20
0 2 0 0
1 0 0 0
解
0 0 0 4 0 0 3 0 0 2 0 0
1
t 4321
1 2 3 4 24.
线性代数
n阶行列式
例
用行列式的定义计算
0 0 Dn 0 0 0 2 1 0 0 0 0 0 0 n
15
线性代数
n阶行列式
a11
1)
a12 a1n a22 a2 n aii ann
a1n
上三角行列 式
2)
a2,n1 an1 an1,n1
a2n ann
( 1)
n ( n1) 2
a
i ,n i 1
16
线性代数
n阶行列式
1 2 3 4
例
0 4 2 1 D ? 0 0 5 6 0 0 0 8
行列式的展开定理

行列式的展开定理
行列式的展开定理是指给定一个n阶行列式A,n≥1,对A进行展开,则A等于其各行中任取一项,乘上对于这一项的代数余子式,按行号排列
的和。
展开定理的主要思想是求解行列式,可以将原本n阶行列式简化为二
阶行列式,逐渐简化,最后变为一阶行列式,其值即为最终求出的行列式值。
展开定理的乘积分配律为:对于一个n阶行列式A,其中的任一一行
乘以一个常数c,那么这个行列式的值就相应乘以一个常数c。
展开定理的符号表示方法为:记A为行/列式,aij表示A的第(i,
j)项。
通常情况下,行列式展开定理表示为:
A=a11|A11|+a12|A12|+…+ain|Ain|,其中|Aij|表示行列式A的第i
行第j列的余子式。
经常使用的展开定理有两种:一类是Sarrus定理,一类是Laplace
定理。
Sarrus定理:3阶行列式可以按照a11,a12,a21,a22,a31,a32的顺序
展开,即A=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-
a11a23a32。
Laplace定理:n阶行列式可以按照每行或每列任取一项,乘以这一
项的代数余子式,按行号或列号排列求和。
n阶行列式展开式

n阶行列式展开式n阶行列式的展开式是指将n阶行列式按照某一行或某一列进行展开,将其展开为一系列元素相乘的和的形式。
设A是一个n阶方阵,行列式展开式可以表示为:D = a1j1A1j1 + a2j2A2j2 + a3j3A3j3 + ... + anjnAnjn其中,a1j1,a2j2,a3j3,...,anjn是行列式中的元素,分别对应于第1行,第2行,第3行,...,第n行的元素。
A1j1,A2j2,A3j3,...,Anjn是去掉第i行第j列的矩阵的行列式。
展开式的计算方法是通过对于某一行或某一列进行展开,逐步递归地计算较低阶行列式的展开式,最终得到行列式的值。
为了更好地理解和计算行列式的展开式,可以参考以下内容:1. 行列式的性质:了解行列式的基本性质,如行列式转置不变性、行列式互换性等,可以帮助理解行列式的展开式。
2. 代数余子式与代数余子式矩阵:代数余子式是行列式中任意元素的余子式加上相应的符号因子。
代数余子式矩阵是由行列式的元素的代数余子式按照对应位置组成的矩阵。
3. 余子式展开法与行列式按行展开法:余子式展开法是通过计算各元素的代数余子式来展开行列式,而行列式按行展开法是通过递归地计算较低阶行列式的展开式来计算行列式。
4. 基于拉普拉斯定理的行列式展开:拉普拉斯定理是一种常用的展开行列式的方法,根据该定理,可以将n阶行列式按照任意一行或一列展开为n个n-1阶行列式的代数余子式相乘的和。
以上内容是行列式展开式的基本概念和计算方法的相关参考内容,理解和掌握这些内容可以帮助更好地进行行列式展开式的计算。
在实际计算中,可以根据具体情况选择合适的展开方法,如拉普拉斯展开、按行展开等,进一步简化计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设ai1,ai2,…,ain(1≤i≤n)为n阶行列式D=|aij|的任意一行中的元素,而Ai1,Ai2,…,Ain分别为它们在D中的代数余子式,则D=ai1Ai1+ai2Ai2+…+ainAin称为
行列式D的依行展开。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
行列式性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这
两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。
5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对
应元上,结果仍然是A。