七年级数学下册 6.3 实数(第2课时)实数的性质、比较及运算 新人教版

合集下载

6.3.2 实数的大小比较与运算(第二课时)(导学案)-七年级数学下册同步备课系列(人教版)

6.3.2 实数的大小比较与运算(第二课时)(导学案)-七年级数学下册同步备课系列(人教版)

6.3.2实数的大小比较与运算导学案一、学习目标:1.了解在有理数范围内的运算及运算法则,运算性质等在实数范围内仍然成立,能熟练地进行实数运算;2.实数的比较大小.重点:实数的意义及运算.难点:能利用化简对实数进行简单的四则运算.二、学习过程:自主学习(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.(2)在进行实数运算时,有理数的运算法则及运算性质同样适用.1.交换律:加法__________________,乘法___________________2.结合律:加法______________________,乘法_______________________3.分配律:___________________________考点解析考点1:实数的运算例1.【类比思想】计算下列各式的值:(1)23-33;(2)(7-5)-(7+25).【迁移应用】1.下列运算中,正确的是()A.2+3=5B.32+22=52C.381=3D.(−2)2=-22.下列算式中,能说明命题“两个无理数的和还是无理数”是假命题的是()A.2+2=22B.(1-2)+2=1C.π+2π=3πD.4+4=43.计算:(1)26+36;(2)(5+2)-5;(3)3+2(5-3);3.考点2:实数的近似计算求实数的近似值在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.例2.计算(结果保留小数点后两位):【迁移应用】1.计算(结果保留小数点后两位):(1)2+5≈_______;2.计算(结果保留小数点后两位):2;(2)10+考点3:实数的近似计算例3.计算下列各式的值:(1)3(3+2)+3(2-3);(2)327-(2+2)+2(2-−3.【迁移应用】1.计算:(1)6(2-6)=________;(2)3−8+−2522.若13的整数部分为a,小数部分为b,则a2+b-13的值为_____.3.已知实数a,b,c,d,e,f,且a,b 互为倒数,c,d 互为相反数,e 的绝对值为2,f的算术平方根是8,则12ab-c+d 5+e 2+3f 的值为_______.4.计算:2+9+(−2)2-3−27;- 2.25-3−27-3(3+(3)|3-2|+|3-2|-|2-1|.考点4:实数的大小比较例4.比较下列各组数的大小:(1)-10和-3.1;(2)3-2和1-2.【迁移应用】1.实数a,b 在数轴上的对应点的位置如图所示,则下列结论中正确的是()A.a<-2B.b<1C.a<bD.-a>b2.比较下列各组数的大小,直接在空格处填写符号“>”“<”或“=”.(1)365____4;39____2.5;(4)5-3____3.比较下列各组数的大小:(1)π3和1.1;(2)3-1考点5:实数的大小比较例5.物体自由下落的高度h(单位:m)与下落时间t(单位:s)之间的关系:在地球上大约为h=4.9t2,在月球上大约为h=0.8t2.试求物体在地球上自由下落39.2m的时间比在月球上少多少.(8≈2.828,结果精确到0.01s)【迁移应用】如图①,这是由8个同样大小的正方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及边长;(3)如图②,把正方形ABCD放到数轴上,使得点A与-1对应的点重合,那么点D在数轴上表示的数为_________.。

人教版七年级数学下册6.3.2《实数的运算》说课稿

人教版七年级数学下册6.3.2《实数的运算》说课稿

人教版七年级数学下册6.3.2《实数的运算》说课稿一. 教材分析人教版七年级数学下册6.3.2《实数的运算》这一节主要介绍了实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。

本节内容是学生进一步学习数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析七年级的学生已经初步掌握了实数的概念,对实数有一定的认识。

但是,对于实数的运算规则,部分学生可能还不太熟悉。

因此,在教学过程中,需要针对学生的实际情况,耐心讲解,让学生充分理解实数的运算规则。

三. 说教学目标1.知识与技能目标:使学生掌握实数的基本运算规则,能够熟练地进行实数的加法、减法、乘法、除法以及乘方等运算。

2.过程与方法目标:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。

3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力和数学素养。

四. 说教学重难点1.教学重点:实数的基本运算规则。

2.教学难点:实数运算中的异号运算和零的运算。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过复习实数的概念,引出实数的运算。

2.讲解实数的加法运算:讲解实数加法的运算规则,并通过例题进行演示。

3.讲解实数的减法运算:讲解实数减法的运算规则,并通过例题进行演示。

4.讲解实数的乘法运算:讲解实数乘法的运算规则,并通过例题进行演示。

5.讲解实数的除法运算:讲解实数除法的运算规则,并通过例题进行演示。

6.讲解实数的乘方运算:讲解实数乘方的运算规则,并通过例题进行演示。

7.综合练习:布置一些实数运算的题目,让学生进行练习。

8.课堂小结:对本节课的内容进行总结,强调实数运算的规则。

9.布置作业:布置一些实数运算的题目,让学生进行巩固。

七. 说板书设计板书设计如下:加法:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

6-3-2实数的性质和运算 2022-2023学年人教版七年级下册

6-3-2实数的性质和运算 2022-2023学年人教版七年级下册

对值大的反而小.
举一反三
7. 下列四个数中,比-2小的数是(
A. -1
B. -π
C. 0
B )
D. 1
典例精析
【例4】下列计算正确的是(
B )
A. 3 2-2 3=1
B.
C.
3
−27=-3
2 − 3 + 2=2 2- 3
3
D. 144- 64=4
思路点拨:有理数的运算法则、运算性质等在实数范围
内仍然适用.
=-1-2+10
=7.
(2)
5−3 -
解:原式=3-
=-2.
(−5)2 +
-5+

5;
(3)(-2)2-
3−2 -
3
2
3 -
解:原式=4-(2- )-3-2
=4-2+ -3-2
= -3.
8.
举一反三
9. 计算:
(1)(-2)3+ 64-(-3)×5;
解:原式=-8+8+15
=15.
(2) (−3)2 + 2 − π -(-1)2 022;
2
B. -
2
D. 不确定
2
A )
2
思路点拨:根据“一个负实数的绝对值是它的相反数”
即可得出答案.
举一反三
6.
2-2的绝对值是(
A. 2-
C.
2
2
B.
D. 1
A )
2-2
典例精析
【例3】下列四个数中,最小的数是(
A. 0
B. -4
C. -π
B )
D. 2
思路点拨:正实数>0>负实数,两个负实数比较,绝
它的
相反数

人教版七年级数学下册课件:6.3.2 实数的性质和运算(19张ppt)

人教版七年级数学下册课件:6.3.2 实数的性质和运算(19张ppt)

例题讲解
例1(1)分别写出 6 ,π 3.14的相反数; (2)指出 5,1 3 3是什么数的相反数;
解:(1) 6 的相反数是 6 ; π 3.14 的相反数是 3.14 π .
(2) 5 的相反数是 5 ; 1 3 3 的相反数是 3 3 1.
例题讲解
(3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个数.
你能解答下列问题吗?
(2) 2 = 2 , -π = ,
0= 0 .
概念 倒数
倒数:如果a≠0,那么它的倒数为 1 . a
乘积是1的两个数互为倒数. 若a与b互为倒数,则ab=1.
2
2 的倒数是 2 ,
7的倒数是 7 ;
7
在实数范围内,相反数、倒数、绝对值的意义 有理数范围内,相反数、倒数、绝对值的意义完全一样。
练习 相反数、绝对值
2. 求下列各数的相反数、绝对值和倒数.
概念 实数的运算顺序
先算乘方和开方, 再算乘除,最后算加减. 如果遇到括号,则先进行括号里的运算.
( 3 2) 2
3 32 3
结合律
分配律
概念 实数的运算
例3 计算(结果保留小数点后两位): (1) 5 π ;(2) 3 2 .
部分资料来自网络请注意保护知识产权
6.3.2 实数的性质和运算
第六章 实数
arithmetic square root square root cube root
real number rational number Irrational number
课前
复习 无理数的特征:
1.圆周率及一些含有 的数
(3)∵ 3 64 4 | 3 64 | 4

实数课件人教版数学七年级下册3

实数课件人教版数学七年级下册3

填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);

(4)a+(-a) = (-a)+a = 0

(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.

第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)

1
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)

−=5
(× )
的绝对值是 −

×

(3) − 的相反数是


(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3



C.
(−)
B.2与(-2)2

(2)指出 5 , 1 3 3 分别是什么数的相反数;

(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,

巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2

D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律

巩固练习
5.计算(-

)-

(-
【解析】原式=

)+


(-

(-

七年级数学人教版下册第六章6.3.2实数的性质课件


(1)

绝对值比较、求平方比较、求差比较、求商比
的求点下表 列示各的数数的解总相比反:左数边与(1的绝)点对表值示:5 的数 大π ”求 解2 . .2 3 6 + 3 .1 4 25 .3 8 ;
求下列各数的相反数与绝对值:
中<,-无理<数0<可选取<近2.似(2值)转化为3 有理数2 计算 ,中1 间.7 结3 2 1 .4 1 4 2 .4 5 .
(4)因为 3 3, 3 3, 所以绝对值为 3 的数是 3 或 3 .
巩固新知
1 求下列各数的相反数与绝对值:
2.5, 7 , , 3 2 ,0. 2
解:2.5的相反数是-2.5,绝对值是2.5;
- 7 的相反数是 7 ,绝对值是 7 ;
- 的相反数是 ,绝对值是 ;
2
2
2
3 2 的相反数是 2 3 ,绝对值是 2 3 ;
-1,其中最小的数是( A )
A.-π
B.-3
C.-1
D.- 3
合作探究
知识点 3 实数的运算
1.在实数范围内,进行加、减、乘、除、乘方和开方运 算时,有理数的运算法则和运算律仍然适用;实数混 合运算的运算顺序与有理数的混合运算顺序一样,先 算乘方、开方,再算乘除,最后算加减,同级运算按 照自左向右的顺序进行,有括号的先算括号里面的.
D.绝对值
合作探究
知识点 2 实数的大小比较
利用数轴比较实数的大小:对于数轴上的任意 两个点,右边的点表示的实数总比左边的点表示的 实数大.
例5
用“<”连接下列各数:-
1 2
,3
,-2
2,
2.5,0.
导引:比较一组实数的大小和比较一组有理数的大小 一样,可先求出这些数的近似数,再将这些数 在数轴上表示出来,然后根据“在数轴上右边 的点表示的数总比左边的点表示的数大”求解.

喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7

第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。

人教版七年级数学下册6.3实数(第2课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册
6.3实数(第2课时)教学设计
一、教材分析
1、地位作用:
实数是人教教版义务教育课程标准实验教科书数学七年级下册第6 章第二节课。

本节课在学生学习了平方根以后,接触了具体的无理数的基础上,通过学生合作探究,揭示出使学生把数从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且是同学们进一步学习方程、函数等知识的基础。

2、教学目标:
(1)会求实数的相反数与绝对值。

(2)会对实数进行简单的运算。

3、教学重、难点:
教学重点:知道有理数的运算律和运算性质同样适合于实数的运算,并会进行简单的运算。

教学难点:绝对值的意义。

简单的无理数计算。

突破难点的方法:真正的让学生进行探究,合作学习实数范围内的简单计算,突破难点。

二、教学准备:多媒体课件、导学案。

三、教学过程:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档