2.41离散型随机变量的均值与方差(理)(基础

合集下载

离散型随机变量的均值与方差复习课(一)(教案)

离散型随机变量的均值与方差复习课(一)(教案)

离散型随机变量的均值与方差复习课(一)【教学目标】1.熟练掌握离散型随机变量的均值和方差的求法,提高应用离散型随机变量的均值和方差概念解决问题的能力.2.自主学习,合作交流,探究并归纳总结离散型随机变量的均值和方差的应用规律及方法.3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力【教学重难点】离散型随机变量的均值和方差的概念及其应用【教学过程】一、预习自学:【预习自测】1.在篮球比赛中,罚球命中1次得1分,不中得0分。

如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X的均值为____0.7______2. 随机抛掷一枚质地均匀的骰子,向上一面的点数X的均值为__3.5___,方差为____2.92___.3. 已知ε~B(n,p),E(ε)=8,D(ε)=1.6,则n与p的值分别是____10______0.8________二、合作探究探究点一:均值和方差在实际中的应用例1.产量相同的2台机床生产同一种零件,他们在一小时内生产出的次品数X 1,X 2的分布列分别如下:试问哪台机床更好?请解释你得出结论的实际含义 解:11.032.023.014.00)(1=⨯+⨯+⨯+⨯=X E9.02.025.013.00)(2=⨯+⨯+⨯=X E因为第2台机床生产零件的平均次品数E(X 2)小于第1台机床生产零件的平均次品数E(X 1),所以第2台机床更好,其实际含义是随着产量的增加,第2台机床生产的次品数要比第1台生产的次品数小.拓展:某人有10万元,有两种投资方案:一是购买股票,二是存入银行获取利息。

买股票的收益取决于经济形势,假设可分为三种状态:形势好、形势中等、形势不好。

若形势好可获利4万元,若形势中等可获利1万元,若形势不好要损失2万元。

如果存入银行,假设年利率为8%(不考虑利息可得税),可得利息8000元。

又假设经济形势好、中、差的概率分别为30%,50%,20%。

(优选)离散型随机变量的均值与方差正态分布理

(优选)离散型随机变量的均值与方差正态分布理

4.正态曲线及性质
(1)正态曲线的定义:
1 函数f(x)= σ 2πe
,x∈(-∞,+∞),其中实数μ和σ(σ
>0)为参数,我们称f(x)的图象(如图)为正态分布密度曲线,简称
正态曲线.
(2)正态曲线的性质: ①曲线位于x轴 上方 ,与x轴不相交; ②曲线是单峰的,它关于直线 x=μ 对称;
③曲线在 x=μ 处达到峰值 1 ; σ 2π
基础自评
1.已知离散型随机变量ξ的分布列为:
则D(ξ)等于( )
ξ1234
P1Biblioteka 41 31 61 4
29 131 A.12 B.144
179 17 C.144 D.12
解析 由于E(ξ)=1×14+2×13+3×16+4×14=2192,所以D(ξ) =1-21922×14+2-21922×13+3-21922×16+4-21922×14=117494.
答案 0.954
5.有一批产品,其中有12件正品和4件次品,从中有放回地 任取3件,若X表示取到次品的次数,则D(X)=________.
解析 ∵X~B3,14, ∴D(X)=3×14×34=196.
答案
9 16
Y 研考点·知规律
探究悟道 点拨技法
题型一 求离散型随机变量的均值与方差
【例1】 (2014·贵州六校联考)为了参加2013年贵州省高中
∴ξ的分布列为
ξ
0
1
2
P
14 33
16 33
1 11
∴E(ξ)=0×1343+1×1363+2×111=23.
【规律方法】 求离散型随机变量均值的步骤 (1)理解随机变量X的意义,写出X可能取得的全部值; (2)求X的每个值的概率; (3)写出X的分布列; (4)由均值定义求出E(X).

高中数学高考复习离散型随机变量的均值与方差(理)完美

高中数学高考复习离散型随机变量的均值与方差(理)完美

EX)2 的期望,并称之为随机变量 X 的方差,记为 DX . 方差越小,则随机变量的取值就越 集中 在其均值周 围;反之,方差越大,则随机变量的取值范围就越 分散.
2.常见分布的均值与方差 (1)若 X 服从二点分布,则 EX= p ,DX= p(1-p) ; (2)若 X~B(n,p),则 EX= np ,DX= np(1-p) ; (3)若 X 服从参数为 N,M,n 的几何分布,则 EX= nM N .
0.56<DX,乙稳定.
5.(2011· 上海理,9)马老师从课本上抄录一个随机变量 ξ 的概率分布列如下表: x P(ξ=x) 1 ? 2 ! 3 ?
请小牛同学计算 ξ 的数学期望,尽管“!”处完全无法看 清, 且两个“?”处字迹模糊, 但能断定这两个“?”处的数 值相同.据此,小牛给出了正确答案 Eξ=________.
[答案]
2
[解析]
nM 4×5 EX= N = 10 =2.
7.已知某运动员投篮命中率 p=0.6. (1)求一次投篮命中次数 ξ 的均值; (2)求重复 5 次投篮时,命中次数 η 的均值.
[解析] (1)投篮一次,命中次数 ξ 的分布列为 ξ P 则 Eξ=p=0.6. (2)由题意,重复 5 次投篮,命中次数 η 服从二项分布, 即 η~B(5,0.6).则 Eη=5×0.6=3. 0 0.4 1 0.6
课堂典例讲练
离散型随机变量的均值
[例 1]
袋中有同样的 5 个球, 其中 3 个红球, 2 个黄球,
现从中随机且不返回地摸球,每次摸 1 个,当两种颜色的球 都被摸到时,即停止摸球,记随机变量 X 为此时已摸球的次 数. (1)求随机变量 X 的概率分布列; (2)求随机变量 X 的均值. [分析] 解题的关键是确定随机变量的取值和应用排列

第六节 离散型随机变量的均值与方差(知识梳理)

第六节 离散型随机变量的均值与方差(知识梳理)

第六节 离散型随机变量的均值与方差复习目标 学法指导1.了解取有限个值的离散型随机变量的均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.求均值、方差的关键是求分布列.若已知分布列,则可直接按定义(公式)求解;若已知随机变量X 的均值、方差,求X 的线性函数y=aX+b 的均值、方差可直接利用性质求解;若能分析出随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,但在没有准确判断出分布列模型之前,不能乱套公式.一、离散型随机变量的均值与方差若离散型随机变量X 的分布列为P(X=x i )=p i ,i=1,2,3,…,n. (1)均值:称E(X)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.(2)方差:称D(X)= ()()21xniii E X p =-∑为随机变量X 的方差,其算术平方根()D X X 的标准差.二、均值与方差的性质1.E(aX+b)=aE(X)+b.2.D(aX+b)=a2D(X)(a,b为常数).三、常用随机变量的均值1.两点分布:若,则E(X)=p.2.二项分布:若X~B(n,p),则E(X)=np.1.概念(公式)理解(1)随机变量的均值反映了随机变量取值的平均水平.(2)均值的单位与随机变量的单位相同.(3)方差刻画了随机变量的取值与其均值的偏离程度.方差越小,则随机变量的取值就越集中在其均值周围;反之,方差越大,则随机变量的取值就越分散.(4)方差的单位是随机变量单位的平方.(5)方差是随机变量与其均值差的平方的均值,即D(X)是(X-E(X))2的期望.2.常用随机变量的方差(1)两点分布:若,则D(X)=p(1-p).(2)二项分布:若X~B(n,p),则D(X)=np(1-p).1.已知离散型随机变量X的分布列如下表.若E(X)=0,D(X)=1,则a,b 的值分别是( D )X -1 0 1 2(A)524,18(B)56,12(C)35,13(D)512,14解析:由分布列的性质可得a+b+c+112=1,①又可得E(ξ)=-a+c+2×112=-a+c+16=0,②D(ξ)=(-1-0)2a+(0-0)2b+(1-0)2c+(2-0)2×112=1,化简可得a+c+13=1,③ 联立②③可解得a=512,c=14,代入①可得b=14. 故选D.2.若随机变量ξ~B(n,p),E(ξ)=53,D(ξ)=109,则p 等于( A ) (A)13 (B)23 (C)25 (D)35解析:由题意可知,()()()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩ 解方程组可得5,1.3n p =⎧⎪⎨=⎪⎩故选A.3.(2019·金色联盟联考)已知随机变量X 的分布列如下,若E(X)=0.5,则mn= ,D(X)= .解析:由题意知0.7,0.5m n m n +=⎧⎨-+=⎩⇒0.1,0.6,=⎧⎨=⎩m n 所以mn=0.06;D(X)=E(X 2)-(E(X))2=0.7-0.25=0.45. 答案:0.06 0.45考点一 离散型随机变量的均值与方差[例1] 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=53,D(η)=59,求a ∶b ∶c. 解:(1)由题意得ξ=2,3,4,5,6,故P(ξ=2)=3366⨯⨯=14, P(ξ=3)=23266⨯⨯⨯=13, P(ξ=4)=2312266⨯⨯+⨯⨯=518, P(ξ=5)=22166⨯⨯⨯=19, P(ξ=6)=1166⨯⨯=136. 所以ξ的分布列为ξ 23456P141351819136(2)由题意知η的分布列为η 123Pa ab c++b a b c++c a b c++所以E(η)=a a b c +++2b a b c +++3c a b c ++=53, D(η)=(1-53)2·a a b c +++(2-53)2·b a b c +++(3-53)2·c a b c ++=59. 化简得240,4110.a b c a b c --=⎧⎨+-=⎩ 解得a=3c,b=2c, 故a ∶b ∶c=3∶2∶1.(1)求离散型随机变量的均值与方差,可依题设条件求出随机变量的分布列,然后利用均值、方差公式直接求解;(2)由已知均值或方差求参数值,可依据条件利用均值、方差公式列含有参数的方程(组)求解;(3)注意随机变量的均值与方差的性质的应用. 考点二 与两点分布、二项分布有关的均值、方差[例2] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列、期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=0C·(1-0.6)3=0.064,3P(X=1)=1C·0.6(1-0.6)2=0.288,3P(X=2)=2C·0.62(1-0.6)=0.432,3P(X=3)=3C·0.63=0.216.3分布列为X 0 1 2 3P 0.064 0.288 0.432 0.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.若随机变量X服从二项分布,则求X的均值或方差可利用定义求解,也可直接利用公式E(X)=np,D(X)=np(1-p)求解.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A, 则事件A的对立事件为“X=5”,因为P(X=5)=23×25=415,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B(2,23),X2~B(2,25),所以E(X1)=2×23=43,E(X2)=2×25=45,因此E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.考点三均值与方差在决策中的应用[例3] 现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:(2)购买基金:(1)当p=14时,求q的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两个方案中选择一种,已知p=12,q=16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.解:(1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p+13+q=1.又因为p=14,所以q=512.(2)记事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,则C=A B∪A B ∪AB,且A,B独立.由题意可知P(A)=12,P(B)=p.所以P(C)=P(A B)+P(A B)+P(AB)=1 2p+12(1-p)+12p=1 2+12p.因为P(C)=12+12p>45,即p>35,且p≤23.所以35<p≤23.(3)假设丙选择“投资股市”方案进行投资,且记X为丙投资股市的获利金额(单位:万元),所以随机变量X的分布列为则E(X)=3×12+0×18+(-2)×38=34.假设丙选择“购买基金”方案进行投资,且记Y为丙购买基金的获利金额(单位:万元),所以随机变量Y的分布列为则E(Y)=2×12+0×13+(-1)×16=56.因为E(X)<E(Y),所以丙选择“购买基金”,才能使得一年后的投资收益的数学期望较大.随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据,一般先比较均值,若均值相同,再用方差来决定.张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为12;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解:(1)设走L1路线最多遇到1次红灯为事件A,则P(A)=03C×(12)3+13C×12×(1-12)2=12.所以走L1路线,最多遇到1次红灯的概率为12.(2)依题意,X的可能取值为0,1,2.P(X=0)=(1-34)×(1-35)=110,P(X=1)=34×(1-35)+(1-34)×35=920,P(X=2)=34×35=920.随机变量X的分布列为X 0 1 2P 110920920E(X)=110×0+920×1+920×2=2720.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,Y~B(3,12),所以E(Y)=3×12=32.因为E(X)<E(Y),所以选择L2路线上班最好.分布列与数学期望[例题] 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解:(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意,A1与A2相互独立,A12A与1A A2互斥,B1与B2互斥,且B1=A1A2,B2=A12A+1A A2,C=B1+B2.因为P(A1)=410=25,P(A2)=510=12,所以P(B1)=P(A1A2)=P(A1)P(A2)=25×12=15,①P(B2)=P(A12A+1A A2)=P(A12A)+P(1A A2)=P(A1)P(2A)+P(1A)P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=2 5×(1-12)+(1-25)×12=12.②故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=1 5+12=710.③(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X~B(3,15).④于是P(X=0)=03C(15) 0(45)3=64125,P(X=1)=13C(15)1(45)2=48125,P(X=2)=23C(15)2(45)1=12125,P(X=3)=33C(15)3(45)0=1125.⑤故X的分布列为X 0 1 2 3P 6412548125121251125⑥X的数学期望为E(X)=3×15=35.⑦规范要求:步骤①②③④⑤⑥⑦应齐全,能利用互斥事件的概率加法公式和相互独立事件的概率乘法公式求复杂事件的概率,能分析出离散型随机变量服从二项分布,进而利用公式求得相应概率,写出分布列,求出数学期望.温馨提示:步骤①②求P(B1),P(B2)时,需将B1,B2转化为可求概率事件的和或积;步骤④⑤,若随机变量服从二项分布,则利用独立重复试验概率公式求取各值的概率,否则,利用古典概型及独立事件概率乘法公式求出取各值的概率;步骤⑦求服从二项分布的随机变量的期望、方差,可直接利用定义求解,也可直接代入E(X)=np,D(X)=np(1-p)求解.[规范训练] (2019·天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B(3,23),从而P(X=k)=3C k(23)k(13)3-k,k=0,1,2,3.所以随机变量X的分布列为X 0 1 2 3P 1272949827随机变量X的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B(3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243.类型一求方差1.从装有除颜色外完全相同的3个白球和m 个黑球的不透明布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)等于( B ) (A)85(B)65(C)45(D)25解析:由题意,X ~B(5,33+m ), 又E(X)=533⨯+m =3, 所以m=2,则X ~B(5,35), 故D(X)=5×35×(1-35)=65. 2.(2018·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p 等于( B ) (A)0.7 (B)0.6 (C)0.4 (D)0.3解析:由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B(10,p),所以DX=10p(1-p)=2.4, 所以p=0.4或0.6. 又因为P(X=4)<P(X=6),所以410C p 4(1-p)6<610C p 6(1-p)4,所以p>0.5,所以p=0.6.故选B.3.(2019·湖州三校4月联考)已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字X 的数学期望是2,则X 的方差是( B )(A)13 (B)23 (C)83 (D)43解析:可以设小球的个数为a-d,a,a+d,故数字X 的分布列为:所以E(X)=1×3-a d a +2×13+3×3+a d a =623+a da =2,解得d=0,所以取出小球上的数字X 的分布列为:所以E(X 2)=2221233++=143. 所以D(X)=E(X 2)-E 2(X)=143-22=23. 故选B.4.(2019·绍兴柯桥模拟)随机变量ξ的取值为0,1,2,若P(ξ=0)=13,E(ξ)=1,则P(ξ=1)= ,D(ξ)= . 解析:可设p(ξ=1)=a,p(ξ=2)=b,则2,32 1.⎧+=⎪⎨⎪+=⎩a b a b 解得1,31.3⎧=⎪⎪⎨⎪=⎪⎩a b D(ξ)=E(ξ2)-(E(ξ))2=53-1=23. 答案:13 23类型二 求期望5.(2019·暨阳4月联考)已知随机变量ξ,η满足η=-ξ+8,若E(ξ)=6,D(ξ)=2.4,则E(η),D(η)分别为( C ) (A)E(η)=6,D(η)=2.4 (B)E(η)=6,D(η)=5.6(C)E(η)=2,D(η)=2.4 (D)E(η)=2,D(η)=5.6 解析:E(η)=E(-ξ+8)=-E(ξ)+8=2,D(η)=D(-ξ+8)=(-1)2D(ξ)=2.4. 故选C.6.(2019·嘉兴市高三上期末)已知随机变量ξ的分布列如下,则E(ξ)的最大值是( B )(A)-58 (B)-1564 (C)-14(D)-1964 解析:根据题意:1111,42410,2104⎧+++-=⎪⎪⎪+>⎨⎪⎪->⎪⎩a b a b ⇒a=b,a ∈(-12,14), E(ξ)=(-1)×14+0×(12+a)+a ×(14-a)=-(a-18)2-1564, 当a=18时,E(ξ)取到最大值为-1564. 故选B.7.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)= .解析:设“?”处的数值为x,则“!”处的数值为1-2x, 则E(ξ)=1×x+2×(1-2x)+3x=x+2-4x+3x=2. 答案:28.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是 .解析:设向上的数之积为X,X 的可能取值为0,1,2,4,P(X=1)=2266⨯⨯=19, P(X=2)=211266⨯+⨯⨯=19, P(X=4)=1166⨯⨯=136, P(X=0)=1-P(X=1)-P(X=2)-P(X=4)=1-936=34, 所以E(X)=0×34+1×19+2×19+4×136=49. 答案:49。

第八节离散型随机变量的均值与方差理科

第八节离散型随机变量的均值与方差理科
返回
2.若Y=aX+b,其中a,b为常数,则Y也是随机变量, 且E(aX+b)= aE(X)+b .
3. (1)若X服从两点分布,则E(X)= p; (2)若X~B(n,p),则E(X)= np.
返回
二、方差 1.设离散型随机变量X的分布列为
X x1 x2

xi

xn
P
p1 p2

pi

pn
返回
返回
5.从1、2、3、4、5中任取两个不同的数作和,若和为偶数 得2分,和为奇数得1分,若X表示得分,则E(X)=_____. 答案:7 5
返回
均值与方差的作用 均值是随机变量取值的平均值,常用于对随机变量平均水 平的估计,方差反映了随机变量取值的稳定与波动、集中 与离散的程度,常用于对随机变量稳定于均值情况的估 计.方差越大表明平均偏离程度越大,说明随机变量取值 越分散.反之,方差越小,随机变量的取值越集中.
返回
甲系列:
动作
K
D
得分 100 80 40 10 概率 3 1 3 1
4 444
返回
乙系列:
动作 得分 概率
K
90 50
91 10 10
D
20 0
91 10 10
返回
现该运动员最后一个出场,其之前运动员的最高得分为 118分. (1)若该运动员希望获得该项目的第一名,应选择哪个系 列,说明理由,并求其获得第一名的概率; (2)若该运动员选择乙系列,求其成绩X的分布列及其数 学期望E(X).
返回
返回
[精析考题] [例1] (2011·湖南高考)某商店试销某种商品20天,获 得如下数据:
日销售量(件) 频数
0123 1595

2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差

2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差

P(X=100)=21×14×14=312,
∴X 的分布列为
X 20 40 50 70 100
P
3 8
9 32
1 8
3 16
1 32
∴E(X)=20×38+40×392+50×18+70×136+100×312=1465.
索引
考点二 二项分布的均值与方差
例2 (2021·东北三省三校联考)随着经济的发展,轿车已成为人们上班代步的一 种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
第十一章 计数原理、概率、随机变量及其分布
考试要求 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算 简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
话费,求 X 的分布列与数学期望.
索引
解 ①由题意知 P(ξ<μ)=P(ξ≥μ)=12,获赠话费 X 的可能取值为 20,40,50,
70,100, P(X=20)=12×34=38,P(X=40)=21×34×34=392,
P(X=50)=12×14=18,P(X=70)=21×34×14+12×14×43=136,
索引
P(X=4)=1304=1080100. 故 X 的分布列为
X0
1
2
3
4
P
2 401 10 000
1 029 2 500
1 323 5 000
189 2 500
81 10 000
故 E(X)=0×120400010+1×12 052090+2×15 302030+3×2158090+4×1080100 =65或E(X)=4×130=65.

高中数学课件 离散型随机变量的均值与方差

高中数学课件  离散型随机变量的均值与方差
2. 数学期望是反映变量的什么特征? 在 实际应用中起什么作用?
问题1. 某商场要将单价分别为 18 元/kg, 24 元/kg, 36 元/kg 的 3 种糖果按 3:2:1 的比例混合销售, 你认为 混合后的定价应该是多少? 按比例算得 1 kg 的混合糖果中, 18 元/kg 的占 1 kg, 2 1 24 元/kg 的占 kg, 3 1 这就是 36 元/kg 的占 kg. 6 混合后 那么这 1 kg 糖果的价格应该是 的平均 18 1 24 1 36 1 =23 (元/kg). 价, 2 3 6 1, 1, 1 是这三种糖果在混合中的权数. 2 3 6
求这个地区 5 月份下雨天数的均值. 解: 这个地区 5 月份下雨天数的均值为 E(X) = 00.0110.0320.0830.2340.3 50.2360.170.02 = 3.97.
即 估计这个地区 5 月份有 4 天下雨.
例1. 在篮球比赛中, 罚球命中 1 次得 1 分, 不中 得 0 分. 如果运动员罚球命中的概率为 0.7, 那么他罚 球 1 次的得分 X 的均值是多少? 解: 由题意知 X 服从两点分布, 其取值范围是 {0, 1}. 因为 P(X=1)=0.7, 则 P(X=0)= 1-0.7=0.3. 所以 E(X)=1P(X=1)0P(X=0) =10.700.3 = 0.7.
一般地, 若离散型随机变量 X 的分布列为
X P 则称
x1 p1
x2 p2
… …
xi pi
… …
xn pn
E(X)=x1p1x2p2…xipi…xnpn
为随机变量 X 的均值或数学期望. 均值反映了离散型随机变量取值的平均水平.
如: 下表是某果品的概率分布列, X 表示销售价. X (元/kg) 15 10 6 P 0.3 0.6 0.1 请同学们估计这批 8000 kg 果品的销售收入.

2.3离散型随机变量的均值与方差(经典系统全面知识点梳理)

2.3离散型随机变量的均值与方差(经典系统全面知识点梳理)

课题:2.3离散型随机变量的均值与方差
学科:数学 年级:高二 班级:
学习目标:
1.理解取有限个值的离散型随机变量的均值、方差的概念.
2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
3.了解正态密度曲线的特点及曲线所表示的意义,并进行简单应用.
二、教学重点与难点
重点:
理解离散型随机变量的均值和方差的含义。

难点:
利用离散型随机变量的均值和方差解决实际问题。

[知识梳理]
1.离散型随机变量的均值与方差
若离散型随机变量X 的分布列为
(1)均值
称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.
(2)方差
称D (X )=∑i =1n (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值
E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.
2.均值与方差的性质
(1)E (aX +b )=aE (X )+b .
(2)D (aX +b )=a 2D (X )(a ,b 为常数).
3.两点分布与二项分布的均值、方差
(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.41 离散型随机变量的均值与方差【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】要点一、离散型随机变量的期望 1.定义:一般地,若离散型随机变量ξ的概率分布为则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平.(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …np n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值。

(3)随机变量的均值与随机变量本身具有相同的单位. 2.性质:①()E E E ξηξη+=+;②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(;b aE b a E +=+ξξ)(的推导过程如下::η的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++…=+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ∴b aE b a E +=+ξξ)(。

要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念:已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。

2.离散型随机变量的方差:一般地,若离散型随机变量ξ的概率分布为则称ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+2()n i x E p ξ-⋅+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望.ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.要点诠释:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值).⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。

3.期望和方差的关系:22()()D E E ξξξ=-4.方差的性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2()D D a b a D ηξξ=+=;要点三:常见分布的期望与方差1、二点分布:若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-证明:∵(0)P q ξ==,(1)P p ξ==,01p <<,1p q += ∴01E q p p ξ=⨯+⨯=22(0)(1)(1).D p q p p p p ξ=-⋅+-⋅=-2、二项分布:若离散型随机变量ξ服从参数为,n p 的二项分布,即~(),B n P ξ,则 期望E nP ξ= 方差(1-)D np p ξ=期望公式证明:∵kn k k n k n k k n q p C p p C k P --=-==)1()(ξ,∴001112220012......n n n k k n k n n n n n n n E C p q C p q C p q k C p q n C p q ξ---=⨯+⨯+⨯++⨯++⨯,又∵11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC ,∴=ξE (np 0011n n C p q--+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q p C n n n --- np q p np n =+=-1)(.3、几何分布:独立重复试验中,若事件A 在每一次试验中发生的概率都为p ,事件A 第一次发生时所做的试验次数ξ是随机变量,且1()(1)k P k p p -ξ==-,0,1,2,3,,,k n = ,称离散型随机变量ξ服从几何分布,记作:~()()P k k P ξξ==g ,。

若离散型随机变量ξ服从几何分布,且~()()P k k P ξξ==g ,,则期望1.E pξ=方差21-pD pξ=要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。

4、超几何分布:若离散型随机变量ξ服从参数为,,N M n 的超几何分布,则期望()nME Nξ=要点四:离散型随机变量的期望与方差的求法及应用1、求离散型随机变量ξ的期望、方差、标准差的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望、方差的定义求出E ξ、D ξ、σξ:1122n n E x p x p x p ξ=++++()()()2221122n n D x E p x E p x E p ξ=-ξ+-ξ++-ξ+σξ=注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可. 2.离散型随机变量的期望与方差的实际意义及应用① 离散型随机变量的期望,反映了随机变量取值的平均水平;② 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。

方差越大数据波动越大。

③对于两个随机变量1ξ和2ξ,当需要了解他们的平均水平时,可比较1ξE 和2ξE 的大小。

④1ξE 和2ξE 相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较1ξD 和2ξD ,方差值大时,则表明ξ比较离散,反之,则表明ξ比较集中.品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关. 【典型例题】类型一、离散型随机变量的期望例1.某射手射击所得环数ξ的分布列如下:已知ξ的期望E ξ=8.9,则y 的值为________.【思路点拨】分布列中含有字母x 、y,应先根据分布列的性质,求出x 、y 的值,再利用期望的定义求解; 【解析】x +0.1+0.3+y =1,即x +y =0.6.①又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.②由①②联立解得x =0.2,y =0.4.【总结升华】求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解, 举一反三:【变式1】(2015春 金台区期末)设ξ~B (18,p ),又E (ξ)=9,则p 的值为( )A .12 B .13 C .14 D .23【答案】A∵ξ~B (18,p ),E (ξ)=9, ∴18p=9,∴12p =, 故选:A 。

【变式2】随机变量ξ的分布列为,则E(5ξ+4)等于( ) A .13 B .11 C .2.2 D .2.3【答案】A 由已知得:E(ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E(5ξ+4)=5E(ξ)+4=5×1.8+4=13.【变式3】节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节后卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量服从如下表所示的分布,若进这种鲜花500束,则期望利润是A.706元 C .754元 D .720元【答案】A节日期间预售的量:E ξ=200×0.2+300×0.35+400×0.3+500×0.15=40+105+120+75=340(束), 则期望的利润:η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450, ∴E η=3.4E ξ-450=3.4×340-450=706. ∴期望利润为706元.【变式4】设离散型随机变量ξ的可能取值为1,2,3,4,且()P k ak b ξ==+(1,2,3,4k =),3E ξ=,则a b += ;【答案】0.1;由分布列的概率和为1,有()(2)(3)(4)1a b a b a b a b +++++++=, 又3E ξ=,即1()2(2)3(3)4(4)3a b a b a b a b ⋅++⋅++⋅++⋅+=, 解得0.1a =,0b =,故0.1a b +=。

例2. 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (1)求这名同学回答这三个问题的总得分X 的概率分布和数学期望; (2)求这名同学总得分不为负分(即X≥0)的概率.【思路点拨】本题显然为独立重复试验的问题,因此求各个情况的概率直接用公式即可。

(1)求X 的可能取值,即求得分,答对0道题得-300分,答对1道题得100-200=-100分,答对2道题得2×100-100=100分,答对3道题得300分;(2)总分不为负分包括100分和300分两种情况. 【解析】(1)X 的可能取值为-300,-100,100,300. P (X=-300)=0.23=0.008。

P (X=-100)=13C ×0.22×0.8=0.096,P (X=100)=23C ×0.2×0.82=0.384,P (X=300)=0.83=0.512. 所以X 的概率分布为∴E(X )=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (2)这名同学总得分不为负分的概率为P (X≥0)=P (X=100)+P (X=300)=0.384+0.512=0.896. 【总结升华】求离散型随机变量均值的关键在于列出概率分布表. 举一反三:【变式1】 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望【答案】因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=⨯+⨯=ξE【变式2】一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.【答案】设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当0ξ=时,即第一次取得正品,试验停止,则93(0)124p ξ===当1ξ=时,即第一次取出次品,第二次取得正品,试验停止,则(1)p ξ==449119123=⨯ 当2ξ=时,即第一、二次取出次品,第三次取得正品,试验停止,则(2)p ξ==2209109112123=⨯⨯ 当3ξ=时,即第一、二、三次取出次品,第四次取得正品,试验停止,则(3)p ξ==220199101112123=⨯⨯⨯ ∴ξ分布列为∴39012344422022010E ξ=⨯+⨯+⨯+⨯= 【变式3】某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量ξ的分布列为求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?【答案】(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元) 故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15 所以出租车在途中因故停车累计最多15分钟例3.(2014 辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (Ⅱ)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E(X)及方差D(X).【答案】(Ⅰ) 0.108,(Ⅱ) E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.【解析】(Ⅰ)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”B 表示事件“在未来连续3天里有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”, 因此P(A 1)=(0.006+0.004+0.002)×50=0.6, P(A 2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108,(Ⅱ)X 可能取的值为0,1,2,3,相应的概率为:)0(=X p =064.0)6.01(303=-C , 288.0)6.01(6.0)1(213=-==C X p , 432.0)6.01(6.0)2(223=-==C X p , 216.06.0)3(333===C X p ,随机变量X 的分布列为因为X ~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.【总结升华】 在确定随机变量服从特殊分布以后,可直接运用公式求其均值. 举一反三:【变式1】 英语考试有100道选择题,每个题有4个选项,选对得1分,否则得0分,学生甲会其中的20道,学生乙会其中的80道,不会的均随机选择,求甲、乙在这次测验中得分的数学期望. 【答案】设甲、乙不会的题的得分分别为随机变量X 和Y ,由题意知X ~B (80,0.25),Y ~B (20,0.25),∴E (X )=80×0.25=20,E (Y )=20×0.25=5.故甲、乙的数学期望成绩分别为40分和85分.【变式2】 甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,记甲击中目标的次数为X ,乙击中目标的次数为Y , (1)求X 的概率分布; (2)求X 和Y 的数学期望.【答案】 甲、乙击中目标的次数均服从二项分布.(1)3311(0)28P X C ⎛⎫===⎪⎝⎭, 31313(1)28P X C ⎛⎫=== ⎪⎝⎭,32313(2)28P X C ⎛⎫=== ⎪⎝⎭,33311(3)28P X C ⎛⎫=== ⎪⎝⎭。

相关文档
最新文档