考研数学笔记
考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
考研数学详细笔记

α
m
= =
0 0
;即
⎛ ⎜ ⎜ ⎜
α1T
α
T 2
⎞ ⎟ ⎟ ⎟
α1
α2
+ kmαmTαm = 0
⎜⎜⎝
α
T m
⎟⎟⎠
⎛ k1 ⎞
αm
⎜
)
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
⎜⎟ ⎝ km ⎠
令 A = (α1 α2
⎛ k1 ⎞
αm )
,即
AT
⎜
A
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
,因为
α1,α2 ,
⎜⎟ ⎝ km ⎠
,αm 线 性 无 关 ,
三、线性代数复习重点
大家知道,线性代数前后知识的联系非常紧密,所 以我们在这一部分复习的时候,一定 要抓住我们线性代数的前后联系的这样一些关键点, 把知识连贯起来,我们就会发现,掌 握起来是比较容易的。整个线性代数,我个人认为, 可以分成三大块内容。第一部分,行 列式和矩阵,是我们线性代数的基础部分,基础部分 一般来讲不考大题。以这个为基础,
方程组中解的判定、解的性质、解的结构这三部分要搞清楚 重要题型 1 判定向量组线性相关性; 2 向量组的线性表示 3 求向量组的秩与极大无关组 4 方程组(齐次,非齐次)解的判定与求解 5 方程组的公共解与同解。
例 5 设 向 量 组 α1,α2 ,α3 线 性 无 关 , 向 量 β1 能 由 α1,α2 ,α3 线 性 表 出 , 向 量 β2 不 能 由
⎧a11x1 + a12 x2 + ⎪⎪⎨a21x1 + a22 x2 + ⎪ ⎪⎩am1x1 + am2 x2 +
考研数学重点笔记

第一部分第一章集合与映射§1.集合§2.映射与函数本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。
第二章数列极限§1.实数系的连续性§2.数列极限§3.无穷大量§4.收敛准则本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
第三章函数极限与连续函数§1.函数极限§2.连续函数§3.无穷小量与无穷大量的阶§4.闭区间上的连续函数本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章微分§1.微分和导数§2.导数的意义和性质§3.导数四则运算和反函数求导法则§4.复合函数求导法则及其应用§5.高阶导数和高阶微分本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。
第五章微分中值定理及其应用§1.微分中值定理§2.L'Hospital法则§3.插值多项式和Taylor公式§4.函数的Taylor公式及其应用§5.应用举例§6.函数方程的近似求解本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。
第六章不定积分§1.不定积分的概念和运算法则§2.换元积分法和分部积分法§3.有理函数的不定积分及其应用本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。
考研数学知识点总结归纳

考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学一全部知识点总结

考研数学一全部知识点总结考研数学一是考研数学中难度较大的一门科目,涵盖了众多的知识点。
以下是对考研数学一全部知识点的总结:一、高等数学1、函数、极限、连续函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性。
数列极限与函数极限的定义及其性质,函数的左极限和右极限。
无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较。
极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则。
两个重要极限:sin x/x → 1(x → 0),(1 + 1/x)^x → e(x → ∞)。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
2、一元函数微分学导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系。
导数的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法。
高阶导数的概念,某些简单函数的 n 阶导数。
微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线。
3、一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式。
定积分的概念和基本性质,定积分中值定理。
积分上限的函数及其导数,牛顿莱布尼茨公式,不定积分和定积分的换元积分法与分部积分法。
反常积分的概念和计算,定积分的应用(平面图形的面积、旋转体的体积、功、引力、压力等)。
4、向量代数和空间解析几何向量的概念,向量的线性运算,向量的数量积和向量积,向量的混合积。
两向量垂直、平行的条件,两向量的夹角。
向量的坐标表达式及其运算,单位向量,方向余弦,向量的模。
平面方程和直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离。
曲面方程和空间曲线方程,常见的曲面(如球面、柱面、旋转曲面)和空间曲线(如空间曲线在坐标面上的投影曲线)。
2024考研数学满分笔记pdf

2024考研数学满分笔记pdf一、数学分析1.极限与连续性极限的定义:对于数列的极限,若对于任意的ε>0,存在正整数N,当n>N时,|an - a| < ε,则称数列{an}收敛于a,记作lim(an) = a。
连续性的定义:若函数f在点x0处连续,则对于任意ε>0,存在δ>0,使得当|x - x0| < δ时,有|f(x) - f(x0)| < ε成立。
2.微分与积分微分的定义:函数f在点x0处可导,则存在常数A,使得当x→x0时,有Δf = f(x) - f(x0) ≈ A(x - x0)成立。
积分的定义:对于定积分∫[a,b]f(x)dx,若存在分点ξk∈[xk-1,xk],使得S = ∑(i=1)^n f(ξi)Δxi = limn→∞ Σ(i=1)^nf(ξi)Δxi成立,则称f在[a,b]上可积。
二、线性代数1.向量空间向量空间的定义:对于域F上的n维数组空间Vn(F),若满足以下条件,则称Vn(F)为F上的n维向量空间:(1)对于任意u、v∈Vn(F),有u+v∈Vn(F);(2)对于任意k∈F、u∈Vn(F),有ku∈Vn(F);(3)存在零向量0∈Vn(F)使得对于任意u∈Vn(F),有u+0=u;(4)对于任意u∈Vn(F),存在-u∈Vn(F),使得u+(-u)=0。
2.矩阵与行列式矩阵的定义:对于m×n矩阵A=(aij),其中aij∈F,则称A为m×n矩阵。
对于n×n矩阵A,若存在n阶单位矩阵En,使得EA=AE=A 成立,则称A为可逆矩阵。
行列式的定义:对于n阶行列式Det(A),其定义为Det(A)=Σα(i1i2...in)Ai1i1Ai2i2...Ainin,其中α(i1i2...in)为排列的符号,Ai1i1Ai2i2...Ainin为n个元素所组成的乘积。
三、概率论与数理统计1.随机变量与概率分布随机变量的定义:对于样本空间Ω上的实函数X(ω),若X(ω)是Ω上的一个实数值函数,则称X(ω)为随机变量。
考研数学每章总结知识点

考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
考研数学66条笔记

1
矩阵 A 的正负惯性指数不等于主子式的正负个数 时间 A、B 相互独立,A、B、 A、B 相互独立 在使用公式 P{a x b} F (b) F (a) 时,在这里{}中的不等式应该是左开右闭
n
证明两条曲线在某一点相切 M ( x0 , y0 ) , 先求交点, 后求交点的导数相等/方向向量
(x)在(a,b)至多有 n 个不同的根 44、 用泰勒公式的证明,关键在于选取展开点,一般来说已知条件给的点作为展开点, 若已知条件给出 f(x),f ’(x)的特征,可选在 x 处展开 45、 注意用词: “某点二阶可导”说明二阶导数在其邻域内是连续的; “在某点存在二阶 导数”说明在该店处是可导的,但是在其邻域内不一定可导 46、 周期函数的导数依然是以 T 为周期的周期函数,而周期函数的原函数可就不一定 是周期函数。只有当
有 z f ( x, y) 区域 Dxy 求极值(最值)用拉格朗日函数,求出 若有两个,则分
别算出后求其极(最)值大小 19、 秩为 1 的矩阵可以化为两个向量的积 A , 为 n 维列向量。并且 A 的自乘
T 2
积 A aA ,a 为常数
20、 21、 22、
A 的行(列)向量相互垂直,且长度相同为 a, B
l i mf x( ) n
n
n
lf im yn ,则 ( )lim f ( x) 不存在
x x0
n
39、
对于任意数列 an ,若满足 an A k an1 A 其中 0<k<1,则必有 lim an A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
limxn x0 的数列{xn},都有 lim f ( xn ) A 。
n n
归结原则对于验证函数在某点没有极限是较方便的, 例如可以挑选一个 收敛于该点的自变量 x 的数列{xn},而相应的函数值数列{f(xn)}却不收敛;或 者选出两个收敛于该点的数列{xn},{x’n},而相应的函数值数列{f(xn)},{f(xn)} 却具有不同的极限。 1.4 无穷小与无穷大 若 lim ( x) l , 当 时 , 则 称 x→x0 时 称 α(x) 是 β(x) 的 l 0 x x0 ( x )
1.泰勒公式(拉格朗日余项) : f ( x)
k 0
n
f ( k ) ( x0 ) f ( n1) ( ) ( x x0 )k ( x x0 )n1 k! (n 1)!
2.常用麦克劳林公式(带拉格朗日余项)
(2) 按定义求连接点处的左右导数 设
ex 1
g ( x),x x x0 g ( x)与f ( x)在点x0处无定义, f ( x) A,x x0 , ( x0 )与h ( x0 ) h( x),x x x 可按定义求g 0
1 f ( x)
f (b) f (a) f ( ) . ba
3.柯西定理:若函数 f(x)和 g(x)满足以下条件;(i)在闭区间[a,b]上连续;(ii)在 开区间(a,b)内可导;(iii) ∀x∈(a,b),g’(x)≠0,则在(a,b)内至少存在一点 ξ,使得
x x(t ) dy y(t ) d 2 y y(t ) x(t ) y(t ) x(t ) , , 2 [ x(t )]3 y y (t ) dx x(t ) dx
(3)对于
f ( x) f ( x0 ) lim g ( x), x x0 (1) f ( x)很复杂,按定义求,f ( x0 ) x x0 x x0 f ( x) , A,x x0 (2)否则,先求出f ( x),再求 lim f ( x)
x x0
6.对数求导法 7.分段函数求导 (1)按求导法则求连接点处的左右导数 设 3.2 泰勒公式 求泰勒公式的方法:
f (b) f (a) f ( ) g (b) g (a) g ( )
g ( x), x x x0 ( x0 ) h ( x0 ) A, 则f ( x0 ) A. f ( x) , 若g h( x), x0 x x
x2n x 2n2 (1) n 1 cos x (2n)! (2n 2)! xn x n 1 (1) n n (n 1)(1 x) n 1 n 1 ( n 1) xn x (1 x) n n 1
0 1
tg 3
半角公式
3tg tg 3 1 3tg 2
1 cos 1 cos sin cos 2 2 2 2
tg
1 cos 1 cos sin 2 1 cos sin 1 cos
[
u ( x) u( x)v( x) u ( x)v( x) ] v( x) v 2 ( x)
2.复合函数求导
( f [ ( x)]) f [ ( x)] ( x)
关键在于区分哪些是中间变量,哪些是自变量 3.反函数求导 4.隐函数求导 5.参数式求导
[ f 1 (y )]
1 1 V棱柱 =SH V棱锥 = SH V棱台 = H(S+ SS +S) 3 3
sin xtan xarcsin xarctan xe x 1ln(1 x) ~ x 1 1 cos x ~ x 2 (1 x) a 1 ~ axa x 1 ~ x ln a 2
1
1.四则运算法则 [αu(x)+ βv(x)]’=αu’(x)+ βv’(x)
[u(x)v(x)]’= u’(x)v(x)+ u(x)v’(x)
第 3 章 中值定理和泰勒公式
3.1 中值定理 费马定理:若是 x0 是 f(x)的一个极值点,且 f’(x0)存在,则必有 f ’(x0)=0(可微 函数的极值点必为驻点), 1.罗尔定理:若函数 f(x)满足以下条件;(i)在闭区间[a,b]上连续;(ii)在开区间 (a,b)内可导;(iii)f(a)=f(b),则在(a,b)内至少存在一点 ξ,使得 f’(ξ)=0. 2.拉格朗日定理:若函数 f(x)满足以下条件;(i)在闭区间[a,b]上连续;(ii)在开 区间(a,b)内可导,则在(a,b)内至少存在一点 ξ,使得
xn<yn。 判别法则: 1.夹逼法则:若∃N,当 n>N 时,xn≤yn≤zn,且 lim xn= lim zn=a, 则 lim yn =a。
n n n
lim an A 。
n
第 2 章 导数与微分
2.1 求导法则和求导公式 求导法则:
2.单调收敛原理:单调有界数列必收敛。 注:任何有界的数列必存在收敛的子数列。
若 f(x=0), f ’(0)≠0,则
x
0
f (t )dt
1 f (0) x 2 2
球的表面积:4πR2 球的体积: 4 椭圆面积:πab 椭球的体积: 4 abc R3 3 3
确定等价无穷小的方法:1.洛必达法则,2.泰勒公式 1.5 连续函数 极限存在⇔左右极限存在且相等。 连续⇔左右极限存在且相等,且等于该点函数值。 简断点:1.第一类间断点,左右极限不相等,或相等但不等于该点函数值;2. 左右极限至少有一个不存在。 闭区间上连续函数的性质:有界性,最值性,介值性,零点存在定理。 1.6 常见题型 求极限的方法:1.四则运算;2.换元和两个重要极限;3.等价无穷小替换;4. 泰勒公式;5.洛必达法则;6.利用函数极限求数列极限; 7.放缩法; 求极限 lim x ,就要将数列 xn 放大与缩小成:zn≤xn≤yn.
积化和差公式 倍角公式
U ( x0 , ),使得x U ( x0 , ) ,均有 f(x)≤g(x)≤h(x),则 lim g ( x) A 。
x x0
2.单调收敛原理:单调有界函数必收敛。 3. 柯西收敛准则:函数 f(x)收敛的充要条件是:∀ε>0, ∃>0, ∀x’,x’’∈ 有|f(x’)-f(x’’)|<ε。
1.3 函数的极限 性质:极限唯一性,局部有界性,局部保序性。 判别法则:
和差化积公式
1. 夹 逼 法 则 : 若 lim f ( x) lim h( x) A , 且 存 在 x0 的 某 一 去 心 邻 域
x x0 x x0
o o
sin( ) sin cos cos sin sin sin 2sin cos 2 2 cos( ) cos cos sin sin sin sin 2cos sin tg tg tg ( ) 2 2 1 tg tg cos cos 2cos cos ctg ctg 1 2 2 ctg ( ) ctg ctg cos cos -2sin sin 2 2
U ( x0 , )
o
,
4. 海 涅 (Heine) 归 结 原 则 : lim f ( x ) A 的 充 要 条 件 是 : 对 于 任 何 满 足
x x0
2 tan 1 tan 2 1 2 2 sin cos [sin( ) sin( )] cos 2 2cos 1 1 2sin 2 2 1 tan 1 cos 2 sin 2 cos sin [sin( ) sin( )] 1 tan 2 2 2tg ctg 2 1 1 ctg 2 cos cos [cos( ) cos( )] tg 2 2 1 tg 2ctg 2 sin 2 2sin cos
高阶无穷小,记作 ( x) o( ( x)) 同阶无穷小,记作 ( x) O( ( x)) 等阶无穷小,记作 ( x) ~ ( x)
常用等价无穷小
1 cos 1 cos sin ctg 2 1 cos sin 1 cos
n n
第 1 章 极限与连续
1.1 集合、映射、函数 空集,子集,有限集,无限集,可列集,积集,区间,邻域,上界,下界, 上有界集,下有界集,无界集,上确界,下确界 确界存在定理:凡有上(下)界的非空数集必有有限的上(下)确界。 映射,象,原象,定义域,值域,满映射,单映射,双射,函数,自变量, 因变量,基本初等函数 1.2 数列的极限 性质: 1. (唯一性)收敛数列的极限必唯一。 2. (有界性)收敛数列必为有界数列。 3. (子列不变性)若数列收敛于 a,则其任何子列也收敛于 a。 注1. 一个数列有若干子列收敛且收敛于一个数, 仍不能保证原数列收敛。 注2. 若数列{xn}有两个子列{xp},{xq}均收敛于 a,且这两个子列合起来 就是原数列,则原数列也收敛于 a。 注3. 性质 3 提供了证明了某数列发散的方法,即用其逆否命题:若能从 该数列中选出两个具有不同极限的子列,则该数列必发散。 4. (对有限变动的不变性)若数列{xn}收敛于 a,则改变{xn}中的有限项所 得到的新数列仍收敛于 a。 5. (保序性)若 lim x a, lim y b ,且 a<b,则存在 N,当 n>N 时,有 n n