(完整版)2019年山东省济南市中考数学试卷(解析版)

合集下载

2019年济南市中考题(Word+答案)

2019年济南市中考题(Word+答案)

山东省济南市2019年初三年级学业水平考试数学试题一、选择题(本大题共12个小题,每题4分,共48分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.) 1. -7的相反数是A . -7B .-17 C .7 D . 1【答案】C2.以下给出的几何体中,主视图是矩形,俯视图是圆的是A B C D 【答案】 D3.2019年1 月3日,“嫦娥四号〞 探测器成功着陆在月球反面东经177.6度、南纬45.5度附近,实现了人类首次在月球反面软着陆.数字177.6用科学记数法表示为A . 0.1776×103B . 1.776×102C .1.776×103D . 17.76×102 【答案】B4. 如图,DE ∥BC ,BE 平分∠ABC ,假设∠1=70°,那么∠CBE 的度数为 A .20° B.35° C.55° D.70°【答案】B5.实数a 、b 在数轴上的对应点的位置如下图,以下关系式不成立的是A . a -5>b -5B . 6a >6bC . -a >-bD . a -b >0【答案】C6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是赵爽弦图科克曲线A .B .C .D .【答案】C斐波那契螺旋线 笛卡尔心形线7.化简4x 2-4+1x +2的结果是 A .x -2 B .1x +2 C .2x -2 D .2x +2【答案】B 【解析】4x 2-4+1x +2=4(x +2)(x -2)+1x +2=4+(x -2)(x +2)(x -2)=x -2(x +2)(x -2)=1x +2. 8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,那么这7次成绩的中位数和平均数分别是A .9.7m , 9.9mB .9.7m , 9.8mC .9.8m , 9.7mD .9.8m , 9.9m9.【答案】B9.函数y =-ax +a与y =ax(a ≠0)在同一坐标系中的图象可能是D .【答案】D10.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接AE 、AF .假设AB =6,∠B =60°,那么阴影局部的面积为 A .93-3π B.93-2π C.183-9π D.183-6π【答案】A【解析】由可得:CE =CF =12AB =3,AE ⊥BC ,AF ⊥CD ,AE =AF =33,∠ECF =120°.S △AEC =S △AFC =12×3×33=923,S 四边形AECF =93,S 扇形ECF =13×π×32=3π. ∴S 阴影=S 四边形AECF -S 扇形ECF =93-3π.11.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北编东53°方向.请计算一下南门A 与历下亭C 之间的距离约为 (参考数据:tan37°≈34,tan53°≈43).A .225mB .275mC .300mD .315m游船码头历下亭【答案】C【解析】过点C 作CD ⊥AB ,交AB 的延长线于点D .在Rt △ACD 中,∵tan ∠A =CD AD ,∴tan37°=CD AD =34.∴可设CD =3x ,AD =4x .∴AC =5x .在Rt △BCD 中,∵tan ∠DBC =CD BD ,∴tan53°=CD BD =43.∴3x BD =43.∴BD =94x . ∵AB +BD =AD ,∴105+94x =4x .解得x =60.∴AC =5x =300〔m 〕.D12.关于x 的一元二次方程ax 2+bx +12=0有一个根是-1,假设二次函数y =ax 2+bx +12的图象的顶点在第一象限,设t =2a +b ,那么t 的取值范围是A .-12<t <14B .-1<t ≤14C .-12≤t <12D .-1<t <12【答案】D【解析】将x =-1代入ax 2+bx +12=0,得a -b +12=0.∴a =b -12……………………………………①.∴t =2a +b =2(b -12)+b =3b -1……………………………………②.根据题意可知:二次函数y =ax 2+bx +12的图象经过点〔-1,0〕和〔0,12〕.又∵二次函数y =ax 2+bx +12的图象的顶点在第一象限,∴该抛物线的开口向下,与x 轴有两个交点,且顶点的纵坐标y 顶>12.∴a <0,b >0. ∴a =b -12<0.∴b <12.又∵b >0,∴0<b <12.∴0<3b <32.∴-1<3b -1<12.又∵t =3b -1,∴-1<t <12……………………………………③.下面再采用验证法作出进一步的判断:在14<t <12的范围内,假设取t =38,得38=3b -1.解得b =1124.∴a =b -12=-124. 此时y =ax 2+bx +12=-124x 2+1124x +12=-124(x -112)2+21796,x 顶=112>0,y 顶=21796>12.∴t =38符合题意……………………………………④.在-1<t <-12的范围内假设取t =-34,得-34=3b -1.解得b =112.∴a =b -12=-512.此时y =ax 2+bx +12=-512x 2+112x +12=-512(x -110)2+121240,x 顶=110>0,y 顶=121240>12.∴t =-34符合题意……………………………………⑤.综上可知:答案选D .二、填空题: (本大题共613.分解因式: m 2-4m +4=________; 【答案】(m -2)214.如图,一个可以自由转动的转盘,被分成了6个一样的扇形,转动转盘,转盘停顿时,指针落在红色区域的概率等于________;【答案】1315. 一个n 边形的内角和等于720°, 那么n =________; 【答案】616.代数式2x -13与代数式3-2x 的和为4,那么x =________;【答案】x =-117.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l 1、l 2分别表示去年、今年水费y (元)与用水量x (m 3)之间的关系.小雨家去年用水量为150m 3,假设今年用水量与去年一样,水费将比去年多________元.m 3【答案】210【解析】图中l 1的解析式为y =3x ,当x =150时,y =3×150=450〔元〕, ∴小雨家去年用水的水费为450元.图中l BC 的解析式为y =6x -240,当x =150时,y =6×150-240=660〔元〕. 660-450=210〔元〕. ∴水费将比去年多210元.18. 如图,在矩形纸片ABCD 中,将AB 沿BM 翻折, 使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,假设AD =8,AB =5,那么线段PE的长等于________.【答案】203【解析】由题意可得:四边形ABNM 是正方形,AM =AB =MN =BN =5,CN =DM =8-5=3,∠ABM =45°,CD =CF =5,DE =EF .在Rt △CFN 中,∵CF =5,CN =3,∴FN =4. ∴MF =MN -FN =5-4=1.设DE =EF =x ,那么ME =3-x .在Rt △MEF 中,∵ME 2+MF 2=EF 2,∴(3-x )2+12=x 2.x =53.∴EF =53,那么ME =3-x =43.∴MF ∶ME ∶EF =3∶4∶5.过点P 作PG ⊥AM 于点G ,那么∠GPM =∠ABM =45°.∴PG =MG .∵PG ∥MF ,∴△EFM ∽△EPG .∴PG ∶EG ∶PE =MF ∶ME ∶EF =3∶4∶5. 设PG =MG =3y ,那么EG =4y ,PE =5y . ∵EG =MG +EM ,∴4y =3y +43.∴y =43.∴PE =5y =203.三、解答题: (本大题共9个小题,共78分解容许写出文字说明、证明过程或演算步骤.) 19. (本小题总分值6分)计算:(12)-1+(π+1)0-2cos60°+9【解】原式=2+1-2×12+3=5.20. (本小题总分值6分)解不等式组:⎩⎪⎨⎪⎧5x -3≤2x +9① 3x >x +102. ② ,并写出它的所有整数解. 【解】由①,得5x -2x ≤9+3. ∴x ≤4. 由②,得 6x >x +10. ∴x >2.∴原不等式组的解集是2<x ≤4. 它的所有整数解为:3,4. 21. (本小题总分值6分)如图,在□ABCD 中,E 、F 分别是AD 和BC 上的点,∠DAF =∠BCE .求证:BF =DE .【证明】∵四边形ABCD 是平行四边形, ∴AB =CD ,∠B =∠D ,AD ∥B C . ∴∠AFB =∠DAF ,∠DEC =∠BCE . 又∵∠DAF =∠BCE , ∴∠AFB =∠DE C . ∴△ABF ≌△CDE . ∴BF =DE .22. (本小题总分值8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购置了一批书籍.其中购置A 种图书花费了3000元,购置B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购置A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日〞进展打折促销活动,所有图书都按8折销售学校当天购置了A 种图书20本和B 种图书25本,共花费多少元? 【解】〔1〕设B 种图书的单价为x 元,A 种图书的单价为1.5x 元,根据题意,得;30001.5x -1600x =20. 2000x -1600x=20.解得x =20.经检验x =20是原方程的根. ∴1.5x =30.答:A 种图书的单价为30元,B 种图书的单价为20元.(2) 〔20×30+20×25〕×0.8=880(元). 答:共花费880元. 23. (本小题总分值8分)如图,AB 、CD 是⊙O 的两条直径,过点C 的⊙O 的切线交AB 的延长线于点E ,连接AC 、BD . (1)求证;∠ABD =∠CAB ;(2)假设B 是OE 的中点,AC =12,求⊙O 的半径.【解析】〔1〕证明:∵AD =AD ,∴∠ABD =∠AC D . ∵OA =OC ,∴∠ACD =∠CA B . ∴∠ABD =∠CA B .〔2〕解:连接BC ,那么∠ACB =90°. ∵CE 是⊙O 的切线,∴∠OCE =90°. ∵B 是OE 的中点,∴OB =BE =12OE .∴OC =OB =12OE .∴∠E =30°. ∴∠COE =60°. 又∵OC =OB ,∴△OCB 是等边三角形. ∴∠ABC =60°.在Rt △ABC 中,∵tan ∠ABC =AC BC ,∴tan60°=12BC.∴BC =123=43.24. (本小题总分值10分某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.2 5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2 4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1 4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3(1)统计表中的a =_______,b =_______; (2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级〞的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼〞宣传活动,请用树状图法或列表法求出恰好选中“1男1女〞的概率. 【解】〔1〕a =8,b =0.15; (2)补全后的条形统计图如下图:〔3〕400×0.25=100〔人〕.答:估计该校八年级学生视力为 “E 级〞的有100人.男1女〞的结果有8种,所以其概率为812=23.25. (本小题总分值10分)如图1,点A (0,8)、点B (2,a )在直线y =-2x +b 上,反比例函数y =k x(x >0)的图象经过点B . (1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、 B D .①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求DEEF的值; ②在线段AB 运动过程中,连接BC ,假设△BCD 是以BC 为腰的等腰三形,求所有满足条件的m 的值.【解】〔1〕将点A (0,8)代入y =-2x +b ,得b =8. ∴直线AB 的解析式为y =-2x +8. 将点B (2,a )代入y =-2x +8,得 a =-2×2+8=4. ∴点B (2,4).将点B (2,4)代入y =kx (x >0),得k =2×4=8.∴反比例函数的解析式为y =8x(x >0).〔2〕当m =3时,D 〔5,4〕.∴F 〔5,0〕. 将x =5代入y =8x ,得y =85.∴E 〔5,85〕.∴DE =4-85=125,EF =85.∴DE EF =12585=32. 〔3〕根据题意,得C 〔m ,8〕,D 〔2+m ,4〕. ∴BC 2=(m -2)2+(8-4)2=m 2-4m +20, BD 2=(2+m -2)2+(4-4)2=m 2, CD 2=AB 2=(2-0)2+(4-8)2=20.①假设BC =CD ,那么m 2-4m +20=20.解得m 1=4,m 2=0〔不合题意,舍去〕. ②假设BC =BD ,那么m 2-4m +20=m 2.解得m =5. ∴满足条件的m 的值为4或5. 26. (本小题总分值12分)小圆同学对图形旋转前后的线段之间、角之间的关系进展了拓展探究.(一)猜想探究在△ABC 中,AB =AC ,M 是平面内任意一点, 将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连接N B .(1)如图1,假设M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是______,NB与MC的数量关系是______;(2)如图2,点E是AB延长线上点,假设M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?假设成立,请给予证明,假设不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.Q1 NCC1【解】〔1〕∠NAB=∠MAC,NB=MC;〔2〕(1)中结论仍然成立,证明如下:由旋转可得:AN=AM,∠NAM=∠BA C.∴∠NAB+∠BAM=∠BAM+∠MA C.∴∠NAB=∠MA C.又∵AB=AC,∴△NAB≌△MA C.∴NB=M C.〔3〕过点A1作A1G⊥B1C1于点G,那么B1G=12A1B1=4,A1G=3B1G=43.在△A1B1C1中,∴∠A1B1C1=60°,∠B1A1C1=75°,∴∠C1=45°.在Rt△ABC中,∵∠C1=45°,∴A1C1=2A1G=46.作A1B1的延长线B1F,将A1C1绕点A1按顺时针方向旋转75°,得到线段A1P1(点P1在B1F上),将A1B1绕点A1按顺时针方向旋转75°,得到线段A1P2,连接P1P2.根据题意可知:当点P在点C1处时,点Q在点P1处,当点P在点B1处时,点Q在点P2处.∵点P在线段B1C1上运动,∴点Q在线段P1P2上运动.过点B1作B1H⊥P1P2于点H,那么线段B1Q长度的最小值= B1H.与〔2〕同理可得:A1Q=A1P,∠QA1P1=∠PA1C1.又∵A1P1=A1C1=46,∴△QA1P1≌△PA1C1.∴∠QP1A1=∠PC1A1=45°.在Rt△P1B1H中,∵∠B1 P1P2=45°,∴B1H=P1B12=46-82=43-42.∴线段B1Q长度的最小值= B1H=43-42.P27.〔此题总分值12分〕如图1,抛物线C :y =ax 2+bx 经过点A 〔-4,0〕、B 〔-1,3〕两点,G 是其顶点,将抛物线C 绕点O 旋转180°,得到新的抛物线C ′.〔1〕求抛物线C 的函数解析式及顶点G 的坐标;〔2〕如图2,直线l :y =kx -125经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m 〔m <-2〕,连接DO 并延长,交抛物线C ′于点E ,交直线l 于点M ,假设DE =2EM ,求m 的值;〔3〕如图3,在〔2〕的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得∠DEP =∠GAB ?假设存在,求出点P 的横坐标;假设不存在,请说明理由.【解】〔1〕将点A 〔-4,0〕、B 〔-1,3〕的坐标分别代入y =ax 2+bx ,得 ⎩⎪⎨⎪⎧0=16a -4b 3=a -b .解得⎩⎪⎨⎪⎧a =-1b =-4. ∴抛物线C 的函数解析式为y =-x 2-4x .∵y =-x 2-4x =-( x 2+4x )=-( x 2+4x +4-4)=-( x +2) 2+4, ∴抛物线C 的顶点G 的坐标为〔-2,4〕.〔2〕∵抛物线C 与新的抛物线C ′关于原点O 中心对称,∴新的抛物线C ′的函数解析式为-y =-(-x )2-4(-x ),即y =x 2-4x . 将点A 〔-4,0〕的坐标代入y =kx -125,得0=-4k --125.解得k =-35.∴直线l 的函数解析式为y =-35x -125.设点D 的坐标为〔m ,-m 2-4m 〕〔其中m <-2〕. 由题意可知:点D 与点E 关于原点O 中心对称, ∴点E 的坐标为〔-m ,m 2+4m 〕且OD =OE =12DE .∵DE =2EM ,∴EM =12DE .∴OD =OE =EM .∴x M =2x E =-2m .把x =-2m 代入y =-35x -125,得y =-35×(-2m )-125=65m -125.∴点M 的坐标为〔-2m ,65m -125〕.∵点E 是OM 的中点,∴y E =y O +y M2.∴m 2+4m =0+(65m -125)2.整理,得5m 2+17m +6=0.解得m 1=-3,m 2=-25〔不合题意,舍去〕.∴m =-3.〔3〕存在点符合题意的点P ,使得∠DEP =∠GA B .在〔2〕的条件下,m =-3,那么点D 的坐标为〔-3,3〕,点E 的坐标为〔3,-3〕. 取抛物线C ′的顶点为点G ′.由题意可得:点G 〔-2,4〕与点G ′关于原点O 中心对称,∴点G ′的坐标为〔2,-4〕. 分别连接BG 、EG ′、OG ′.由点A 〔-4,0〕、B 〔-1,3〕可得直线AB 的解析式为y =x +4,且AB =32. 由点B 〔-1,3〕、G 〔-2,4〕可得直线BG 的解析式为y =-x +2,且BG =2. ∵k AB ·k BG =1×(-1)=-1,∴AB ⊥BG .∴∠ABG =90°.由点O 〔0,0〕、E 〔3,-3〕可得直线OE 的解析式为y =-x ,且OE =32. 由点G ′〔2,-4〕、E 〔3,-3〕可得直线EG ′的解析式为y =x -6,且EG ′=2. ∵k OE ·k EG ′=1×(-1)=-1,∴OE ⊥EG ′.∴∠OEG ′=90°.∵AB =OE =32,BG =EG ′=2,∠ABG =∠OEG ′=90°,∴△ABG ≌△OEG ′.∴∠GAB =∠G′OE .∴要使∠DEP =∠GAB ,只要∠DEP =∠G′OE 即可.方法一:直线OG ′的解析式为y =-2x .作线段OE 的垂直平分线,交线段OE 于点N ,交线段OG ′于点F ,作直线EF ,交抛物线C 与两点P 1、P 2,那么∠FEO =∠G′OE .∴点P 1、P 2即为所求 线段OE 的垂直平分线的解析式为y =x -3. 由⎩⎪⎨⎪⎧y =x -3y =-2x 解得⎩⎪⎨⎪⎧x =1y =-2.∴点F 的坐标为〔1,-2〕.由点E 〔3,-3〕、F 〔1,-2〕可得直线EF 的解析式为y =-12x -32.由⎩⎪⎨⎪⎧y =-12x -32y =-x 2-4x得2x 2+7x -3=0.解得x 1=-7+734,x 2=-7-734.∴点P 的横坐标为-7+734或-7-734.方法二:直线OG ′的解析式为y =-2x .在线段OG ′上取一点F ,使FE =FO ,那么∠FEO =∠G′OE =∠GA B .直线EF 交抛物线C 于两点P 1、P 2,那么点P 1、P 2即为所求. 设F 的坐标为〔t ,-2t 〕,那么OF 2=(0-t )2+(0+2t )2=5t 2,EF 2=(t -3)2+(-2t +3)2=5t 2-18t +18. ∵FE =FO ,∴5t 2=5t 2-18t +18.解得t =1. ∴F 〔1,-2〕. 由点E 〔3,-3〕、F 〔1,-2〕可得直线EF 的解析式为y =-12x -32.由⎩⎪⎨⎪⎧y =-12x -32y =-x 2-4x得2x 2+7x -3=0.解得x 1=-7+734,x 2=-7-734.∴点P 的横坐标为-7+734或-7-734.。

2019年山东济南中考数学试卷及答案

2019年山东济南中考数学试卷及答案

【导语】中考频道⼩编提醒参加2019中考的所有考⽣,⼭东济南2019年中考将于6⽉中旬陆续开始举⾏,⼭东济南中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年⼭东济南中考数学试卷及答案信息。

考⽣可点击进⼊⼭东济南中考频道《、》栏⽬查看⼭东济南中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学为了能让⼴⼤考⽣及时⽅便获取⼭东济南中考数学试卷答案信息,特别整理了《2019⼭东济南中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⼭东济南中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

2019年山东省济南市中考数学试卷

2019年山东省济南市中考数学试卷
5.(4分)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()
A.a﹣5>b﹣5B.6a>6bC.﹣a>﹣bD.a﹣b>0
6.(4分)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是
()
第1页(共9页)
A.赵爽弦图B.笛卡尔心形线
C.科克曲线D.斐波那契螺旋线
7.(4分)化简+的结果是()
A.x﹣2B.C.D.
8.(4分)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩
的中位数和平均数分别是()
A.9.7m,9.9mB.9.7m,9.8mC.9.8m,9.7mD.9.8m,9.9m
9.(4分)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()
A.B.
5.24.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2
4.44.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1
4.24.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3
根据数据绘制了如下的表格和统计图:
等级视力(x)频数频率
Ax<4.240.1
的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()
A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<
二、填空题:(本大题共6个小题,每小题4分,共24分.)
2
﹣4m+4=.13.(4分)分解因式:m
14.(4分)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘
停止时,指针落在红色区域的概率等于.
15.(4分)一个n边形的内角和等于720°,则n=.

2019年济南市中考题(Word+答案)

2019年济南市中考题(Word+答案)

山东省济南市2019年初三年级学业水平考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. -7的相反数是A . -7B .-17C .7D . 1【答案】C2.以下给出的几何体中,主视图是矩形,俯视图是圆的是A B C D 【答案】 D3.2019年1 月3日,“嫦娥四号” 探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为A . 0.1776×103B . 1.776×102C .1.776×103D . 17.76×102【答案】B4. 如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为 A .20° B .35° C .55° D .70°【答案】B5.实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是A . a -5>b -5B . 6a >6bC . -a >-bD . a -b >0【答案】C6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是赵爽弦图科克曲线A .B .C .D .【答案】C斐波那契螺旋线 笛卡尔心形线7.化简4x 2-4+1x +2的结果是 A .x -2 B .1x +2 C .2x -2 D .2x +2【答案】B 【解析】4x 2-4+1x +2=4(x +2)(x -2)+1x +2=4+(x -2)(x +2)(x -2)=x -2(x +2)(x -2)=1x +2. 8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是A .9.7m , 9.9mB .9.7m , 9.8mC .9.8m , 9.7mD .9.8m , 9.9m9.【答案】B9.函数y =-ax +a 与y =ax(a ≠0)在同一坐标系中的图象可能是A .B .C .D .【答案】D10.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接AE 、AF .若AB =6,∠B =60°,则阴影部分的面积为 A .93-3π B .93-2π C .183-9π D .183-6π【答案】A【解析】由已知可得:CE =CF =12AB =3,AE ⊥BC ,AF ⊥CD ,AE =AF =33,∠ECF =120°.S △AEC =S △AFC =12×3×33=923,S 四边形AECF =93,S 扇形ECF =13×π×32=3π. ∴S 阴影=S 四边形AECF -S 扇形ECF =93-3π.11.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北编东53°方向.请计算一下南门A 与历下亭C 之间的距离约为 (参考数据:tan37°≈34,tan53°≈43).A .225mB .275mC .300mD .315m游船码头历下亭【答案】C【解析】过点C 作CD ⊥AB ,交AB 的延长线于点D . 在Rt △ACD 中,∵tan ∠A =CD AD ,∴tan37°=CD AD =34.∴可设CD =3x ,AD =4x .∴AC =5x . 在Rt △BCD 中,∵tan ∠DBC =CD BD ,∴tan53°=CD BD =43.∴3x BD =43.∴BD =94x .∵AB +BD =AD ,∴105+94x =4x .解得x =60.∴AC =5x =300(m ).D12.关于x 的一元二次方程ax 2+bx +12=0有一个根是-1,若二次函数y =ax 2+bx +12的图象的顶点在第一象限,设t =2a +b ,则t 的取值范围是A .-12<t <14B .-1<t ≤14C .-12≤t <12D .-1<t <12【答案】D【解析】将x =-1代入ax 2+bx +12=0,得a -b +12=0.∴a =b -12……………………………………①.∴t =2a +b =2(b -12)+b =3b -1……………………………………②.根据题意可知:二次函数y =ax 2+bx +12的图象经过点(-1,0)和(0,12).又∵二次函数y =ax 2+bx +12的图象的顶点在第一象限,∴该抛物线的开口向下,与x 轴有两个交点,且顶点的纵坐标y 顶>12.∴a <0,b >0. ∴a =b -12<0.∴b <12.又∵b >0,∴0<b <12.∴0<3b <32.∴-1<3b -1<12.又∵t =3b -1,∴-1<t <12……………………………………③.下面再采用验证法作出进一步的判断:在14<t <12的范围内,若取t =38,得38=3b -1.解得b =1124.∴a =b -12=-124. 此时y =ax 2+bx +12=-124x 2+1124x +12=-124(x -112)2+21796,x 顶=112>0,y 顶=21796>12.∴t =38符合题意……………………………………④.在-1<t <-12的范围内若取t =-34,得-34=3b -1.解得b =112.∴a =b -12=-512.此时y =ax 2+bx +12=-512x 2+112x +12=-512(x -110)2+121240,x 顶=110>0,y 顶=121240>12.∴t =-34符合题意……………………………………⑤.综上可知:答案选D .二、填空题: (本大题共6个小题,每小题4分,共24分.)13.分解因式: m 2-4m +4=________;【答案】(m -2)214.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于________;【答案】1315. 一个n 边形的内角和等于720°, 则n =________; 【答案】616.代数式2x -13与代数式3-2x 的和为4,则x =________;【答案】x =-117.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l 1、l 2分别表示去年、今年水费y (元)与用水量x (m 3)之间的关系.小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多________元.m 3【答案】210【解析】图中l 1的解析式为y =3x ,当x =150时,y =3×150=450(元), ∴小雨家去年用水的水费为450元.图中l BC 的解析式为y =6x -240,当x =150时,y =6×150-240=660(元). 660-450=210(元). ∴水费将比去年多210元.18. 如图,在矩形纸片ABCD 中,将AB 沿BM 翻折, 使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB =5,则线段PE的长等于________.【答案】203【解析】由题意可得:四边形ABNM 是正方形,AM =AB =MN =BN =5,CN =DM =8-5=3,∠ABM =45°,CD =CF =5,DE =EF .在Rt △CFN 中,∵CF =5,CN =3,∴FN =4. ∴MF =MN -FN =5-4=1. 设DE =EF =x ,则ME =3-x .在Rt △MEF 中,∵ME 2+MF 2=EF 2,∴(3-x )2+12=x 2.x =53.∴EF =53,则ME =3-x =43.∴MF ∶ME ∶EF =3∶4∶5.过点P 作PG ⊥AM 于点G ,则∠GPM =∠ABM =45°.∴PG =MG .∵PG ∥MF ,∴△EFM ∽△EPG .∴PG ∶EG ∶PE =MF ∶ME ∶EF =3∶4∶5. 设PG =MG =3y ,则EG =4y ,PE =5y . ∵EG =MG +EM ,∴4y =3y +43.∴y =43.∴PE =5y =203.三、解答题: (本大题共9个小题,共78分解答应写出文字说明、证明过程或演算步骤.) 19. (本小题满分6分)计算:(12)-1+(π+1)0-2cos60°+9【解】原式=2+1-2×12+3=5.20. (本小题满分6分)解不等式组:⎩⎪⎨⎪⎧5x -3≤2x +9①3x >x +102. ② ,并写出它的所有整数解. 【解】由①,得5x -2x ≤9+3. ∴x ≤4. 由②,得 6x >x +10. ∴x >2.∴原不等式组的解集是2<x ≤4. 它的所有整数解为:3,4. 21. (本小题满分6分)如图,在□ABCD 中,E 、F 分别是AD 和BC 上的点,∠DAF =∠BCE .求证:BF =DE .【证明】∵四边形ABCD 是平行四边形, ∴AB =CD ,∠B =∠D ,AD ∥B C . ∴∠AFB =∠DAF ,∠DEC =∠BCE . 又∵∠DAF =∠BCE , ∴∠AFB =∠DE C . ∴△ABF ≌△CDE . ∴BF =DE .22. (本小题满分8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元? 【解】(1)设B 种图书的单价为x 元,A 种图书的单价为1.5x 元,根据题意,得;30001.5x -1600x =20. 2000x -1600x=20.解得x =20.经检验x =20是原方程的根. ∴1.5x =30.答:A 种图书的单价为30元,B 种图书的单价为20元.(2) (20×30+20×25)×0.8=880(元). 答:共花费880元. 23. (本小题满分8分)如图,AB 、CD 是⊙O 的两条直径,过点C 的⊙O 的切线交AB 的延长线于点E ,连接AC 、BD . (1)求证;∠ABD =∠CAB ;(2)若B 是OE 的中点,AC =12,求⊙O 的半径.【解析】(1)证明:∵AD =AD ,∴∠ABD =∠AC D . ∵OA =OC ,∴∠ACD =∠CA B . ∴∠ABD =∠CA B .(2)解:连接BC ,则∠ACB =90°. ∵CE 是⊙O 的切线,∴∠OCE =90°. ∵B 是OE 的中点,∴OB =BE =12OE .∴OC =OB =12OE .∴∠E =30°. ∴∠COE =60°. 又∵OC =OB ,∴△OCB 是等边三角形. ∴∠ABC =60°.在Rt △ABC 中,∵tan ∠ABC =AC BC ,∴tan60°=12BC. ∴BC =123=43.24. (本小题满分10分某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.2 5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2 4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1 4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3(1)统计表中的a =_______,b =_______; (2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率. 【解】(1)a =8,b =0.15;(2)补全后的条形统计图如图所示:(3)400×0.25=100(人).答:估计该校八年级学生视力为 “E 级”的有100人.“1男1女”的结果有8种,所以其概率为812=23.25. (本小题满分10分)如图1,点A (0,8)、点B (2,a )在直线y =-2x +b 上,反比例函数y =k x(x >0)的图象经过点B . (1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、 B D .①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求DEEF的值; ②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三形,求所有满足条件的m 的值.【解】(1)将点A (0,8)代入y =-2x +b ,得b =8. ∴直线AB 的解析式为y =-2x +8. 将点B (2,a )代入y =-2x +8,得 a =-2×2+8=4. ∴点B (2,4).将点B (2,4)代入y =k x(x >0),得k =2×4=8.∴反比例函数的解析式为y =8x(x >0).(2)当m =3时,D (5,4).∴F (5,0). 将x =5代入y =8x ,得y =85.∴E (5,85).∴DE =4-85=125,EF =85.∴DE EF =12585=32. (3)根据题意,得C (m ,8),D (2+m ,4).∴BC 2=(m -2)2+(8-4)2=m 2-4m +20, BD 2=(2+m -2)2+(4-4)2=m 2, CD 2=AB 2=(2-0)2+(4-8)2=20.①若BC =CD ,则m 2-4m +20=20.解得m 1=4,m 2=0(不合题意,舍去).②若BC =BD ,则m 2-4m +20=m 2.解得m =5. ∴满足条件的m 的值为4或5. 26. (本小题满分12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC 中,AB =AC ,M 是平面内任意一点, 将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连接N B .(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是______,NB与MC的数量关系是______;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.Q1 NCC1P【解】(1)∠NAB=∠MAC,NB=MC;(2)(1)中结论仍然成立,证明如下:由旋转可得:AN=AM,∠NAM=∠BA C.∴∠NAB+∠BAM=∠BAM+∠MA C.∴∠NAB=∠MA C.又∵AB=AC,∴△NAB≌△MA C.∴NB=M C.(3)过点A1作A1G⊥B1C1于点G,则B1G=12A1B1=4,A1G=3B1G=43.在△A1B1C1中,∴∠A1B1C1=60°,∠B1A1C1=75°,∴∠C1=45°.在Rt△ABC中,∵∠C1=45°,∴A1C1=2A1G=46.作A1B1的延长线B1F,将A1C1绕点A1按顺时针方向旋转75°,得到线段A1P1(点P1在B1F上),将A1B1绕点A1按顺时针方向旋转75°,得到线段A1P2,连接P1P2.根据题意可知:当点P在点C1处时,点Q在点P1处,当点P在点B1处时,点Q在点P2处.∵点P在线段B1C1上运动,∴点Q在线段P1P2上运动.过点B1作B1H⊥P1P2于点H,则线段B1Q长度的最小值= B1H.与(2)同理可得:A1Q=A1P,∠QA1P1=∠PA1C1.又∵A1P1=A1C1=46,∴△QA1P1≌△PA1C1.∴∠QP1A1=∠PC1A1=45°.在Rt△P1B1H中,∵∠B1 P1P2=45°,∴B1H=P1B12=46-82=43-42.∴线段B1Q长度的最小值= B1H=43-42.P27.(本题满分12分)如图1,抛物线C :y =ax 2+bx 经过点A (-4,0)、B (-1,3)两点,G 是其顶点,将抛物线C 绕点O 旋转180°,得到新的抛物线C ′.(1)求抛物线C 的函数解析式及顶点G 的坐标;(2)如图2,直线l :y =kx -125经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (m <-2),连接DO 并延长,交抛物线C ′于点E ,交直线l 于点M ,若DE =2EM ,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得∠DEP =∠GAB ?若存在,求出点P 的横坐标;若不存在,请说明理由.【解】(1)将点A (-4,0)、B (-1,3)的坐标分别代入y =ax 2+bx ,得 ⎩⎪⎨⎪⎧0=16a -4b 3=a -b .解得⎩⎪⎨⎪⎧a =-1b =-4. ∴抛物线C 的函数解析式为y =-x 2-4x .∵y =-x 2-4x =-( x 2+4x )=-( x 2+4x +4-4)=-( x +2) 2+4, ∴抛物线C 的顶点G 的坐标为(-2,4).(2)∵抛物线C 与新的抛物线C ′关于原点O 中心对称,∴新的抛物线C ′的函数解析式为-y =-(-x )2-4(-x ),即y =x 2-4x . 将点A (-4,0)的坐标代入y =kx -125,得0=-4k --125.解得k =-35.∴直线l 的函数解析式为y =-35x -125.设点D 的坐标为(m ,-m 2-4m )(其中m <-2). 由题意可知:点D 与点E 关于原点O 中心对称,∴点E 的坐标为(-m ,m 2+4m )且OD =OE =12DE .∵DE =2EM ,∴EM =12DE .∴OD =OE =EM .∴x M =2x E =-2m .把x =-2m 代入y =-35x -125,得y =-35×(-2m )-125=65m -125.∴点M 的坐标为(-2m ,65m -125).∵点E 是OM 的中点,∴y E =y O +y M2.∴m 2+4m =0+(65m -125)2.整理,得5m 2+17m +6=0.解得m 1=-3,m 2=-25(不合题意,舍去).∴m =-3.(3)存在点符合题意的点P ,使得∠DEP =∠GA B . 在(2)的条件下,m =-3,则点D 的坐标为(-3,3),点E 的坐标为(3,-3). 取抛物线C ′的顶点为点G ′.由题意可得:点G (-2,4)与点G ′关于原点O 中心对称,∴点G ′的坐标为(2,-4). 分别连接BG 、EG ′、OG ′.由点A (-4,0)、B (-1,3)可得直线AB 的解析式为y =x +4,且AB =32. 由点B (-1,3)、G (-2,4)可得直线BG 的解析式为y =-x +2,且BG =2. ∵k AB ·k BG =1×(-1)=-1,∴AB ⊥BG .∴∠ABG =90°.由点O (0,0)、E (3,-3)可得直线OE 的解析式为y =-x ,且OE =32. 由点G ′(2,-4)、E (3,-3)可得直线EG ′的解析式为y =x -6,且EG ′=2. ∵k OE ·k EG ′=1×(-1)=-1,∴OE ⊥EG ′.∴∠OEG ′=90°.∵AB =OE =32,BG =EG ′=2,∠ABG =∠OEG ′=90°,∴△ABG ≌△OEG ′.∴∠GAB =∠G ′OE . ∴要使∠DEP =∠GAB ,只要∠DEP =∠G ′OE 即可.方法一:直线OG ′的解析式为y =-2x .作线段OE 的垂直平分线,交线段OE 于点N ,交线段OG ′于点F ,作直线EF ,交抛物线C 与两点P 1、P 2,则∠FEO =∠G ′OE .∴点P 1、P 2即为所求 线段OE 的垂直平分线的解析式为y =x -3. 由⎩⎪⎨⎪⎧y =x -3y =-2x 解得⎩⎪⎨⎪⎧x =1y =-2.∴点F 的坐标为(1,-2).由点E (3,-3)、F (1,-2)可得直线EF 的解析式为y =-12x -32.由⎩⎪⎨⎪⎧y =-12x -32y =-x 2-4x得2x 2+7x -3=0.解得x 1=-7+734,x 2=-7-734.∴点P 的横坐标为-7+734或-7-734.方法二:直线OG ′的解析式为y =-2x .在线段OG ′上取一点F ,使FE =FO ,则∠FEO =∠G ′OE =∠GA B .直线EF 交抛物线C 于两点P 1、P 2,则点P 1、P 2即为所求.设F 的坐标为(t ,-2t ),则OF 2=(0-t )2+(0+2t )2=5t 2,EF 2=(t -3)2+(-2t +3)2=5t 2-18t +18.∵FE =FO ,∴5t 2=5t 2-18t +18.解得t =1. ∴F (1,-2). 由点E (3,-3)、F (1,-2)可得直线EF 的解析式为y =-12x -32.由⎩⎪⎨⎪⎧y =-12x -32y =-x 2-4x得2x 2+7x -3=0.解得x 1=-7+734,x 2=-7-734.∴点P 的横坐标为-7+734或-7-734.。

2019年山东省济南市中考数学试卷

2019年山东省济南市中考数学试卷

2019年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣7的相反数是()A.﹣7B.﹣C.7D.12.(4分)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.3.(4分)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×1024.(4分)如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°5.(4分)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5B.6a>6b C.﹣a>﹣b D.a﹣b>06.(4分)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线7.(4分)化简+的结果是()A.x﹣2B.C.D.8.(4分)在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m9.(4分)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.10.(4分)如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π11.(4分)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m 后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m12.(4分)关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)分解因式:m2﹣4m+4=.14.(4分)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.15.(4分)一个n边形的内角和等于720°,则n=.16.(4分)代数式与代数式3﹣2x的和为4,则x=.17.(4分)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.18.(4分)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:()﹣1+(π+1)0﹣2cos60°+20.(6分)解不等式组,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.22.(8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B 种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?23.(8分)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.(10分)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.26.(12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.27.(12分)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C 绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.2019年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:﹣7的相反数为7,故选:C.2.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.3.【解答】解:177.6=1.776×102.故选:B.4.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.5.【解答】解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.6.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.7.【解答】解:原式=+==,故选:B.8.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,故选:B.9.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.10.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.11.【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.12.【解答】解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t为任意实数,故:﹣1<t<,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解答】解:原式=(m﹣2)2,故答案为:(m﹣2)214.【解答】解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有6种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是=;故答案为.15.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.16.【解答】解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣117.【解答】解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.18.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.)19.【解答】解:()﹣1+(π+1)0﹣2cos60°+=2+1﹣2×+3=3﹣1+3=520.【解答】解:解①得:x≤4;解②得:x>2;∴原不等式组的解集为2<x≤4;∴原不等式组的所有整数解为3、4.21.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∠BAD=∠BCD,AB=CD,∵∠DAF=∠BCE,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA),∴BF=DE.22.【解答】解:(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:﹣=20,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共花费880元.23.【解答】解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC.∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.24.【解答】解:(1)由题意知C等级的频数a=8,则C组对应的频率为8÷40=0.2,∴b=1﹣(0.1+0.3+0.2+0.25)=0.15,故答案为:8、0.15;(2)D组对应的频数为40×0.15=6,补全图形如下:(3)估计该校八年级学生视力为“E级”的有400×0.25=100(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率=.25.【解答】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.26.【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠P A1Q,∴∠QA1B1=∠P A1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△P A1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1•sin60°=4,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=4,∴NC1=A1C1﹣A1N=4﹣8,在Rt△NHC1,∵∠C1=45°,∴NH=4﹣4,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4﹣4.27.【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OA,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m=•(﹣2m)﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,得,,∴点P的横坐标为:或.。

2019年山东省济南市中考数学试卷

2019年山东省济南市中考数学试卷

2019 年山东省济南市中考数学试卷一、选择题(本大题共12 个小题,每小题 4 分,共48 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣ 7 的相反数是()A.﹣7 B .﹣C. 7 D. 12.(4分)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.3.( 4 分) 2019 年 1月 3 日,“嫦娥四号”探测器成功着陆在月球背面东经177.6 度、南纬45.5 度附近,实现了人类首次在月球背面软着陆.数字177.6 用科学记数法表示为()3 2 C. 1.776×103D. 17.76×102A .0.1776×10B .1.776× 104.( 4 分)如图, DE ∥ BC, BE 平分∠ ABC,若∠ 1=70°,则∠ CBE 的度数为()A .20°B .35°C. 55°D. 70°5.( 4 分)实数a、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是()A .a﹣ 5> b﹣ 5B .6a> 6b C.﹣ a>﹣ b D. a﹣ b> 06.( 4 分)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()第1页(共 9页)A .赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线7.( 4 分)化简+ 的结果是()A .x﹣ 2B .C.D.8.( 4 分)在学校的体育训练中,小杰投掷实心球的7 次成绩如统计图所示,则这7 次成绩的中位数和平均数分别是()A .9.7m, 9.9mB .9.7m, 9.8m C. 9.8m, 9.7m D. 9.8m, 9.9m9.( 4 分)函数y=﹣ ax+a 与 y=( a≠0)在同一坐标系中的图象可能是()A.B.C.D.10.( 4 分)如图,在菱形ABCD 中,点 E 是 BC 的中点,以C 为圆心、 CE 为半径作弧,交CD 于点 F ,连接 AE、AF .若 AB= 6,∠ B= 60°,则阴影部分的面积为()第2页(共 9页)A .9 ﹣ 3πB .9 ﹣ 2πC. 18 ﹣ 9πD. 18 ﹣ 6π11.( 4 分)某数学社团开展实践性研究,在大明湖南门 A 测得历下亭C 在北偏东37°方向,继续向北走 105m 后到达游船码头B,测得历下亭C 在游船码头 B 的北编东 53°方向.请计算一下南门 A 与历下亭 C 之间的距离约为()(参考数据:tan37°≈,tan53°≈)A .225mB .275m C. 300m D. 315m12.(4 分)关于 x 的一元二次方程2= 0 有一个根是﹣2 ax +bx+1,若二次函数 y=ax+bx+的图象的顶点在第一象限,设t= 2a+b,则 t 的取值范围是()A .< t<B .﹣ 1< t≤C.﹣≤ t<D.﹣ 1< t<二、填空题:(本大题共 6 个小题,每小题4 分,共24分.)13.( 4 分)分解因式:2.m ﹣ 4m+4=14.( 4 分)如图,一个可以自由转动的转盘,被分成了6 个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.15.( 4 分)一个n 边形的内角和等于720°,则 n=.第3页(共 9页)16.( 4 分)代数式与代数式 3﹣ 2x 的和为 4,则 x=.17.( 4 分)某市为提倡居民节约用水,自今年1 月 1 日起调整居民用水价格.图中l 1、l 2 分别表示去年、今年水费(y 元)与用水量(x m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.18.( 4 分)如图,在矩形纸片ABCD 中,将 AB 沿 BM 翻折,使点A 落在 BC 上的点 N 处,BM 为折痕,连接MN ;再将 CD 沿 CE 翻折,使点 D 恰好落在 MN 上的点 F 处, CE 为折痕,连接 EF 并延长交 BM 于点 P,若 AD = 8, AB= 5,则线段PE 的长等于.三、解答题:(本大题共9 个小题,共 78 分,解答应写出文字说明、证明过程或演算步骤.)19.( 6 分)计算:()﹣1 0﹣2cos60°+ +(π+1 )20.( 6 分)解不等式组,并写出它的所有整数解.21.( 6 分)如图,在 ? ABCD 中, E、F 分别是 AD 和 BC 上的点,∠ DAF =∠ BCE .求证:BF= DE .22.( 8 分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购第4页(共 9页)买 A 种图书花费了3000 元,购买 B 种图书花费了 1600 元, A 种图书的单价是B种图书的 1.5 倍,购买 A 种图书的数量比 B 种图书多20 本.( 1)求 A 和 B 两种图书的单价;( 2)书店在“世界读书日”进行打折促销活动,所有图书都按8 折销售学校当天购买了A 种图书 20 本和B 种图书 25 本,共花费多少元?23.( 8 分)如图, AB、CD 是⊙O 的两条直径,过点 C 的⊙O 的切线交 AB 的延长线于点 E,连接 AC、 BD.(1)求证;∠ ABD =∠ CAB;(2)若 B 是 OE 的中点, AC= 12,求⊙ O 的半径.24.( 10 分)某学校八年级共 400 名学生,为了解该年级学生的视力情况,从中随机抽取40 名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力( x)频数频率A x< 4.240.1B 4.2≤ x≤4.412 0.3C 4.5≤ x≤4.7aD 4.8≤ x≤5.0bE 5.1≤ x≤5.310 0.25合计40 1根据上面提供的信息,回答下列问题:第5页(共 9页)( 1)统计表中的a=, b=;( 2)请补全条形统计图;( 3)根据抽样调查结果,请估计该校八年级学生视力为“ E 级”的有多少人?( 4)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“ 1 男 1 女”的概率.25.( 10 分)如图 1,点 A( 0,8)、点 B( 2, a)在直线 y=﹣ 2x+b 上,反比例函数y=( x > 0)的图象经过点B.( 1)求 a 和 k 的值;( 2)将线段 AB 向右平移m 个单位长度(m> 0),得到对应线段CD ,连接 AC、 BD .①如图 2,当 m= 3 时,过 D 作 DF ⊥ x 轴于点 F,交反比例函数图象于点E,求的值;②在线段 AB 运动过程中,连接 BC,若△ BCD 是以 BC 为腰的等腰三形,求所有满足条件的 m 的值.26.( 12 分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.第6页(共 9页)(一)猜测探究在△ ABC 中, AB= AC, M 是平面内任意一点,将线段 AM 绕点 A 按顺时针方向旋转与∠ BAC 相等的角度,得到线段AN,连接 NB.( 1)如图 1,若 M 是线段 BC 上的任意一点,请直接写出∠NAB 与∠ MAC 的数量关系是, NB 与 MC 的数量关系是;( 2)如图 2,点 E 是 AB 延长线上点,若M 是∠ CBE 内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图 3,在△ A1B1C1 中, A1B1=8,∠ A1B1C1=60°,∠ B1A1C1= 75°, P 是 B1C1上的任意点,连接 A1P,将 A1P 绕点 A1按顺时针方向旋转75°,得到线段 A1Q,连接B1Q.求线段 B1Q 长度的最小值.27.( 12 分)如图21,抛物线 C:y= ax +bx 经过点 A(﹣ 4,0)、 B(﹣ 1,3)两点,G 是其顶点,将抛物线 C 绕点 O 旋转 180°,得到新的抛物线 C′.(1)求抛物线 C 的函数解析式及顶点 G 的坐标;(2)如图 2,直线 l: y=kx﹣经过点 A, D 是抛物线 C 上的一点,设 D 点的横坐标为m( m<﹣ 2),连接 DO 并延长,交抛物线 C′于点 E,交直线 l 于点 M,若 DE =2EM ,求 m 的值;( 3)如图 3,在( 2)的条件下,连接 AG、AB,在直线 DE 下方的抛物线 C 上是否存在点 P,使得∠ DEP =∠ GAB?若存在,求出点P 的横坐标;若不存在,请说明理由.第7页(共 9页)第8页(共 9页)2019 年山东省济南市中考数学试卷参考答案一、选择题(本大题共12 个小题,每小题 4 分,共48 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C; 2.D; 3.B ; 4.B ; 5.C; 6.C; 7.B ; 8.B; 9.D ; 10.A ; 11.C;12. D;二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分.)13.( m﹣ 2)2; 14.; 15. 6; 16.﹣ 1;17.210; 18.;三、解答题:(本大题共9 个小题,共 78 分,解答应写出文字说明、证明过程或演算步骤.)19.; 20.; 21.; 22.; 23.; 24.8;0.15; 25.;26.∠ NAB =∠ MAC ; NB = CM ; 27.;第9页(共 9页)。

山东省2019年中考数学试题及答案pdf

山东省2019年中考数学试题及答案pdf

山东省2019年中考数学试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.5D. 1/3答案:B2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个函数是一次函数?A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3答案:B4. 解方程2x - 3 = 7,x的值为:A. 5B. 3C. 2D. 45. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A6. 以下哪个选项是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. 2x = 5D. x^3 - 4x = 0答案:B7. 一个三角形的内角和是:A. 90度B. 180度C. 360度D. 270度答案:B8. 一个数的绝对值是它本身,这个数是:A. 负数B. 非负数C. 正数D. 非正数答案:B9. 以下哪个选项是不等式?B. 2x + 3 > 5C. 4x - 6 = 0D. 5x - 3 = 2答案:B10. 一个正数的倒数是:A. 它本身B. 它的平方C. 1除以它D. 0答案:C二、填空题(每题4分,共20分)1. 一个数的立方根是3,这个数是______。

答案:272. 如果一个角是直角的一半,那么这个角是______度。

答案:453. 一个等腰三角形的底角是50度,那么顶角是______度。

答案:804. 一个数的相反数是-7,那么这个数是______。

答案:75. 一个数的绝对值是5,那么这个数可以是______或______。

答案:5或-5三、解答题(每题10分,共50分)1. 解方程:4x - 6 = 10答案:x = 42. 计算:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)答案:x^2 - 5x + 53. 已知一个矩形的长为8cm,宽为6cm,求它的面积。

2019年山东省济南市中考数学试卷

2019年山东省济南市中考数学试卷

2019年山东济南数学中考真题学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.﹣7的相反数是()A.﹣7 B.﹣C.7 D.12.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×1024.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线7.化简+的结果是()A.x﹣2 B.C.D.8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m9.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.10.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π11.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北编东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m12.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<二、填空题(共6小题)13.分解因式:m2﹣4m+4=﹣.14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.15.一个n边形的内角和等于720°,则n=.16.代数式与代数式3﹣2x的和为4,则x=﹣.17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.三、解答题(共9小题)19.计算:()﹣1+(π+1)0﹣2cos60°+20.解不等式组,并写出它的所有整数解.21.如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.22.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?23.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.26.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.27.如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.2019年山东济南数学中考真题参考答案一、单选题(共12小题)1.【分析】根据相反数的概念解答即可.【解答】解:﹣7的相反数为7,故选:C.2.【分析】根据几何体的正面看得到的图形,可得答案.【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.3.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:177.6=1.776×102.故选:B.4.【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.5.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.6.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.7.【分析】原式通分并利用同分母分式的加法法则计算即可求出值.【解答】解:原式=+==,故选:B.8.【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,故选:B.9.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.10.【分析】连接AC,根据菱形的性质求出∠BCD和BC=AB=6,求出AE长,再根据三角形的面积和扇形的面积求出即可.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.11.【分析】如图,作CE⊥BA于E.设EC=xm,BE=ym.构建方程组求出x,y即可解决问题.【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.12.【分析】二次函数的图象过点(﹣1,0),则a﹣b+=0,而t=2a+b,则a=,b=,二次函数的图象的顶点在第一象限,则﹣>0,﹣>0,即可求解.【解答】解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t或1<t<3,故:﹣1<t<,故选:D.二、填空题(共6小题)13.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(m﹣2)2,故答案为:(m﹣2)214.【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率.【解答】解:由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是=;故答案为.15.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.16.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣117.【分析】根据函数图象中的数据可以求得x>120时,l2对应的函数解析式,从而可以求得x=150时对应的函数值,由l1的的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【解答】解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.18.【分析】根据折叠可得ABNM是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC的三边为3,4,5,在Rt△MEF中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF的长,然后求PE的长.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.三、解答题(共9小题)19.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:()﹣1+(π+1)0﹣2cos60°+=2+1﹣2×+3=3﹣1+3=520.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:解①得:x≤4;解②得:x>2;∴原不等式组的解集为2<x≤4;∴原不等式组的所有整数解为3、4.21.【分析】由平行四边形的性质得出∠B=∠D,∠BAD=∠BCD,AB=CD,证出∠BAF=∠DCE,证明△ABF≌△CDE(ASA),即可得出BF=DE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∠BAD=∠BCD,AB=CD,∵∠DAF=∠BCE,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA),∴BF=DE.22.【分析】(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,根据数量=总价÷单价结合花3000元购买的A种图书比花1600元购买的B种图书多20本,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【解答】解:(1)设B种图书的单价为x元,则A种图书的单价为1.5x元,依题意,得:﹣=20,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴1.5x=30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共花费880元.23.【分析】(1)根据半径相等可知∠OAC=∠OCA,∠ODB=∠OBD,再根据对顶角相等和三角形内角和定理证明∠ABD=∠CAB;(2)连接BC.由CE为⊙O的切线,可得∠OCE=90°,因为B是OE的中点,得BC=OB,又OB=OC,可知△OBC为等边三角形,∠ABC=60°,所以BC=AC=4,即⊙O的半径为4.【解答】解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC.∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.24.【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)由题意知C等级的频数a=8,则C组对应的频率为8÷40=0.2,∴b=1﹣(0.1+0.3+0.2+0.25)=0.15,故答案为:8、0.15;(2)D组对应的频数为40×0.15=6,补全图形如下:(3)估计该校八年级学生视力为“E级”的有400×0.25=100(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率=.25.【分析】(1)先将点A坐标代入直线AB的解析式中,求出a,进而求出点B坐标,再将点B坐标代入反比例函数解析式中即可得出结论;(2)①先确定出点D(5,4),进而求出点E坐标,进而求出DE,EF,即可得出结论;②先表示出点C,D坐标,再分两种情况:Ⅰ、当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论;Ⅱ、当BC=BD时,先表示出BC,用BC=BD建立方程求解即可得出结论.【解答】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC为腰的等腰三形,满足条件的m的值为4或5.26.【分析】(一)①结论:∠NAB=∠MAC,BN=MC.根据SAS证明△NAB≌△MAC即可.②①中结论仍然成立.证明方法类似.(二)如图3中,在A1C1上截取A1N=A1Q,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.理由全等三角形的性质证明B1Q=PN,推出当PN的值最小时,QB1的值最小,求出HN的值即可解决问题.【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1Q,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠P A1Q,∴∠QA1B1=∠P A1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△P A1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1•sin60°=4,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=4,∴NC1=A1C1﹣A1N=4﹣8,在Rt△NHC1,∵∠C1=45°,∴NH=4﹣4,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4﹣4.27.【分析】(1)运用待定系数法将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,即可求得a和b的值和抛物线C解析式,再利用配方法将抛物线C解析式化为顶点式即可求得顶点G的坐标;(2)根据抛物线C绕点O旋转180°,可求得新抛物线C′的解析式,再将A(﹣4,0)代入y=kx﹣中,即可求得直线l解析式,根据对称性可得点E坐标,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,由DE=2EM,即可得=,再证明△MEK∽△MDH,即可得DH=3EK,建立方程求解即可;(3)连接BG,易证△ABG是Rt△,∠ABG=90°,可得tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;通过建立方程组求解即可.【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,∵D(m,﹣m2﹣4m),∴直线DO的解析式为y=﹣(m+4)x,由抛物线C与抛物线C′关于原点对称,可得点D、E关于原点对称,∴E(﹣m,m2+4m)如图2,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,则H(m,m﹣),K(﹣m,m﹣),∴DH=﹣m2﹣4m﹣(m﹣)=﹣m2m+,EK=m2+4m﹣(m﹣)=m2+m+,∵DE=2EM∴=,∵DH∥y轴,EK∥y轴∴DH∥EK∴△MEK∽△MDH∴==,即DH=3EK∴﹣m2m+=3(m2+m+)解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是Rt△,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,得,,∴点P的横坐标为:或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年山东省济南市中考数学试卷 一、选择题(每小题4分,共48分) 1.﹣7的相反数是( ) A.﹣7 B.﹣ C.7 D.1 2.以下给出的几何体中,主视图是矩形,俯视图是圆的是( )

A. B.

C. D. 3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A.0.1776×103 B.1.776×102 C.1.776×103 D.17.76×102 4.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )

A.20° B.35° C.55° D.70° 5.实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是( )

A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0 6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )

A.赵爽弦图 B.笛卡尔心形线 C.科克曲线 D.斐波那契螺旋线 7.化简+的结果是( ) A.x﹣2 B. C. D. 8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )

A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 9.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是( )

A. B.

C. D. 10.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为( )

A.9﹣3π B.9﹣2π C.18﹣9π D.18﹣6π 11.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北编东53°方向.请计算一下南门A与历下亭C之间的距离约为( )(参考数据:tan37°≈,tan53°≈)

A.225m B.275m C.300m D.315m 12.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是( ) A.<t< B.﹣1<t≤ C.﹣≤t< D.﹣1<t< 二、填空题(每小题4分,共24分.) 13.分解因式:m2﹣4m+4= . 14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于 .

15.一个n边形的内角和等于720°,则n= . 16.代数式与代数式3﹣2x的和为4,则x= . 17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多 元. 18.如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于 .

三、解答题 19.(6分)计算:()﹣1+(π+1)0﹣2cos60°+

20.(6分)解不等式组,并写出它的所有整数解. 21.(6分)如图,在▱ABCD中,E、F分别是AD和BC上的点,∠DAF=∠BCE.求证:BF=DE.

22.(8分)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本. (1)求A和B两种图书的单价; (2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A种图书20本和B种图书25本,共花费多少元?

23.(8分)如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD. (1)求证;∠ABD=∠CAB; (2)若B是OE的中点,AC=12,求⊙O的半径.

24.(10分)某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下: 4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.1 5.2 5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2 4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1 4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3 根据数据绘制了如下的表格和统计图: 等级 视力(x) 频数 频率 A x<4.2 4 0.1

B 4.2≤x≤4.4 12 0.3

C 4.5≤x≤4.7 a D 4.8≤x≤5.0 b E 5.1≤x≤5.3 10 0.25

合计 40 1 根据上面提供的信息,回答下列问题: (1)统计表中的a= ,b= ; (2)请补全条形统计图; (3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人? (4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率. 25.(10分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.

(1)求a和k的值; (2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD. ①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值; ②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值. 26.(12分)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究. (一)猜测探究 在△ABC中, AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.

(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是 ,NB与MC的数量关系是 ; (2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用 如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值. 27.(12分)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′. (1)求抛物线C的函数解析式及顶点G的坐标; (2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值; (3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由. 参考答案 一、选择题 1.解:﹣7的相反数为7, 故选:C. 2.解:A、主视图是圆,俯视图是圆,故A不符合题意; B、主视图是矩形,俯视图是矩形,故B不符合题意;

C、主视图是三角形,俯视图是圆,故C不符合题意;

D、主视图是个矩形,俯视图是圆,故D符合题意;

故选:D. 3.解:177.6=1.776×102. 故选:B. 4.解:∵DE∥BC, ∴∠1=∠ABC=70°, ∵BE平分∠ABC, ∴∠CBE=∠ABC=35°, 故选:B. 5.解:由图可知,b<0<a,且|b|<|a|, ∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0, ∴关系式不成立的是选项C. 故选:C. 6.解:A、不是轴对称图形,是中心对称图形,故此选项错误; B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,是中心对称图形,故此选项正确;

D、不是轴对称图形,不是中心对称图形,故此选项错误;

故选:C. 7.解:原式=+==, 故选:B. 8.解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m, 平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m, 故选:B. 9.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合. a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合; 故选:D.

10.解:连接AC, ∵四边形ABCD是菱形, ∴AB=BC=6, ∵∠B=60°,E为BC的中点, ∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD, ∵∠B=60°, ∴∠BCD=180°﹣∠B=120°, 由勾股定理得:AE==3, ∴S△AEB=S△AEC=×6×3×=4.5=S△AFC, ∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π, 故选:A. 11.解:如图,作CE⊥BA于E.设EC=xm,BE=ym.

相关文档
最新文档