选修1-2数系的扩充与复数的引入测试题

合集下载

【名师推荐资料】2020-2021学年高中数学 第三章 数系的扩充与复数的引入章末检测 新人教A版选修1-2(精品)

【名师推荐资料】2020-2021学年高中数学 第三章 数系的扩充与复数的引入章末检测 新人教A版选修1-2(精品)

第三章 数系的扩充与复数的引入章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,计算i +i 2+i 3=( ) A .-1 B .1 C .-iD .i解析:i +i 2+i 3=i +(-1)-i =-1. 答案:A2.已知i 为虚数单位,复数z =1-2i2-i ,则复数z 的虚部是( )A .-35iB .-35C.45 iD.45解析:1-2i 2-i =-+-+=4-3i 5=45-35i ,则复数z 的虚部是-35. 答案:B3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) A .A B .B C .CD .D解析:设z =a +b i(a <0,b >0)∴z =a -b i 对应点的坐标是(a ,-b ),是第三象限点B . 答案:B4.i 是虚数单位,复数z =7+i3+4i的共轭复数z =( ) A .1-i B .1+i C.1725+3125i D .-177+257i解析:z =7+i3+4i =+-25=25-25i25=1-i ∴z =1+i. 答案:B5.若复数z =(1+i)(x +i)(x ∈R)为纯虚数,则|z |等于( ) A .2 B. 5 C. 2D .1解析:∵z =x -1+(x +1)i 为纯虚数且x ∈R ,∴⎩⎪⎨⎪⎧x -1=0,x +1≠0,得x =1,z =2i ,|z |=2.答案:A6.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( ) A.34 B.43 C .-43D .-34解析:z 1·z 2=(3+4i)(t -i)=(3t +4)+(4t -3)i , 依题意4t -3=0,∴t =34.答案:A7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对解析:设z =a +b i(a ,b ∈R),∵z 2=a 2-b 2+2ab i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-b 2=0,ab ≠0.∴a =±b ,即z 在直线y =±x (x ≠0)上. 答案:C8.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+iD .1-3i解析:由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,∴z =4+2i 1+i =+-2=6-2i2=3-i. 答案:A9.若复数x 0=1+2i 是关于x 的实系数方程x 2+bx +c =0的一个根,则( )A .b =2,c =3B .b =-2,c =3C .b =-2,c =-1D .b =2,c =-1解析:因为1+2i 是实系数方程的一个复数根,所以1-2i 也是方程的根,则1+2i +1-2i =2=-b ,(1+2i)(1-2i)=3=c ,解得b =-2,c =3. 答案:B10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C .若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的值是( )A .1B .2C .3D .4解析:3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=3,2λ-μ=-4,得⎩⎪⎨⎪⎧λ=-1,μ=2,∴λ+μ=1.答案:A二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上) 11.设i 为虚数单位,则1-i +2=________. 解析:1-i+2=1-i 2i=--2=-i 2-12.答案:-12-i212.已知复数z 1=cos 23°+sin 23°i 和复数z 2=sin 53°+sin 37°i,则z 1·z 2=________.解析:z 1·z 2=(cos 23°+sin 23°i)·(sin 53°+sin 37°i)=(cos 23°sin 53°-sin 23°sin 37°)+(sin 23°sin 53°+co s 23°sin 37°)i =(cos 23°sin 53°-sin 23°cos 53°)+i(sin 23°sin 53°+cos 23°cos 53°) =sin 30°+i cos 30°=12+32i.答案:12+32i13.已知复数z =a +b i(a ,b ∈R)且a 1-i +b 1-2i =53+i,则复数z =________.解析:∵a ,b ∈R 且a1-i +b 1-2i =53+i,即a 1+i2+b 1+2i5=3-i2, ∴5a +5a i +2b +4b i =15-5i ,即⎩⎪⎨⎪⎧5a +2b =15,5a +4b =-5,解得⎩⎪⎨⎪⎧a =7,b =-10,故z =a +b i =7-10i. 答案:7-10i14. 复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数在复平面内的对应点位于第一象限,则实数m 的取值范围是________.解析:复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数为z =(m 2-3m +2)-(m 2-2m -8)i , 又z 在复平面内对应的点在第一象限,得⎩⎪⎨⎪⎧m 2-3m +2>0,-m 2-2m -,解得-2<m <1或2<m <4. 答案:(-2,1)∪(2,4)15.若复数z =1+2i ,其中i 是虚数单位,则⎝ ⎛⎭⎪⎫z +1z ·z =________. 解析:∵z =1+2i ,知z =1-2i则⎝ ⎛⎭⎪⎫z +1z ·z =z ·z +1=(1+2i)(1-2i)+1=6. 答案:6三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)实数k 为何值时,复数z = (k 2-3k -4)+(k 2-5k -6)i 是: (1)实数;(2)虚数;(3)纯虚数;(4)0.解析:(1)当k 2-5k -6=0,即k =6或k =-1时,z 是实数. (2)当k 2-5k -6≠0,即k ≠6且k ≠-1时,z 是虚数.(3)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6≠0,即k =4时,z 是纯虚数.(4)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6=0,即k =-1时,z 是0.17.(12分)已知复数z 的共轭复数为z ,且z ·z -3i z =101-3i,求z .解析:设z =a +b i(a ,b ∈R),则z =a -b i. 又z ·z -3i z =101-3i ,所以a 2+b 2-3i(a +b i)=+10,所以a 2+b 2+3b -3a i =1+3i ,所以⎩⎪⎨⎪⎧a 2+b 2+3b =1,-3a =3.所以⎩⎪⎨⎪⎧a =-1,b =0,或⎩⎪⎨⎪⎧a =-1,b =-3.所以z =-1,或z =-1-3i.18.(12分)已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点位于第一象限,求实数a 的取值范围. 解析:设z =x +y i(x ,y ∈R),则z +2i =x +(y +2)i , 由z +2i 为实数,得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由z2-i为实数,得x =4.∴z =4-2i. ∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,a -解得2<a <6.∴实数a 的取值范围是(2,6).19.(12分)已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,求a 的取值范围.解析:∵z 1=-1+5i1+i =2+3i ,z 2=a -2-i ,z 2=a -2+i ,∴|z 1-z 2|=|(2+3i)-(a -2+i)|=|4-a +2i| =-a2+4,又∵|z 1|=13,|z 1-z 2|<|z 1|, ∴-a2+4<13,∴a 2-8a +7<0,解得1<a <7. ∴a 的取值范围是(1,7).20.(13分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值.(2)当a >0且b a >14时,证明该方程没有实数根.解析:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,∴⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .∵a >0,∴b a ≤14,这与题设b a >14相矛盾.故原方程无实数根. 21.(14分)复数z =+3a +b1-i且|z |=4,z 对应的点在第一象限,若复数0,z ,z 对应的点是正三角形的三个顶点,求实数a ,b 的值.解析:z =+2+1-i(a +b i)=-2a -2b i.由|z |=4得a 2+b 2=4,①∵复数0,z ,z 对应的点构成正三角形, ∴|z -z |=|z |.把z =-2a -2b i 代入化简得a 2=3b 2,② 代入①得,|b |=1. 又∵Z 点在第一象限, ∴a <0,b <0.由①②得⎩⎨⎧a =-3,b =-1,故所求值为a =-3,b =-1.。

高中数学人教A版选修1-2练习:第3章 数系的扩充与复数的引入

高中数学人教A版选修1-2练习:第3章 数系的扩充与复数的引入

第三章 3.1 3.1.1A 级 基础巩固一、选择题1.全集I ={复数},集合M ={有理数},N ={虚数},则(∁I M )∩(∁I N )=( D ) A .{复数} B .{实数} C .{有理数}D .{无理数}[解析] ∁I M ={无理数、虚数},∁I N ={实数},∴(∁I M )∩(∁I N )={无理数}. 2.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( D ) A .-2 B .23C .-23D .2[解析] 由题意得2+(-b )=0,∴b =2.3.以2i -5的虚部为实部,以5i +2i 2的实部为虚部的新复数是( A ) A .2-2i B .2+i C .-5+5iD .5+5i [解析] 复数2i -5的虚部为2,复数5i +2i 2=-2+5i ,∴其实部为-2,故选A . 4.复数z =(m 2+m )+m i(m ∈R ,i 为虚数单位)是纯虚数,则实数m 的值为( D ) A .0或-1 B .0 C .1D .-1[解析] ∵z 为纯虚数,∴⎩⎪⎨⎪⎧m 2+m =0m ≠0,∴m =-1,故选D .5.适合x -3i =(8x -y )i 的实数x 、y 的值为( A ) A .x =0且y =3 B .x =0且y =-3 C .x =5且y =3D .x =3且y =0[解析] 依题意得⎩⎪⎨⎪⎧x =0-3=8x -y ,解得⎩⎪⎨⎪⎧x =0y =3,故选A .6.复数z =a 2+b 2+(a +|a |)i(a 、b ∈R )为实数的充要条件是( D ) A .|a |=|b | B .a <0且a =-b C .a >0且a ≠bD .a ≤0[解析] 复数z 为实数的充要条件是a +|a |=0, 故a ≤0. 二、填空题7.如果x -1+y i 与i -3x 为相等复数,x 、y 为实数,则x = 14 ,y =__1__.[解析] 由复数相等可知⎩⎪⎨⎪⎧x -1=-3xy =1,∴⎩⎪⎨⎪⎧x =14y =1.8.给出下列复数:2+3,0.618,i 2,5i +4,2i ,其中为实数的是 2+3,0.618,i 2 . [解析] 2+3,0.618,i 2为实数,5i +4,2i 为虚数. 三、解答题9.已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ).试求实数a 分别为什么值时,z 分别为:(1)实数?(2)虚数?(3)纯虚数?[分析] 按复数a +b i(a 、b ∈R )是实数,纯虚数和虚数的充要条件求解. [解析] (1)当z 为实数时,则有a 2-5a -6=0① 且a 2-7a +6a 2-1有意义②解①得a =-1且a =6, 解②得a ≠±1,∴a =6,即a =6时,z 为实数. (2)当z 为虚数时,则有a 2-5a -6≠0③ 且a 2-7a +6a 2-1有意义④解③得a ≠-1且a ≠6, 解④得a ≠±1, ∴a ≠±1且a ≠6,∴当a ∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数. (3)当z 为纯虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a 2-7a +6a 2-1=0,此方程组无解,∴不存在实数a 使z 为纯虚数.B 级 素养提升一、选择题1.(1+3)i 的实部与虚部分别是( C ) A .1, 3 B .1+3,0 C .0,1+ 3D .0,(1+3)i[解析] (1+3)i 可看作0+(1+3)i =a +b i , 所以实部a =0,虚部b =1+ 3.2.若(m 2-3m -4)+(m 2-5m -6)i 是纯虚数,则实数m 的值为( B ) A .-1 B .4 C .-1或4D .不存在[解析] 由条件知,⎩⎪⎨⎪⎧m 2-3m -4=0m 2-5m -6≠0,∴⎩⎪⎨⎪⎧m =-1或4m ≠-1或m ≠6,∴m =4. 3.若a 、b ∈R, 且a >b ,那么( D ) A .a i>b i B .a +i>b +i C .a i 2>b i 2D .b i 2>a i 2[解析] ∵i 2=-1,a >b ,∴a i 2<b i 2,故选D . 4.若4-3a -a 2i =a 2+4a i ,则实数a 的值为( C ) A .1 B .1或-4 C .-4D .0或-4[解析] 由题意得⎩⎪⎨⎪⎧4-3a =a 2-a 2=4a ,解得a =-4.二、填空题5.若复数z =(m +1)+(m 2-9)i<0,则实数m 的值等于__-3__.[解析] ∵z <0,∴⎩⎪⎨⎪⎧m 2-9=0m +1<0,∴m =-3.6.已知复数z =m +(m 2-1)i(m ∈R )满足z <0,则m =__-1__.[解析] ∵z <0,∴⎩⎪⎨⎪⎧m 2-1=0,m <0,∴m =-1.三、解答题7.若不等式m 2-(m 2-3m )i<(m 2-4m +3)i +10成立,求实数m 的值. [解析] 由题意,得⎩⎪⎨⎪⎧m 2-3m =0m 2-4m +3=0m 2<10,∴⎩⎪⎨⎪⎧m =0或m =3m =3或m =1|m |<10,∴当m =3时,原不等式成立.C 级 能力提高1.(2016·天津)已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为__2__.[解析] (1+i)(1-b i)=1+b +(1-b )i =a ,所以⎩⎪⎨⎪⎧1+b =a ,1-b =0.解得⎩⎪⎨⎪⎧b =1,a =2.所以ab =2.2.设z =log 12(m -1)+ilog 2(5-m )(m ∈R ).(1)若z 是虚数,求m 的取值范围; (2)若z 是纯虚数,求m 的值.[解析] 分清复数的实部与虚部,直接根据复数为虚数、纯虚数的条件列式求解. (1)若z 是虚数,则其虚部log 2(5-m )≠0,m 应满足的条件是⎩⎪⎨⎪⎧m -1>05-m >05-m ≠1,解得1<m <5,且m ≠4.(2)若z 是纯虚数,则其实部log 12(m -1)=0,虚部log 2(5-m )≠0,m 应满足的条件是⎩⎪⎨⎪⎧m -1=15-m >05-m ≠1,解得m =2.第三章 3.1 3.1.2A 级 基础巩固一、选择题1.复数z =-2+i ,则复数z 在复平面内对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 复数z 在复平面内对应的点为(-2,1),位于第二象限. 2.若OZ →=(0,-3),则OZ →对应的复数为( C )A .0B .-3C .-3iD .3[解析] 复数的实部为0,虚部为-3,所以对应的复数为-3i. 3.复数z =1+(2-sin θ)i 在复平面内对应的点所在的象限为( A ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] ∵1>0,2-sin θ>0, ∴复数对应的点在第一象限.4.复数z 与它的模相等的充要条件是( D ) A .z 为纯虚数 B .z 是实数 C .z 是正实数D .z 是非负实数 [解析] ∵z =|z |,∴z 为实数且z ≥0.5.已知复数z =(m -3)+(m -1)i 的模等于2,则实数m 的值为( A ) A .1或3 B .1 C .3D .2 [解析] 依题意可得(m -3)2+(m -1)2=2,解得m =1或3,故选A . 6.复数z =1+cos α+isin α(π<α<2π)的模为( B ) A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2[解析] |z |=(1+cos α)2+sin 2 α=2+2cos α=4cos 2 α2=2|cos α2|.∵π<α<2π,∴π2<α2<π,∴cos α2<0,∴2|cos α2|=-2cos α2,故选B .二、填空题7.(2016·广西南宁高二检测)设复数z =1+2i ,则|z |[解析] |z |=12+22= 5.8.已知复数x 2-6x +5+(x -2)i 在复平面内的对应点在第三象限,则实数x 的取值范围是__(1,2)__.[解析] 由已知,得⎩⎪⎨⎪⎧x 2-6x +5<0x -2<0,解得1<x <2. 三、解答题9.如果复数z =(m 2+m -1)+(4m 2-8m +3)i(m ∈R )对应的点在第一象限,求实数m 的取值范围.[解析] ∵z =(m 2+m -1)+(4m 2-8m +3)i ,由题意得⎩⎪⎨⎪⎧m 2+m -1>04m 2-8m +3>0,解得m <-1-52或m >32,即实数m 的取值范围是m <-1-52或m >32.B 级 素养提升一、选择题1.已知复数z =(x -1)+(2x -1)i 的模小于10,则实数x 的取值范围是( A ) A .-45<x <2B .x <2C .x >-45D .x <-45或x >2[解析] 由条件知,(x -1)2+(2x -1)2<10, ∴5x 2-6x -8<0,∴-45<x <2.2.设复数z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论中正确的是( C ) A .复数z 对应的点在第一象限 B .复数z 一定不是纯虚数 C .复数z 对应的点在实轴上方 D .复数z 一定是实数[解析] ∵2t 2+5t -3=0的Δ=25+24=49>0,∴方程有两根,2t 2+5t -3的值可正可负,∴A 、B 不正确. 又t 2+2t +2=(t +1)2+1>0, ∴D 不正确,∴C 正确.3.已知复数z 的模为2,则|z -i|的最大值为( D ) A .1 B .2 C . 5D .3[解析] |z |=2,复数z 对应的点在以原点为圆心,半径为2的圆上,|z -i|表示圆上的点到(0,1)的距离,最大为2+1=3.4.在复平面内,复数z =sin 2+icos 2对应的点位于( D ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] ∵π2<2<π,∴sin 2>0,cos 2<0.∴复数z 对应的点(sin 2,cos 2)位于第四象限.二、填空题5.已知复数z 1=-1+2i 、z 2=1-i 、z 3=3-2i ,它们所对应的点分别是A 、B 、C ,若O C →=x O A →+y O B →(x 、y ∈R ),则x +y 的值是__5__.[解析] 由复数的几何意义可知,O C →=xOA →+yOB →,即3-2i =x (-1+2i)+y (1-i), ∴3-2i =(y -x )+(2x -y )i. 由复数相等可得⎩⎪⎨⎪⎧ y -x =32x -y =-2,解得⎩⎪⎨⎪⎧x =1y =4.∴x +y =5. 6.设(1+i)sin θ-(1+icos θ)对应的点在直线x +y +1=0上,则tan θ的值为 12 .[解析] 由题意,得sin θ-1+sin θ-cos θ+1=0, ∴tan θ=12.7.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=__12__.[解析] 由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0m 2-9=0,∴m =3,∴z =12i ,∴|z |=12. 三、解答题8.已知a ∈R ,则复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在复平面的第几象限内?复数z 的对应点的轨迹是什么曲线?[解析] a 2-2a +4=(a -1)2+3≥3, -(a 2-2a +2)=-(a -1)2-1≤-1.由实部大于0,虚部小于0可知,复数z 的对应点在复平面的第四象限内. 设z =x +y i(x ,y ∈R ),则x =a 2-2a +4,y =-(a 2-2a +2). 消去a 2-2a ,得y =-x +2(x ≥3).所以复数z 的对应点的轨迹是以(3,-1)为端点,-1为斜率,在第四象限的一条射线.C 级 能力提高1.设z ∈C ,则满足条件|z |=|3+4i|的复数z 在复平面上对应的点Z 的集合是什么图形? [解析] 解法一:|z |=|3+4i|得|z |=5.这表明向量OZ →的长度等于5,即点Z 到原点的距离等于5.因此,满足条件的点Z 的集合是以原点O 为原点,以5为半径的圆. 解法二:设z =x +y i(x 、y ∈R ),则|z |2=x 2+y 2. ∵|3+4i|=5,∴由|z |=|3+4i|得x 2+y 2=25, ∴点Z 的集合是以原点为圆心,以5为半径的圆.2.已知复数z =(m 2+m -6)+(m 2+m -2)i ,证明对一切实数m ,该复数z 所对应的点不可能位于第四象限.[解析] 设z =(m 2+m -6)+(m 2+m -2)i 对应的点Z (m 2+m -6,m 2+m -2)位于第四象限,则有⎩⎪⎨⎪⎧ m 2+m -6>0,m 2+m -2<0,解得⎩⎪⎨⎪⎧m >2或m <-3,-2<m <1.显然此不等式组无解,因此对一切实数m , 该复数所对应的点不可能位于第四象限.第三章 3.2 3.2.1A 级 基础巩固一、选择题1.计算(3+2i)-(1-i)的结果是( C ) A .2+i B .4+3i C .2+3iD .3+2i[解析] (3+2i)-(1-i)=3+2i -1+i =2+3i.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( B ) A .-2 B .4 C .3D .-4[解析] z =1-(3-4i)=-2+4i , 所以z 的虚部是4.3.设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D ) A .1+i B .2+i C .3D .-2-i [解析] ∵z 1+z 2=(2+b i)+(a +i) =(2+a )+(b +1)i =0,∴⎩⎪⎨⎪⎧ 2+a =0b +1=0,∴⎩⎪⎨⎪⎧a =-2b =-1, ∴a +b i =-2-i.4.已知z =11-20i ,则1-2i -z 等于( C ) A .18+10i B .18-10i C .-10+18iD .10-18i[解析] ∵z =11-20i , ∴1-2i -z =1-2i -11+20i =-10+18i.5.设f (z )=|z |,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)=( D ) A .10 B .5 5 C . 2D .5 2 [解析] ∵z 1-z 2=5+5i , ∴f (z 1-z 2)=f (5+5i)=|5+5i|=5 2.6.设复数z 满足关系式z +|z |=2+i ,那么z =( D ) A .-34+iB .34-iC .-34-iD .34+i[解析] 设z =x +y i(x 、y ∈R ), 则x +y i +x 2+y 2=2+i ,因此有⎩⎨⎧x +x 2+y 2=2y =1,解得⎩⎪⎨⎪⎧x =34y =1,故z =34+i ,故选D .二、填空题7.已知复数z 1=(a 2-2)+(a -4)i ,z 2=a -(a 2-2)i(a ∈R ),且z 1-z 2为纯虚数,则a =__-1__.[解析] z 1-z 2=(a 2-a -2)+(a -4+a 2-2)i(a ∈R )为纯虚数,∴⎩⎪⎨⎪⎧a 2-a -2=0a 2+a -6≠0,解得a =-1. 8.在复平面内,O 是原点,OA →、OC →、AB →对应的复数分别为-2+i 、3+2i 、1+5i ,那么BC →对应的复数为__4-4i__.[解析] B C →=OC →-OB →=OC →-(OA →+AB →) =3+2i -(-2+i +1+5i) =(3+2-1)+(2-1-5)i =4-4i. 三、解答题9.已知平行四边形ABCD 中,AB →与AC →对应的复数分别是3+2i 与1+4i ,两对角线AC 与BD 相交于P 点.(1)求AD →对应的复数; (2)求DB →对应的复数.[分析] 由复数加、减法运算的几何意义可直接求得AD →,DB →对应的复数,先求出向量P A →、PB →对应的复数,通过平面向量的数量积求△APB 的面积.[解析] (1)由于ABCD 是平行四边形,所以AC →=AB →+AD →,于是AD →=AC →-AB →,而(1+4i)-(3+2i)=-2+2i ,即AD →对应的复数是-2+2i.(2)由于DB →=AB →-AD →,而(3+2i)-(-2+2i)=5, 即DB →对应的复数是5.B 级 素养提升一、选择题1.复数(3m +m i)-(2+i)对应的点在第三象限内,则实数m 的取值范围是( A ) A .m <23B .m <1C .23<m <1D .m >1[解析] (3m +m i)-(2+i)=(3m -2)+(m -1)i ,由题意得⎩⎪⎨⎪⎧3m -2<0m -1<0,∴m <23.2.复数z 1=a +4i ,z 2=-3+b i ,若它们的和为实数,差为纯虚数,则实数a ,b 的值为( A )A .a =-3,b =-4B .a =-3,b =4C .a =3,b =-4D .a =3,b =4[解析] 由题意可知z 1+z 2=(a -3)+(b +4)i 是实数,z 1-z 2=(a +3)+(4-b )i 是纯虚数,故⎩⎪⎨⎪⎧b +4=0a +3=04-b ≠0,解得a =-3,b =-4.3.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA →、OB →对应的复数分别是3+i 、-1+3i ,则CD →对应的复数是( D )A .2+4iB .-2+4iC .-4+2iD .4-2i[解析] 依题意有CD →=BA →=OA →-OB →, 而(3+i)-(-1+3i)=4-2i , 即CD →对应的复数为4-2i. 故选D .4.如果一个复数与它的模的和为5+3i ,那么这个复数是( C ) A .115B .3iC .115+3iD .115+23i[解析] 设z =x +y i(x ,y ∈R ), 则x +y i +x 2+y 2=5+3i , ∴⎩⎨⎧x +x 2+y 2=5y =3,解得⎩⎪⎨⎪⎧x =115y =3. ∴z =115+3i ,故选C .二、填空题5.(2016·济南高二检测)设x ,y 为实数,且x 1-i +y 1-2i =51-3i ,则x +y =__4__.[解析] x 1-i +y 1-2i=x (1+i )2+y (1+2i )5=(x 2+y 5)+(x 2+2y5)i ,而51-3i=5(1+3i )10=12+32i ,所以x 2+y 5=12且x 2+2y 5=32,解得x =-1,y =5,所以x +y =4.6.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=__-1+10i__. [解析] ∵z 1+z 2=(x +2i)+(3-y i)=(x +3)+(2-y )i ,又z 1+z 2=5-6i ,∴⎩⎪⎨⎪⎧ x +3=52-y =-6.∴⎩⎪⎨⎪⎧x =2y =8.∴z 1-z 2=(2+2i)-(3-8i)=-1+10i. 7.已知z 1=32a +(a +1)i ,z 2=-33b +(b +2)i(a 、b ∈R ),若z 1-z 2=43,则a +b =__3__.[解析] z 1-z 2=[32a +(a +1)i]-[-33b +(b +2)i]=(32a +33b )+(a +1-b -2)i =43,∴⎩⎪⎨⎪⎧32a +33b =43a -b =1,解得⎩⎪⎨⎪⎧a =2b =1,∴a +b =3.三、解答题8.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x 、y ∈R ),设z =z 1-z 2,且z =13-2i ,求z 1、z 2.[解析] z =z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i]=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i ,又因为z =13-2i ,且x ,y ∈R ,所以⎩⎪⎨⎪⎧ 5x -3y =13x +4y =-2,解得⎩⎪⎨⎪⎧x =2y =-1. 所以z 1=(3×2-1)+(-1-4×2)i =5-9i , z 2=4×(-1)-2×2-[5×2+3×(-1)]i =-8-7i.C 级 能力提高1.(2016·青岛高二检测)已知复数z =(1-i )2+3(1+i )2-i .(1)求复数z .(2)若z 2+az +b =1-i ,求实数a ,b 的值.[解析] (1)z =-2i +3+3i 2-i =3+i 2-i =(3+i )(2+i )5=1+i.(2)把z =1+i 代入z 2+az +b =1-i ,得(1+i)2+a (1+i)+b =1-i ,整理得a +b +(2+a )i =1-i ,所以⎩⎪⎨⎪⎧ a +b =1,2+a =-1,解得⎩⎪⎨⎪⎧a =-3,b =4.2.已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:(1)点C 、D 对应的复数; (2)平行四边形ABCD 的面积.[解析] (1)∵向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i , ∴向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,∴点C 对应的复数为(2+i)+(2-3i)=4-2i. ∵AD →=BC →,∴向量AD →对应的复数为3-i ,即AD →=(3,-1). 设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),∴⎩⎪⎨⎪⎧ x -2=3y -1=-1,解得⎩⎪⎨⎪⎧x =5y =0. ∴点D 对应的复数为5. (2)∵BA →·BC →=|BA →||BC →|cos B ,∴cos B =BA →·BC →|BA →||BC →|=3-25×10=210.∴sin B =7210.∴S =|BA →||BC →|sin B =5×10×7210=7,∴平行四边形ABCD 的面积为7.第三章 3.2 3.2.2A 级 基础巩固一、选择题1.(2016·重庆八中高二检测)复数z 满足z i -1=i 则z 的共轭复数为( A ) A .1-i B .1+i C .-1+iD .-1-i[解析] z =1+i i =i (1+i )i 2=i -1-1=1-i.2.(2016·山东滕州市高二检测)已知i 为虚数单位,则(1+i 1-i )2=( B )A .1B .-1C .iD .-i [解析] (1+i 1-i )2=2i-2i=-1.3.(2016·湖南衡阳三中检测)已知i 为虚数单位.若复数-3i(a +i)(a ∈R )的实部与虚部相等,则a =( A )A .-1B .-2C .1D .2[解析] -3i(a +i)=-3a i +3, ∴-3a =3,∴a =-1.4.(2015·全国卷Ⅱ文)若a 为实数,且2+a i1+i =3+i ,则a =( D )A .-4B .-3C .3D .4 [解析] ∵2+a i1+i =3+i ,∴2+a i =(3+i)(1+i)=2+4i , ∴a =4,选D .5.(2017·北京文,2)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( B )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞) [解析] ∵(1-i)(a +i)=a +i -a i -i 2=a +1+(1-a )i , 又∵复数(1-i)(a +i)在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1. 故选B .6.若z +z -=6,z ·z -=10,则z =( B ) A .1±3i B .3±i C .3+iD .3-i[解析] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,∴⎩⎪⎨⎪⎧ 2a =6a 2+b 2=10,解得⎩⎪⎨⎪⎧a =3b =±1,即z =3±i. 二、填空题7.(2016·广西南宁高二检测)计算:(1+i)(1-i)+(1+2i)2=__-1+4i__. [解析] (1+i)(1-i)+(1+2i)2 =1-i 2+1+4i +4i 2 =1+1+1+4i -4 =-1+4i.8.复数z 满足(1+2i)z =4+3i ,那么z =__2+i__. [解析] (1+2i)·z =4+3i ,z =4+3i 1+2i =(4+3i )(1-2i )5=2-i ,∴z =2+i.三、解答题 9.计算:(1)(-12+32i)(2-i)(3+i);(2)(2+2i )2(4+5i )(5-4i )(1-i ).[解析] (1)(-12+32i)(2-i)(3+i)=(-12+32i)(7-i)=3-72+73+12i.(2)(2+2i )2(4+5i )(5-4i )(1-i )=4i (4+5i )5-4-9i=-20+16i 1-9i=-4(5-4i )(1+9i )82=-4(41+41i )82=-2-2i.B 级 素养提升一、选择题1.设复数z 满足1-z1+z =i ,则|1+z |=( C )A .0B .1C . 2D .2[解析] ∵1-z1+z=i ,∴z =1-i 1+i ,∴z +1=1-i 1+i +1=21+i =1-i ,∴|z +1|= 2.2.若i(x +y i)=3+4i ,x 、y ∈R ,则复数x +y i 的模是( D ) A .2 B .3 C .4D .5 [解析] 由x i +y i 2=3+4i ,知x =4,y =-3,则x +y i 的模为x 2+y 2=5. 3.若复数(m 2+i)(1+m i)是实数,则实数m 的值是( B )A .1B .-1C . 2D .- 2[解析] (m 2+i)(1+m i)=m 2+i +m 3i +m i 2=(m 2-m )+(m 3+1)i. ∵(m 2+1)(1+m i)为实数, ∴m 3+1=0, ∴m =-1.故选B .4.(2016·全国卷Ⅱ文2)设复数z 满足z +i =3-i ,则z =( C ) A .-1+2i B .1-2i C .3+2iD .3-2i[解析] 易知z =3-2i ,所以z =3+2i. 二、填空题5.(2015·江苏)设复数z 满足z 2=3+4i(i 是虚数单位),则z [解析] 方法一:设z =a +b i(a ,b ∈R ),则(a +b i)2=a 2-b 2+2ab i =3+4i ,从而⎩⎪⎨⎪⎧ a 2-b 2=32ab =4,解得⎩⎪⎨⎪⎧a 2=4b 2=1故|z |=a 2+b 2= 5.方法二:因为z 2=3+4i ,所以|z 2|=|z |2=|3+4i|=9+16=5,所以|z |= 5. 6.(2015·重庆理)设复数a +b i(a 、b ∈R )的模为3,则(a +b i)(a -b i)=__3__. [解析] 由题易得a 2+b 2=3,故a 2+b 2=3. (a +b i)(a -b i)=a 2+b 2=3.7.(2017·浙江,12)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=__5__,ab =__2__.[解析] (a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2. 三、解答题 8.m1+i=1-n i ,(m 、n ∈R ,i 是虚数单位),求m 、n 的值. [解析] ∵m1+i =1-n i ,∴m (1-i )2=1-n i , ∴m -m i =2-2n i ,∴⎩⎪⎨⎪⎧ m =2-m =-2n ,∴⎩⎪⎨⎪⎧m =2n =1. C 级 能力提高1.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z = 1-32i .[解析] ∵z 0=3+2i , ∴z ·z 0=3z +2i z =3z +z 0, ∴2i·z =z 0.设z =a +b i(a ,b ∈R ), ∴2i(a +b i)=3+2i ,即-2b +2a i =3+2i.∴⎩⎪⎨⎪⎧-2b =3,2a =2,解得⎩⎪⎨⎪⎧a =1,b =-32,∴z =1-32i.2.已知z ∈C ,z -为z 的共轭复数,若z ·z --3i z -=1+3i ,求z . [解析] 设z =a +b i(a 、b ∈R ),则z -=a -b i(a ,b ∈R ), 由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i , 即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1-3a =3,解得⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =3,所以z =-1或z =-1+3i.。

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)

一、选择题1.若i 为虚数单位,则复数311i i-+的模是( ) A .22B .5C .5D .22.已知i 是虚数单位,,a b ∈R ,31ia bi i++=-,则a b -等于( ) A .-1B .1C .3D .43.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101-B .21-C .101+D .21+4.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( ) A .2-B .12-C .12D .25.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45D .356.若复数满足,则复数的虚部为( )A .B .C .D .7.已知复数3412iz i+=-,是z 的共轭复数,则z 为 ( ) A .55B .221C .5D .58.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若复数z 满足(34)112i z i -=+,其中i 为虚数单位,则z 的虚部为( ) A .2-B .2C .2i -D .2i10.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆 B .两条直线C .圆D .一条直线11.已知复数33iz i --=,则z 的虚部为( ) A .3-B .3C .3iD .3i -12.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 二、填空题13.已知复数z 满足|2|1z i +-=,则|21|z -的取值范围是________. 14.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________. 15.复数z 满足21z i -+=,则z 的最大值是___________. 16.213i(3i)-+化简后的结果为_________. 17.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 18.设a R ∈,若复数3a i z i-=+(i 是虚数单位)的实部为12,则 a = __________.19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.三、解答题21.(Ⅰ)已知m R ∈,复数()()2245215z m m m m i =--+--是纯虚数,求m 的值;(Ⅱ)已知复数z 满足方程()20z z i +-=,求z 及2z i +的值. 22.已知复数w 满足()432(w w i i -=-为虚数单位). (1)求w ;(2)设z C ∈,在复平面内求满足不等式12z w ≤-≤的点Z 构成的图形面积. 23.已知复数,, , 求:(1)求的值; (2)若,且,求的值.24.已知复数()()2226z m m m m i =-++-所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m 的值或取值范围. 25.已知1z i =+.(1)设23(1)4z i ω=+--,求ω;(2)如果2211z az bi z z ++=--+,求实数,a b 的值. 26.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=; (2)2(21)(3)0x i x t i --+-=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数的除法运算把311i i-+化成(),a bi a b R +∈ 【详解】()()()()2231131331241211112i i i i i i ii i i i i -----++====+++--,31121i i i-∴=+==+ 故选:B . 【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.2.A解析:A 【分析】根据复数的除法化简31ii+-,再根据复数相等的充要条件求出,a b ,即得答案. 【详解】()()()()2231334241211112i i i i i ia bi i i i i i +++++++=====+--+-, 1,2,1ab a b ∴==∴-=-.故选:A . 【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.3.A解析:A 【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解. 【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径,即min 111z i ++==, 故选:A 【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D 【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a 值. 【详解】()()()()12i i 212i z a a a =++=-++为纯虚数, 20120a a -=⎧∴⎨+≠⎩,解得2a =,故选D. 【点睛】本题主要考查的是复数的乘法运算以及纯虚数的定义,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.5.C解析:C 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.6.B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7.C解析:C 【解析】分析:利用复数模的性质直接求解. 详解:∵3412iz i+=-, ∴2222343434512121(2)i i z z i i +++=====--+- 故选C .点睛:复数(,)z a bi a b R =+∈的模为22z a b =+1212z z z z =,1122z z z z =. 8.B解析:B 【分析】先化简得到2z i =--,再计算2z i =-+得到答案。

【全程复习方略】2014-2015学年高中数学 第三章 数系的扩充与复数的引入单元质量评估 新人教A版选修1-2

【全程复习方略】2014-2015学年高中数学 第三章 数系的扩充与复数的引入单元质量评估 新人教A版选修1-2

"【全程复习方略】2014-2015学年高中数学第三章数系的扩充与复数的引入单元质量评估新人教A版选修1-2 "(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·吉林高二检测)i是虚数单位,计算i+i2+i3=( )A.-1B.1C.-iD.i【解析】选A.i+i2+i3=i-1-i=-1.2.(2014·银川高二检测)在如图的知识结构图中:“求函数的导数”的“上位”要素有( )A.1个B.2个C.3个D.4个【解析】选C.由流程图知“求函数的导数”的“上位”要素有:基本导数公式,函数四则运算求导法则,复合函数求导法则.3.(2014·天津高二检测)已知i为虚数单位,则复数z=的虚部为( )A.1B.-1C.iD.1-i【解析】选B.z===-i,因此虚部为-1.4.如图所示的知识结构图为结构.( )A.树形B.环形C.对称形D.左右形【解析】选A.由框图知,此类框图是树形结构.5.(2014·温州高二检测)复数的共轭复数为( )A.-+iB.+iC.-iD.--i【解析】选D.z====-+i,则其共轭复数为--i.6.下列命题中:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R且a>b,则a+i3>b+i2;③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;④两个虚数不能比较大小.其中,正确命题的序号是( )A.①B.②C.③D.④【解析】选D.复数a+bi(a,b∈R).当a=0且b≠0时为纯虚数.在①中,若a=-1,则(a+1)i不是纯虚数,故①错误.在③中,若x=-1,也不是纯虚数,故③错误.a+i3=a-i,b+i2=b-1,复数a-i与实数b-1不能比较大小,故②错误.④正确.故应选D.7.(2014·西安高二检测)若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则( )A.a=-1B.a≠-1且a≠2C.a≠-1D.a≠2【解析】选C.若一个复数不是纯虚数,则该复数是一个虚数或是一个实数.当a2-a-2≠0时,已知的复数一定不是纯虚数,解得a≠-1且a≠2;当a2-a-2=0且|a-1|-1=0时,已知的复数也不是一个纯虚数,解得a=2. 综上所述,当a≠-1时,已知的复数不是一个纯虚数.8.下列判断不正确的是( )A.画工序流程图类似于算法的程序框图,首先把每一个工序逐步细化,按自上向下或从左向右的顺序画B.在工序流程图中可以出现循环回路,这一点不同于算法的程序框图C.工序流程图中的流程线表示相邻两工序之间的衔接关系,且是有方向的指向线D.结构图用来刻画静态的系统结构,流程图用来描述一个动态过程【解析】选B.概念判断题,对于A,算法的程序框图本身就是一种流程图;对于B,显然错误,因循环结构是算法结构中最常见的一类结构,选B;对于C,主要是考查流程线的知识.流程线是具有方向性的指向线.对于D,主要明确结构图与流程图的概念.9.(2014·武汉高二检测)若a,b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限【解析】选D.a2-6a+10=(a-3)2+1>0,-b2+4b-5=-(b-2)2-1<0.所以复数对应的点在第四象限,故应选D. 【变式训练】已知z=(1+i)m2-(8+i)m+15-6i(m∈R),若复数z对应的点位于复平面上的第二象限,则m的取值范围是.【解析】将复数z变形为z=(m2-8m+15)+(m2-m-6)i,因为复数z对应的点位于复平面上的第二象限,所以解得3<m<5.答案:3<m<510.(2014·陕西高考)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是( )A.a n=2nB.a n=2(n-1)C.a n=2nD.a n=2n-1【解题指南】搞清程序的算法功能是解题的关键,解题时按照程序框图的顺序执行求解,特别注意根据判断框中的条件来执行循环体或结束循环.【解析】选C.当S=1,i=1时,执行循环体,a1=2,S=2,i=2,若不满足条件i>N,执行循环体,a2=4,S=4,i=3,若不满足条件i>N,执行循环体,a3=8,S=8,i=4,若不满足条件i>N,执行循环体,a4=16,S=16,i=5,若输入条件N=4,此时满足条件i>N,即输出a4=16,所以a n=2n.11.已知复数z=(x-1)+(2x-1)i的模小于,则实数x的取值范围是( )A.-<x<2B.x<2C.x>-D.x=-或x=2【解析】选A.由题意知(x-1)2+(2x-1)2<10,解得-<x<2.故应选A.12.(2014·南昌高二检测)已知复数z=-3+2i(i为虚数单位)是关于x的方程2x2+px+q=0(p,q为实数)的一个根,则p+q的值为( )A.22B.36C.38D.42【解析】选C.因为z=-3+2i是关于x的方程2x2+px+q=0的一个根,所以有2(-3+2i)2+p(-3+2i)+q=0,即2(9-4-12i)-3p+2pi+q=0得10-24i-3p+2pi+q=0得10+q-3p+(2p-24)i=0.由复数相等得⇒所以p+q=38.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2014·嘉兴高二检测)某工程由A,B,C,D四道工序组成,完成它们需用时间依次为2,5,x,4天,四道工序的先后顺序及相互关系是:A,B可以同时开工;A完成后,C可以开工;B,C完成后,D可以开工.若该工程总时数为9天,则完成工序C需要的天数x最多是.【解析】画出流程图如图:又因为该工程总时数为9天,则由图知完成工序C需要的天数x最多是3.答案:314.若复数z=的实部为3,则z的虚部为.【解析】z===,由条件知,=3,所以a=-1,所以z=3+i,所以z的虚部为1.答案:115.(2014·丽江高二检测)下面是中国移动关于发票的表述:我们在充分考虑您的个性化需求基础上提供了以下几种话费发票方式:后付费话费发票、预付费话费发票、充值发票、全球通发票(包括简单发票和单一发票).你可以根据你的实际情况选择其中的话费发票方式.试写出关于发票的结构图. 【解析】答案:16.已知复数z1=m+(4+m)i(m∈R),z2=2cosθ+(λ+3cosθ)i(λ∈R),若z1=z2,则λ的取值范围是.【解析】因为z1=z2,所以所以λ=4-cosθ.又因为-1≤cosθ≤1,所以3≤4-cosθ≤5,所以λ∈[3,5].答案:[3,5]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)试画出“推理与证明”这一部分内容的知识结构图.【解析】知识结构图如图:18.(12分)(2014·牡丹江高二检测)计算:(1)(1-i)(1+i).(2)+.【解析】(1)(1-i)(1+i)=(1-i)(1+i)=2×=-1+i.(2)+=+=i(1+i)+=-1+i+(-i)1005=-1+i-i=-1.【拓展延伸】复数的运算可以看作多项式的化简,加减看作多项式加减,合并同类项,乘法和除法可看作多项式的乘法和除法.19.(12分)明天小强要参加班里组织的郊游活动,为了做好参加这次郊游的准备工作,他测算了如下数据:整理床铺、收拾携带物品8分钟,洗脸、刷牙7分钟,煮牛奶15分钟,吃早饭10分钟,查公交线路图9分钟,给出差在外的父亲发手机短信6分钟,走到公共汽车站10分钟,等公共汽车10分钟.小强粗略地算了一下,总共需要75分钟,为了赶上7:50的公共汽车,小强决定6:30起床,不幸的是他一下子睡到6:50,请你帮小强安排一下时间,画出一份郊游出行前时间安排流程图,使他还能来得及参加此次郊游.【解析】出行前时间安排流程图如图所示.这样需要60分钟,故可以赶上7:50的公共汽车,并来得及参加此次郊游.20.(12分)(2014·长沙高二检测)(1)求复数z=1+cosα+isinα(π<α<2π)的模.(2)如果lo(m+n)-(m2-3m)i>-1,试求自然数m,n.【解析】(1)|z|===-2cos.(2)因为lo(m+n)-(m2-3m)i>-1,所以式子lo(m+n)-(m2-3m)i是实数,从而有由①得m=0或m=3,当m=0时代入②得n<2.又因为m+n>0,所以n=1;当m=3时代入②得n<-1与n是自然数矛盾,综上可得m=0,n=1.21.(12分)已知等腰梯形OABC的顶点A,B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.【解析】设z=x+yi,x,y∈R,因为OA∥BC,|OC|=|BA|,所以k OA=k BC,|z C|=|z B-z A|,即解得或因为|OA|≠|BC|,所以x2=-3,y2=4(舍去),故z=-5.【拓展延伸】数形结合既是一种重要的数学思想,又是一种常用的数学方法.复数本身的几何意义、复数的模以及复数加减法的几何意义都是数形结合思想的体现.它们得以相互转化.涉及的主要问题有复数在复平面内对应点的位置、复数运算及模的最值问题等.22.(12分)(2014·青岛高二检测)已知复数z1=i(1-i)3.(1)求|z1|.(2)若|z|=1,求|z-z1|的最大值.【解析】(1)|z1|=|i(1-i)3|=|i|·|1-i|3=2.(2)如图所示,由|z|=1可知,z在复平面内对应的点的轨迹是半径为1,圆心为O(0,0)的圆,而z1对应着坐标系中的点Z1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆半径)=2+1.【变式训练】已知z是复数,z+2i,均为实数,且(z+ai)2的对应点在第一象限,求实数a的取值范围. 【解析】设z=x+yi(x,y∈R),则z+2i=x+(y+2)i为实数,所以y=-2.又因为==(x-2i)(2+i)=(2x+2)+(x-4)i为实数,所以x=4.所以z=4-2i,又因为(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象限.所以解得2<a<6.所以实数a的取值范围是(2,6).【拓展延伸】复数问题实数化在求复数时,常设复数z=x+yi(x,y∈R),把复数z满足的条件转化为实数x,y满足的条件,即复数问题实数化的基本思想.。

选修1-2数系的扩充与复数引入

选修1-2数系的扩充与复数引入

选修1-2数系的扩充与复数引入 南海区平洲高级中学 曾庆荣说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共150分,考试时间90分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题中正确的命题个数是①0比-i 大 ②两个复数互为共轭复数,当且仅当其和为实数 ③x +y i=1+i 的充要条件为x =y =1 ④11.设z 为复数,M ={z |(z -1)2=|z -1|2},那么正确的应是 A.M ={纯虚数} B.M ={实数} C.{实数}M {复数} D.M ={复数} 12.复数iz -=11的共轭复数是A .i 2121+B .i 2121-C .i -1D .i +1第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题5分,共70分.把答案填在题中横线上)13ii-+15的值等于__________. 14.设z =-1+(ii -+11)2003,则z =__________.15.8+6i 的平方根是__________. 16.复平面内,已知复数z =x -31i 所对应的点都在单位圆内,则实数x 的取值范围是__________.(1)(2)解:z 1·z 2=(3+i)·(1-i)=4-2i. 答案: D5.分析:本题考查i 的幂的运算性质.解:(i -i -1)3=(i -i1)3=(i+i)3=(2i)3=8i 3=-8i,则虚部为-8.答案: D6.分析:本题考查虚数的基本知识及运算能力.此类问题通常利用两复数相等的充要条件转化为实数问题去解决.解:设z =b i(b ∈R 且b ≠0),则(z +2)2-8i=(b i+2)2-8i=b 2i 2+4b i+4-8i=(4-b 2)+(4b -8)i.∴⎩⎨⎧≠-=-.084,042b b ∴⎩⎨⎧≠±=.22b b ,∴b =-2.∴z =-2i.答案:B7.分析:本题考查复数代数形式的基本运算.可利用多项式乘以多项式的方法解决此类问题,但应特别注意运算过程中的符号问题.12.B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题5分,共70分.把答案填在题中横线上) 13分析:本题考查复数的除法运算.解:2)15()15()1)(1()1)(5(15ii i i i i i ++-=+-++=-+ =2+3i. 答案: 2+3i14分析:本题考查i 的周期性及常见复数的化简.如(1±i)2=±2i,i-i11+ =i 等. 解:z =-1+(i-i 11+)2003=-1+i 2003=-1+i 4×500+3=-1+i 3=-1-i. 答案: -1-i15.分析:本题考查复数的平方运算及复数相等的概念. 解法一: 设8+6i 的平方根是x +y i(x 、y ∈R ),则 (x +y i)2=8+6i ,即x 2-y 2+2xy i=8+6i.解:把z =i i --1a 代入,得ω=i i --1a (i i--1a +i) =i i --1a (i i i -++-11a )=21+a (1+a i).4分 于是21+a ·a -2321=+a ,即a 2=4.8分 ∵a >0,∴a =2,ω=23+3i.10分19.分析:本题考查复数相等的概念及复数的有关运算.此题可设复数z =a +b i(a 、b ∈R ),把求复数z 转化为列方程组求实数a 、b 值的问题;也可把复数z 视为一个整体分离出来,求复数z .解法一:设z =a +b i(a 、b ∈R ),则原方程可化为(3+a +b i)i=1. 整理得-b +(3+a )i=1. 5分由复数相等的定义,得方程组⎩⎨⎧=+=-.03,1a b⎧-=,3a 4分⎩=.2b 21.分析:本题考查复数的运算及复数相等的概念.解题的关键是搞清x 是实数.应先把复数整理成a +b i(a 、b ∈R )的形式,再由复数相等的充要条件列方程组求值.解:设此方程的实根为x 0,纯虚数m =a i(a ∈R 且a ≠0),则原方程可化为 x 02+(1+2i)x 0-(3a i -1)i=0. 2分 整理得(x 02+x 0+3a )+(2x 0+1)i=0. 8分由复数相等的定义,得方程组⎪⎩⎪⎨⎧=+=++.012,030020x a x x10分解得⎪⎪⎩⎪⎪⎨⎧=-=.121,210a x 所以m =i 121.12分22. [原方程化简为i i z z z-=++1)(2,设z=x+yi(x 、y ∈R),代入上述方程得 x 2+y 2+2xi=1-i,3。

高中数学选修1-2数系的扩充与复数的引入单元测试题

高中数学选修1-2数系的扩充与复数的引入单元测试题

选修1-2 数系的扩充与复数的引入 单元测试一、 选择题(共12题,每题5分,共60分)1、i 是虚数单位,5i 2-i= ( ) A .1+2i B .-1-2i C .1-2i D .-1+2i2、设i z 431-=,i z 322+-=,则21z z +在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、设O 是原点,向量,对应的复数分别为i i 23,32+--,那么向量对应的复数是( )A .-5+5iB .-5-5 iC .5+5 iD .5-5 i 4、复数22i 1+i ⎛⎫ ⎪⎝⎭等于( ) A .4iB .4i -C .2iD .2i - 5、()i i ⋅-21等于( )A .2-2 iB .2+2 iC .-2D .26、复数21(1)i+的值是 ( )A.2iB.2i -C.2D.2- 7、如果复数212bi i-+的实部和虚部互为相反数,那么实数b 的值为 ( )B.2-C.23-D.238、若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i +的点是 ( )A.EB.FC.GD.H9、已知复数z 3i )z =3i ,则z =( )A .32 B. 34 C. 32 D.34 10、设z 的共轭复数是z ,且z +z =4,z ·z =8,则zz 等于 ( ) A.1 B.-i C.±1 D.±i11、ii -210=( ) A .-2+4i B .-2-4i C .2+4i D .2-4i12、下列命题中正确的是( ) A .任意两复数均不能比较大小; B .复数z 是实数的充要条件是z =z ;C .复数z 是纯虚数的充要条件是z +z =0;D .i +1的共轭复数是i -1;二、 填空题(共4题,每题5分,共20分)13、已知复数()i m m z 11-++=,当实数m = 时,z 是实数;当实数m = 时,z 是虚数;当实数m = 时,z 是纯虚数14、已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,则x = ;y =15、已知()2,a i b i a b R i+=+∈,其中i 为虚数单位,则a b += _______ 16、已知复数i i Z +-=11,则4321Z Z Z Z ++++的值是___________ 三、 解答题(共4题,每题10分,共40分)17、设x 、y 为实数,且ii y i x 315211-=-+-,求x +y .18、已知复数i z i z 34,321+=+=(1) 写出这两个复数的共轭复数(2) 求出这两个复数的模19、已知复数z=()i x x x 2562-++-在复平面内对应的点在第三象限,求实数x 的取值范围20、已知R b a i z ∈+=,,1,若432-+=Z z ω,求ω。

青岛青岛超银中学选修1-2第四章《数系的扩充与复数的引入》检测题(答案解析)

青岛青岛超银中学选修1-2第四章《数系的扩充与复数的引入》检测题(答案解析)

一、选择题1.已知复数(1)(31)i i z i--=(i 为虚数单位),则下列说法正确的是( ) A .复数i 在复平面内对应的点落在第二象限 B .42z i =--C .24z z --的虚部为1 D.||z =2.已知复数13aiz i+=+为纯虚数(其中i 为虚数单位),则实数a =( ) A .3- B .3C .13-D .133.i 是虚数单位,若复数()2421iz i +=-在复平面内对应的点在直线20x y a --=上,则a的值等于( ) A .5B .3C .-5D .-34.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --5.下面是关于复数21iz =-的四个命题,其中的真命题为( ) 1:2p z =;22:2i p z =;3:p z 的共轭复数为1i -;4:p z 的虚部为i.A .2p ,3pB .13,p pC .24,p pD .34,p p6.已知i 为虚数单位,a 为实数,复数(2)(1)z a i i =-+在复平面内对应的点为M ,则“1a =”是“点M 在第四象限”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.复数()34z i i =--在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.设i 为虚数单位,则复数1i z =-的模z =( ). A .1BC .2D.9.设()1x yi i i +=+,其中x ,y 是实数,则2x yi +=( ) A .1BCD10.已知a 是实数,1a ii+-是纯虚数,则 a 等于( )A .2-B .1-C .2D .111.复数z 11ii-=+,则|z |=( ) A .1B .2C .2D .2212.若34sin cos 55i z θθ⎛⎫-+- =⎪⎝⎭是纯虚数,则tan 4πθ⎛⎫-= ⎪⎝⎭( )A .17-B .-1C .73-D .-7二、填空题13.已知复数z 满足方程||2z i +=,则|2|z -的最小值为____________.14.下面四个命题:①,a b 是两个相等的实数,则()()a b a b i -++是纯虚数;②任何两个负数不能比较大小;③12,z z C ∈,且22120z z +=,则120z z ==;④两个共轭虚数的差为纯虚数.其中正确的序号为_________;15.i 为虚数单位,若复数22(23)()m m m m i +-+-是纯虚数,则实数m =_______. 16.复数212iz i-=+的虚部为__________. 17.已知复数z x yi =+,且23z -=,则yx的最大值为__________. 18.若复数z 满足2Re 2z z -=+,则32i 2z z --+-的最小值______.19.设m R ∈,若z 是关于x 的方程2210x mx m ++-=的一个虚根,则z 的取值范围是____.20.关于x 的方程()210x px p R -+=∈的两个根12,x x ,若121x x -=,则实数p =__________.三、解答题21.已知复数13z i =+,2132z i =-+. (1)求1z 及2z 并比较大小;(2)设z C ∈,满足条件21z z z ≤≤的点Z 的轨迹是什么图形? 22.试问取何值时,复数(1)是实数? (2)是虚数? (3)是纯虚数? 23.已知复数1()2iaz a =+∈+R . (I )若z ∈R ,求复数z ;(II )若复数z 在复平面内对应的点位于第一象限,求a 的取值范围.24.已知复数1z mi =+(i 是虚数单位,m R ∈),且()·3z i +为纯虚数(z 是z 的共轭复数). (1)设复数121m iz i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第四象限,求实数a 的取值范围.25.已知复数()()2256215z m m m m i =+-+--,(i 为虚数单位,m R ∈)(1)若复数z 在复平面内对应的点位于第一、三象限的角平分线上,求实数M 的值; (2)当实数1m =-时,求1zi+的值. 26.已知复数z 满足()125z i i +=(i 为虚数单位). (1)求复数z ,以及复数z 的实部与虚部; (2)求复数5z z+的模.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据复数乘除运算化简得42z i =-,结合复数相关概念判定A ,B ,D 错误,化简24z z --判定正确. 【详解】 解:(1)(31)(1)(3)42i i z i i i i--==-+=-, 其对应的复平面点为(4,2)-位于第四象限,故A 错误;42z i =+,故B 错误;24222214422221z i i ii z i i i-+-++====-----,虚部为1,故C 正确;||z ==D 错误.故选:C. 【点睛】复数乘除法运算技巧:(1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.2.A解析:A 【分析】化简复数z 的代数形式,根据复数为纯虚数,列出方程组,即可求解. 【详解】 由题意,复数()()()()1313313331010ai i ai a a z i i i i +-++-===+++-, 因为复数z 为纯虚数,可得30310a a +=⎧⎨-≠⎩,解得3a =-.故选:A. 【点睛】本题主要考查了复数的除法运算,以及复数的分类及其应用,着重考查计算能力,属于基础题.3.C解析:C 【分析】利用复数代数形式的乘除运算化简,求出z 的值,然后找到其在复平面对应的点,代入到直线20x y a --=,即可求出a 的值. 【详解】()24242(42)(2)1 2.241ii i i z i i i +++⋅====-+--复数z 在复平面内对应的点的坐标为(-1,2),将其代入直线20x y a --=得, 5.a =- 【点睛】本题考查了复数代数形式的乘除运算,以及复数的几何意义.4.B解析:B 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.5.A解析:A 【解析】 【分析】利用复数的乘除运算化简复数z ,再根据共轭复数、复数的虚部、复数模的计算公式求解即可得答案. 【详解】 ∵z ()()()212111i i i i +===--+1+i , ∴1p :|z |=2p :z 2=2i ,3p :z 的共轭复数为1-i , 4p :z 的虚部为1,∴真命题为p 2,p 3. 故选A . 【点睛】本题考查命题的真假的判断与应用,考查复数运算及复数的模、复数的虚部、共轭复数的概念,是基础题.6.A解析:A 【解析】因为(2i)(1+i)=a+2+(a-2)i z a =-,则点M 在第四象限时,满足2>a>-2,因此可知“1a =”是“点M 在第四象限”的充分而不必要条件,选A7.D解析:D 【分析】直接由复数的乘法运算化简,求出z 对应点的坐标,则答案可求. 【详解】复数()3443z i i i =--=-.对应的点为()4,3-,位于第四象限.故选D. 【点睛】本题考查复数代数形式的乘法运算,考查了复数的代数表示法及其几何意义,是基础题.8.B解析:B 【解析】分析:根据复数模的定义求解.详解:1i z =-,z ==.故选B .点睛:对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi9.D解析:D 【解析】分析:首先应用复数代数形式的乘法运算法则,将()x yi i +求出来,之后应用复数相等的条件,得到,x y 所满足的等量关系式,求得,x y 的值,接着利用复数的模的计算公式求得结果.详解:因为()1,,x yi i i x y +=+是实数,所以21xi yi i +=+,即1y xi i -+=+,所以1,1x y ==-,则212x yi i +=-==,故选D.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则、复数相等的条件以及复数模的计算公式,属于简单题目.10.D解析:D 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:()()()()()()1111112a i i a a ia i i i i ++-+++==--+, 1a ii +-为纯虚数,则:1010a a -=⎧⎨+≠⎩,据此可知1a =. 本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.11.A解析:A 【解析】 【分析】运用复数的除法运算法则,先计算出z 的表达式,然后再计算出z . 【详解】由题意复数z 11i i -=+得221(1)12=1(1)(1)2i i i i i i i i ---+===-++-,所以=1z . 故选A 【点睛】本题考查了运用复数的除法运算求出复数的表达式,并能求出复数的模,需要掌握其计算法则,较为基础.12.D解析:D 【分析】根据复数为纯虚数得到3sin 5θ=,4cos 5θ=-,故3tan 4θ=-,展开计算得到答案.【详解】34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则3sin 5θ=且4cos 5θ≠,故4cos 5θ=-3tan 4θ=-,tan 1tan 741tan πθθθ-⎛⎫-==- ⎪+⎝⎭故选:D 【点睛】本题考查了复数的概念,和差公式,意在考查学生的综合应用能力和计算能力.二、填空题13.【分析】设复数根据复数的几何意义可知的轨迹为圆;再根据点和圆的位置关系及的几何意义即可求得点到圆上距离的最小值即为的最小值【详解】复数满足方程设()则在复平面内轨迹是以为圆心以2为半径的圆;意义为圆2【分析】设复数,z a bi =+根据复数的几何意义可知(),a b 的轨迹为圆;再根据点和圆的位置关系,及|2|z -的几何意义即可求得点到圆上距离的最小值,即为|2|z -的最小值. 【详解】复数z 满足方程||2z i +=, 设,z a bi =+(,a b ∈R ),则|||(1)|2z i a b i +=++=,(),a b 在复平面内轨迹是以()0,1-为圆心,以2为半径的圆;()|2||2|z a bi -=-+=()2,0的距离,由点与圆的几何性质可知,|2|z -22=,2. 【点睛】本题考查了复数几何意义的综合应用,点和圆的位置关系及距离最值的求法,属于中档题.14.④【分析】①采用特殊值法当都是零时来判断②通过负数也是实数来判断③采用特殊值法当时来判断④根据题意是两个共轭虚数则虚部不为零来判断【详解】当时则不是纯虚数故错误②因为负数是实数实数可以比较大小故错误解析:④ 【分析】①采用特殊值法,当,a b 都是零时来判断.②通过负数也是实数来判断.③采用特殊值法,当121,z z i ==时来判断.④根据题意,是两个共轭虚数,则虚部不为零来判断. 【详解】 当0ab 时,则()()0a b a b i -++=,不是纯虚数,故错误.②因为负数是实数,实数可以比较大小,故错误.③当121,z z i ==时,符合12,z z C ∈,且22120z z +=,而120z z ==不成立,故错误.④因为是两个共轭虚数,所以设()0z a bi b =+≠ ,其共轭复数是()0z a bi b =-≠,则()20z z bi b -=≠所以是纯虚数,故正确.故答案为:④ 【点睛】本题主要考查了复数的概念,还考查了理解辨析的能力,属于中档题.15.-3【解析】分析:利用纯虚数的定义直接求解详解:∵复数是纯虚数解得故答案为-3点睛:本题考实数值的求法是基础题解题时要认真审题注意纯虚数的定义的合理运用解析:-3 【解析】分析:利用纯虚数的定义直接求解.详解:∵复数()()2223m m m m i +-+-是纯虚数,22230m m m m ⎧+-∴⎨-≠⎩= ,解得3m =- . 故答案为-3.点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用.16.【解析】分析:利用复数除法的运算法则化简复数为的形式即可得到复数虚部详解:则复数的虚部故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误 解析:1-【解析】分析:利用复数除法的运算法则化简复数212iz i-=+为a bi +的形式,即可得到复数虚部. 详解:()()()()212251212125i i i iz i i i i ----====-++-,则复数z 的虚部1-,故答案为1-. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.【分析】根据复数z 的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z 的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为:【点睛】 解析:【分析】根据复数z 的几何意义以及yx的几何意义,由图象得出最大值. 【详解】复数z x yi =+且23z -=,复数z 的几何意义是复平面内以点(2,0)为圆心,3为半径的圆22(2)3x y -+=.yx的几何意义是圆上的点与坐标原点连线的斜率由图可知:max331y x ⎛⎫== ⎪⎝⎭ 即yx3 3【点睛】本题主要考查了复数的几何意义的应用,属于中档题.18.【分析】设复数由可得即将转化为和到抛物线动点距离和根据抛物线性质即可求得最小值【详解】设复数即整理得:是以焦点为的抛物线化简为:转化为和到抛物线动点距离和如图由过作垂线交抛物线准线于点交抛物线于点根 解析:5【分析】设复数z x yi =+,由2Re 2z z -=+可得222(2)(2)x y x -+=+,即28y x =.将32i 2z z --+-转化为()3,2A 和()2,0到抛物线动点P 距离和,根据抛物线性质即可求得32i 2z z --+-最小值. 【详解】 设复数z x yi =+ 2Re 2z z -=+∴ |2||2|x yi x +-=+ 即|2||2|x yi x -+=+ ∴ 222(2)(2)x y x -+=+整理得:28y x = 是以(2,0)F 焦点为的抛物线.32i 2z z --+-化简为:()32i 2z z -++-转化为()3,2A 和()2,0到抛物线动点P 距离和.如图.由过A 作AB 垂线,交抛物线准线于点B .交抛物线于点1P根据抛物线定义可知,11PF PB = , 根据点到直线,垂线段最短,可得:5AB =∴ 11||||5PA PF PA PF AB +≥+== ∴ 32i 2z z --+-的最小值为:5.故答案为:5. 【点睛】本题考查与复数相关的点的轨迹问题,解本题的关键在于确定出复数对应的点的轨迹,利用数形结合思想求解,考查分析问题的和解决问题的能力.19.【解析】【分析】设z=a+bi(ab ∈R)则也是此方程的一个虚根由方程有虚根可知判别式为负数据此可求出m 的范围再利用根与系数的关系可得从而求出结果【详解】设z=a+bi(ab ∈R)则也是此方程的一个解析:33⎛⎫∞ ⎪ ⎪⎝⎭【解析】设z =a +bi ,(a ,b ∈R ),则z a bi =-也是此方程的一个虚根,由方程有虚根可知,判别式为负数,据此可求出m 的范围,再利用根与系数的关系可得||z =. 【详解】设z =a +bi ,(a ,b ∈R ),则z a bi =-也是此方程的一个虚根,z 是关于x 的方程x 2+mx +m 2−1=0的一个虚根,可得()22410m m ∆=--<,即243m >,则由根与系数的关系,2221z z a b m ⋅=+=-,则||z =>所以z 的取值范围是:⎫∞⎪⎪⎝⎭.故答案为⎫∞⎪⎪⎝⎭. 【点睛】本题考查实系数多项式虚根成对定理,以及复数的模的求解,属中档题. 20.【解析】分析:根据所给的方程当判别式不小于0时和小于0时用求根公式表示出两个根的差根据差的绝对值的值做出字母p 的值详解:当即或由求根公式得得当即由求根公式得|得综上所述或故答案为点睛:本题考查一元二解析:【解析】分析:根据所给的方程,当判别式不小于0时和小于0时,用求根公式表示出两个根的差,根据差的绝对值的值做出字母p 的值.详解:当240p =-≥ ,即2p ≥或2p ≤- ,由求根公式得121x x -== ,得p =当240p =-< ,即22p <<- ,由求根公式得|12|1x x -==,得p =综上所述,p =或p =.故答案为点睛:本题考查一元二次方程根与系数的关系,本题解题的关键是对于判别式与0的关系的讨论,方程有实根和没有实根时,两个根的表示形式不同,本题是一个易错题. 三、解答题21.(1) 1z =2, 2z =1, 12z z > (2) 以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周)(1)利用复数的模的计算公式求出1z 、2z 即可解答. (2)根据z 的几何意义及(1)中所求的模1z 、2z 可知z 的轨迹. 【详解】 解:(1)()2213312z i =+=+=, 22213122z ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴12z z >.(2)由21z z z ≤≤及(1)知12z ≤≤.因为z 的几何意义就是复数z 对应的点到原点的距离,所以1z ≥表示1z =所表示的圆外部所有点组成的集合,2z ≤表示2z =所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.【点睛】本题考查复数的模及其几何意义,属于基础题.22.(1)或(2)且(3) 【解析】分析:⑴由定义可知当时即可 ⑵由虚数定义可知时满足题意 ⑶满足条件, 详解:(1)由条件,解得或 (2)由条件,解得且 (3)由条件,解得点睛:本题考查了在复数域内实数、虚数、纯虚数的概念来求值,只要掌握概念即可得到满足题意得算式,求出结果.23.(1)2z =;(2)()0,5.【解析】试题分析:(1)由题意计算可得2555a a z i -=+,若z R ∈,则5a =,2z =. (2)结合(1)的计算结果得到关于实数a 的不等式,求解不等式可得a 的取值范围为()0,5. 试题(1)()225555a i a a z i i --=+=+,若z R ∈,则505a -=,∴5a =,∴2z =. (2)若z 在复平面内对应的点位于第一象限,则205a >且505a ->, 解得05a <<,即a 的取值范围为()0,5.24.(I )262;(Ⅱ)133a -<<. 【详解】 分析:根据复数的概念及其分类,求解13z i =-.(1)求得15122z i =--,再根据复数的模的计算公式,即可求解1z ; (2)由(1)可求得2(3)(31)10a a i z ++-=,根据复数2z 对应的点位于第一象限,列出方程组,即可求解实数a 的取值范围. 详解:∵z=1+mi ,∴. ∴*(3)(1)(3)(3)(13)z i mi i m m i +=-+=++-又∵为纯虚数, ∴,解得m=﹣3.∴z=1﹣3i .(Ⅰ), ∴;(Ⅱ)∵z=1﹣3i ,∴. 又∵复数z 2所对应的点在第1象限, ∴,.30310a a +>⎧⎨->⎩∴.13a > 点睛:复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.25.(1) 3m =-【解析】试题分析:(1)由题意得到关于实数,m 的方程,解方程可得3m =- ;(2)首先求得复数z 的值为212z i =- ,然后利用复数模的运算法则可得1z i+. 试题(1)因为复数z 所对应的点在一、三象限的角平分线上,所以2256215m m m m ++=--,解得3m =-.(2)当实数1m =-时,()()156+1215212z i i =-++-=-.212212111i z i i i i --====+++所以1z i+26.(1)2z i =+,实部为2,虚部为1;(2).【解析】 试题分析:由复数的运算法则知512i z i=+,再由除法法则可得结论;(2)可先计算出542z i z+=-,然后由模的定义得结论. 试题(1)55(12)(12)212(12)(12)i i i z i i i i i i -===-=+++-,实部为2,虚部为1;(2)552422z i i z i +=-+=-+,∴5||z z+==. 考点:复数的运算,复数的概念.。

高二数学选修1-2《数系的扩充与复数的引入》测试题

高二数学选修1-2《数系的扩充与复数的引入》测试题

高二数学选修1-2《数系的扩充与复数的引入》测试题一、 选择题(每题6分,共60分)1、复数911⎪⎭⎫⎝⎛+-i i 的值等于( )(A )22(B )2 (C )i (D )i - 2、已知集合M={1,i m m m m )65()13(22--+--},N ={1,3},M ∩N ={1,3},则实数m 的值为( )(A ) 4 (B )-1 (C )4或-1 (D )1或63、设复数,1-≠Z 则1=Z 是11+-Z Z 是纯虚数的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分又不必要条件4、复数Z 与点Z 对应,21,Z Z 为两个给定的复数,21Z Z ≠,则21Z Z Z Z -=-决定的Z 的轨迹是( )(A )过21,Z Z 的直线 (B )线段21Z Z 的中垂线 (C )双曲线的一支 (D )以Z 21,Z 为端点的圆 5、设复数z 满足条件,1=z 那么i z ++22的最大值是( ) (A )3 (B )4 (C )221+ (D )326、复平面上的正方形的三个顶点表示的复数有三个为,21,2,21i i i --+-+那么第四 个顶点对应的复数是( )(A )i 21- (B )i +2 (C )i -2 (D )i 21+- 7、集合{Z ︱Z =Z n i i n n ∈+-,},用列举法表示该集合,这个集合是( )A {0,2,-2} (B ){0,2} (C ){0,2,-2,2i }(D ){0,2,-2,2i ,-2i }8、,,21C Z Z ∈,2,3,222121===+Z Z Z Z 则=-21Z Z ( ) (A )2 (B )21(C )2 (D )229、对于两个复数i 2321+-=α,i 2321--=β,有下列四个结论:①1=αβ;②1=βα;③1=βα;④133=+βα,其中正确的结论的个数为( )(A )1 (B )2 (C )3 (D )410、1,bi a +,ai b +是某等比数列的连续三项,则b a ,的值分别为( ) (A )21,23±=±=b a (B )23,21=-=b a (C )21,23=±=b a (D )23,21-=-=b a 二、填空题(每题4分,共16分)11、计算:610)21()2321(i i --+-=12、已知复数z 1=3+4i, z 2=t+i,,且z 1·2z 是实数,则实数t 等于13、如果复数z 满足12z i +-=,则2z i -+的最大值是 14、已知虚数(2)x yi -+(,x y R ∈)则yx的最大值是 ,11y x ++的最小值为 .高二数学选修1-2《数系的扩充与复数的引入》测试题一、选择题(每题6分,共60分)二、填空题(每题4分,共16分)11、12、 13、 14、三、解答题(共74分)密封线15、(10分)设复数i m m m m Z )23()22lg(22+++--=,试求m 取何值时(1)Z 是实数; (2)Z 是纯虚数; (3)Z 对应的点位于复平面的第一象限16、(12分)在复数范围内解方程ii i z z z +-=++23)(2(i 为虚数单位)17、(12分)设,C z ∈满足下列条件的复数z 所对应的点z 的集合表示什么图形 .12141log 21->--+-z z18、(12分)已知复数1Z ,2Z 满足2122212510Z Z Z Z =+,且212Z Z +为纯虚数,求证:213Z Z - 为实数19、(14分)已知1221++=x i x Z ,i a x Z )(22+=对于任意实数x ,都有21Z Z >恒成立,试求实数a 的取值范围20、(14分)设关于x 的方程0)2()(tan 2=+-+-i x i x θ,若方程有实数根,求锐角θ和实数根高二数学选修1-2《数系的扩充与复数的引入》测试题参考答案一、选择题(每题6分,共60分)二、填空题(每题4分,共16分) 11、i 22321-+-12、43 13、213+ 14、3 , 6213-三、解答题(共74分)15、(10分)设复数i m m m m Z )23()22lg(22+++--=,试求m 取何值时(1)Z 是实数; (2)Z 是纯虚数; (3)Z 对应的点位于复平面的第一象限解:是实数时,或-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修1-2《数系的扩充与复数的引入》测试题
(满分:150分 时间120分钟)
班别 姓名 分数
一.
选择题
1.0a =是复数(),a bi a b R +∈为纯虚数的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D. 既不充分也不必要条件
2.设1234,23z i z i =-=-+,则12z z +在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.设O 是坐标原点,向量,OA OB 对应的复数分别为23,32i i --+,那么向量B A 对应的复数为( )
A. 55i -+
B. 55i --
C.55i +
D.55i - 4.()2
1i i -⋅=( )
A.22i -
B.22i +
C. 2-
D.2
5.2
11i ⎛
⎫+= ⎪⎝
⎭( )
A.2i
B.2i -
C. 2
D.2- 6.复数
212bi i
-+的实部和虚部互为相反数,那么实数b 的值为( )
2- C.23
-
D.
23
7.若复数z 满足方程022
=+z ,则3z 的值为( )
A.22±
B. 22-
C. i 22-
D. i 22± 8.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )
A ()1,5
B ()1,3
C (
D (
9.如果复数2
()(1)m i m i ++是实数,则实数m =( )
A .1
B .1-
C .
10.已知复数z 满足
)
33i z i =,则z =( )
A .3
2
2-
B. 344i -
C. 322+
D.344
+ 11.复数9
11⎪⎭

⎝⎛+-i i 的值等于( )
(A )
2
2 (B )2 (C )i (D )i -
12.a 为正实数,i 为虚数单位,
2a i i
+=,则a =( )
A .2
B
C .1
二.填空题(每小题5分,共20分) 13.复数
21i
+的实部为 ,虚部为 .
14.()()15812i i +--的值为 .
15.若1z =+
,则22z z -的值为 .
16.若复数z 满足11z i z
-=+,则1z += .
三.解答题.
17.(10分)已知,x y R ∈,且511213x y i
i
i
+
=
+++,求,x y 的值
18.(12分)设复数z 满足1z =,且()34i z +⋅是纯虚数,求z -
.
19.(12分)已知复数1z 满足()()1211z i i -+=-,复数2z 的虚部为2,且12z z ⋅是实数,求2z .
20.(12分)已知复数z 满足2||=z ,2z 的虚部为 2 ,
(1)求z ;
(2)设z ,2
z ,2
z z -在复平面对应的点分别为A ,B ,C ,求ABC ∆的面积.
21.(12分)已知复数()2622(1)1m z i m i i
=+----.当实数m 取什么值时,复数z 是
(1) 零. (2) 虚数. (3) 纯虚数.
(4) 复平面内第二、四象限角平分线上的点对应的复数.
22.(12分)设1z 是虚数,211
1z z z =+
是实数,且211z -≤≤.
(1)求1z 的值以及1z 的实部的取值范围. (2)若11
11z z ω-=+,求证ω为纯虚数.。

相关文档
最新文档