2014-2015学年高三数学寒假作业(四)

合集下载

2014—2015学年深圳高三第四次阶段性考试数学试卷(理)

2014—2015学年深圳高三第四次阶段性考试数学试卷(理)

2014—2015学年深圳高三第四次阶段性考试数学试题(理)命题人: 时间:2014.12.10一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,l m 是两条不同的直线,α是一个平面,且l ∥α,则下列命题正确的是( ) (A )若l ∥m ,则m ∥α (B )若m ∥α,则l ∥m (C )若l m ⊥,则m α⊥ (D )若m α⊥,则l m ⊥2.设n S 为公差不为零的等差数列{}n a 的前n 项和,若893a S =,则=5153a S ( ) A.15 B.17 C.19 D.21 3. 平面向量a 与b 的夹角为60°)AC.4D.12 4.已知全集为R ,集合A={1|()12xx ≤},B={|2x x ≥},A ∩(C R B )= A .[0,2)B .[0,2]C .(1,2)D .(1,2]5.若复数z 满足i 2)i 1(-=+z ,则=+i zA .21B .22C .2D .26.若某几何体的三视图如图所示,则此几何体的直观图是( )7.函数sin(),0,02y x πωϕωϕ=+><<() 在一个周期内的图象如(第3题图)A BC D图所示, A ,06π⎛⎫-⎪⎝⎭,B 在y 轴上,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π68.一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为A .3B .25 C .2 D .279.函数()sin ln f x x x =⋅的部分图象为10.三棱锥S —ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:①异面直线SB 与AC 所成的角为90°. ②直线SB ⊥平面ABC ; ③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是12a .其中正确的个数是( ). A.1 B.2 C.3 D.411已知H 是球O 的直径AB 上一点,AH:HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为A .53π B .4πC .92π D .14435π12.设()ln f x x =,若函数()()g x f x ax =-在区间(]0,3上有三个零点,则实数a 的取值范围是A.10,e ⎛⎫ ⎪⎝⎭B.ln 3,3e ⎛⎫⎪⎝⎭C.ln 30,3⎛⎤⎥⎝⎦D.ln 31,3e ⎡⎫⎪⎢⎣⎭ 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知在正方体1111ABCD A BC D -中,点E 是棱11A B 的中点,则直线AE 与平面11BDD B 所成角的正切值是 . 14.己知x>0,y>0,且 115x y x y+++=,则x+y 的最大值是______. 15. 设,x y 满足约束条件22002x x y e y x +≥⎧⎪-≥⎨⎪≤≤⎩,则(,)M x y 所在平面区域的面积为___________.16已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取得极大值,则a 的取值范围是________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)已知数列{}n a 的前n 项和为n S ,且*21()n n S a n N =-∈. (1)求数列{}n a 的通项公式;(2)设131,log n n n b c a ==,求数列{}n c 的前n 项和n T .18(本小题满分12分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且△ABC 的面积为S(1)若c =2a ,求角A ,B ,C 的大小;(2)若a =2,且43A ππ≤≤,求边c 的取值范围.19(本小题满分12分)在直三棱柱ABC -A 1B 1C 1中,已知AB=5,AC=4,BC=3,AA 1=4,点D在棱AB 上.(1) 若D 是AB 中点,求证:AC 1∥平面B 1CD ;(2)当13BD AB =时,求二面角1B CD B --的余弦值.20(本小题满分12分) 己知向量23sin,1,cos ,cos 444x x x m n ⎛⎫⎛⎫== ⎪ ⎪⎭⎝⎭,记()f x m n =⋅. (I)若()1f x =,求2cos 3x π⎛⎫-⎪⎝⎭的值; ( II)在锐角∆ABC 申,角A ,B ,C 的对边分别是a ,b ,c ,且满足((2)cos cos a c B b C -=, 求函数()f A 的取值范围.21(本小题满分12分)如图,设四棱锥S ABCD -的底面为菱形,且∠60ABC =,2AB SC ==,SA SB ==(Ⅰ)求证:平面SAB ⊥平面ABCD ;(Ⅱ)求平面ADS 与平面ABS 所夹角的余弦值。

【名师原创 全国通用】2014-2015学年高三寒假作业 数学(二)Word版含答案

【名师原创 全国通用】2014-2015学年高三寒假作业 数学(二)Word版含答案

【原创】高三数学寒假作业(二)一、选择题,每小题只有一项是正确的。

1.设集合{}{}212,log 2A x x B x x =-≤=<,则A B ⋃=A. []1,3-B. [)1,4-C. (]0,3D. (),4-∞ 2.已知函数sin ,0,()(1),0,x x f x f x x π≤⎧=⎨->⎩那么)32(f 的值为 A. 21- B. 23- C. 21 D. 23 3.已知函数f (x)=267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩ 则 f (0)+f (-1)= ( ) (A) 9 (B)7110 (C) 3 (D) 1110 4.已知函数()22x f x =-,则函数|()|y f x =的图像可能是………………………………..( )5.若互不相等的实数c b a ,,成等差数列,b a c ,,成等比数列,且103=++c b a ,则=a ( )A. 4B. 2C. -2D. -46.下列各式中值为的是( )A . sin45°cos15°+cos45°sin15°B . sin45°cos15°﹣cos45°sin15°C . cos75°cos30°+sin75°sin30°D .7.设实数x ,y 满足条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,00820104y x y x y x ,若目标函数z =ax +by(a >0,b >0)的最大值为12,则23a b +的最小值为()8.已知函数()f x 满足1()()f x f x =, 当[]1,3x ∈时,()ln f x x =,若在区间1,33⎡⎤⎢⎥⎣⎦内,曲线()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是 ( ) A.10,e ⎛⎫ ⎪⎝⎭ B.10,2e ⎛⎫ ⎪⎝⎭ C.ln 31,3e ⎡⎫⎪⎢⎣⎭ D.ln 31,32e ⎡⎫⎪⎢⎣⎭9.圆心在直线y =x 上,经过原点,且在x 轴上截得弦长为2的圆的方程为() A .(x -1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2D .(x -1)2+(y +1)2=或(x +1)2+(y -1)2=2二、填空题10.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是__________ .11.理:已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N -==,则=N M .12.已知等差数列{}n a 的前n 项和为n S ,且1533a a a +=,1014a =,则12S =13.抛物线241x y -=上的动点M 到两定点(0,-1)、(1,-3)的距离之和的最小值为三、计算题14.(本小题满分13分) 已知函数)12(log )(21--=x ax x f (a 为常数).(1)若常数2a <且0a ≠,求()f x 的定义域;(2)若()f x 在区间(2,4)上是减函数,求a 的取值范围.15.(本小题满分12分)已知直三棱柱111C B A ABC -中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =1AA ,D 、E 、F 分别为A B 1、C C 1、BC 的中点.(1)求证:DE ∥平面ABC ;(2)求证:F B 1⊥平面AEF ;(3)求二面角F AE B --1的余弦值.16.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的离心率为2,短轴端点到焦点的距离为2。

2015届高三数学寒假作业本答案

2015届高三数学寒假作业本答案

2015届高三数学寒假作业本答案无忧考网为大家整理的2015届高三数学寒假作业本答案文章,供大家学习参考!更多最新信息请点击高三考试网一、选择题,每小题只有一项是正确的。

1.已知集合,则( RA)∩B = ( )A. B. C. D.2.R上的奇函数满足,当时,,则A. B. C. D.3.如果对于正数有,那么 ( )A.1B.10C.D.4.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A. 1或�B. 1C. �D. �25.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是 ()A.2B.sin 2C.2sin 1D.2sin 16.将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. y=sin(2x� )B. y=sin(2x� )C. y=sin( x� )D. y=sin( x� )7.如图,菱形的边长为, , 为的中点,若为菱形内任意一点(含边界),则的值为A. B. C. D.98.设是正数,且,,,则A. B.C. D.9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的值为( )A. B. C. D.二、填空题10.若某程序框图如图所示,则该程序运行后输出的值是.11.已知α,β为平面,m,n为直线,下列命题:①若m∥n,n∥α,则m∥α; ②若m⊥α,m⊥β,则α∥β;③若α∩β=n,m∥α, m∥β,则m∥n; ④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的有▲ .(填写所有正确命题的序号)12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA= ,b=5,则△ABC的面积为.13.(5分)(2011•陕西)设f(x)= 若f(f(1))=1,则a=.三、计算题14.(本题满分14分)本大题共有2小题,第1小题7分,第2小题7分。

高三数学寒假作业四(含答案)

高三数学寒假作业四(含答案)

高三数学寒假作业四一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程)1.设集合2{}1A=﹣,,集合}2{1B =,,则A B ⋃=_____. 2.“1x >”是“21x ≥”的_________________条件.3.直线10x +-=的倾斜角为_______________.4.双曲线22143x y -=的渐近线方程是_________________. 5.抛物线2y =上的点AA 到其焦点F 的距离为_____. 6.已知10sin ,sin 263ππαα⎛⎫<<-= ⎪⎝⎭,则2sin 23απ⎛⎫+ ⎪⎝⎭的值为_____. 7.已知n S 是等差数列{}n a 的前n 项和,若36410S S =,=,则9S =_____. 8.如图,已知棱长为a 的正方体ABCD MNPQ -的体积为1V ,以,,,B D M P 为顶点的三棱锥P BDM -的体积为2V ,则21V V =________. 9.若x ,y 满足约束条件10,{0,40,x x y x y -≥-≤+-≤则y x 的最大值为 . 10.已知椭圆()222210x y a b a b+=>>的左焦点为()1,0F c -,右焦点为()20F c ,.若椭圆上存在一点P ,线段2PF 与圆2224c x y +=相切于点E ,且E 为线段2PF 中点,则该椭圆的离心率为_____.11.已知正实数,x y 满足x y xy +=,则1911y x y +--最小值是_____.12.已知1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,且AB =||PA PB +的最小值是___________.13.已知函数()[](]2,0,1,1,3x x x f x e x -⎧∈⎪=⎨∈⎪⎩,其中e 为自然对数的底数,若存在实数12x x ,满足1203x x ≤≤<,且12()()f x f x =,则212x x ﹣的取值范围为_____.14.已知函数()x f x ae lnx lna +=﹣,其中e 为自然对数的底数,若对任意正实数x ,都有()0f x ≥,则实数a 的最小值为_____.二、解答题(本大题共6小题,共计90分.解答应写出文字说明,证明过程或演算步骤.) 15.如图,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,点O 为对角线BD 的中点,点E ,F 分别为棱PC ,PD 的中点,已知PA⊥AB,PA⊥AD.(1)求证:直线PB∥平面OEF ;(2)求证:平面OEF⊥平面ABCD .16.在三角形ABC 中,角A,B,C 的对边分别为a,b,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b = (1)求sin B 的值; (2)求边c 的长.17.已知圆C 经过点()()2,0,2,0A B -,且圆心C 在直线y x =上,又直线:1l y kx =+与圆C 交于P,Q 两点.(1)求圆C 的方程;(2)若2OP OQ ⋅=-,求实数k 的值;(3)过点()0,1作直线1l l ⊥,且1l 交圆C 于M ,N 两点,求四边形PMQN 的面积的最大值.18.已知圆()222:0O x y r r +=>与椭圆()2222:10x y C a b a b +=>>相交于点M (0,1),N (0,-1),且椭圆的离心率为2. (1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 交圆O 和椭圆C 分别于A ,B 两点.①若23MB MA =,求直线l 的方程;②设直线NA 的斜率为1k ,直线NB 的斜率为2k ,问:21k k 是否为定值? 如果是,求出定值;如果不是,说明理由.19.巳知函数2()22ln f x x ax a x =--,22()ln 2g x x a =+,其中0,x a R >∈.(1)若1x =是函数()f x 的极值点,求a 的值;(2)若()f x 在区间(2,)+∞上单调递增,求a 的取值范围;(3)记()()()F x f x g x =+,求证:1()2F x ≥.20.已知数列{}n a 与{}n b 的前n 项和分别为n A 和n B ,且对任意()*112,n n n n n N a a b b ++∈--=恒成立. (1)若21,2n A n b ==,求n B ;(2)若对任意*n ∈N ,都有n n a B =及31241223341 (3)n n n b b b b a a a a a a a a ++++++<成立,求正实数1b 的取值范围.高三数学寒假作业四参考答案一、填空题1.设集合2{}1A=﹣,,集合}2{1B =,,则A B ⋃=_____. 【答案】21}2{﹣,,.. 【解析】【分析】根据并集的定义运算即可.【详解】解:{},{},2,11,2A B =-=1{}2,,2A B ∴-=.故答案为: 1{22}-,,. 【点睛】本题考查了列举法的定义,并集的运算,考查了计算能力,属于基础题.2.“1x >”是“21x ≥”的_____条件.【答案】充分不必要.【解析】【分析】利用充分性,必要性的判定即可.【详解】解:由“1x >”可以推出“21x ≥”,所以具有充分性;由“21x ≥”可以推出“11x x <->或”,推导不出“1x >”,所以不具有必要性;故“1x >”是“21x ≥”的充分不必要条件.故答案:充分不必要.【点睛】本题考查了条件的充分性与必要性,属于基础题.3.直线10x +-=的倾斜角为_______________.【答案】150【解析】【分析】由直线10x +-=的斜率为k =,得到00tan [0,180)αα=∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为k =,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=, 即换线的倾斜角为0150. 【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.双曲线22143x y -=的渐近线方程是_________________.【答案】y x = 【解析】【分析】 根据双曲线的渐近线方程的求法,求得双曲线的渐近线.【详解】双曲线22221x y a b -=的渐近线为b y x a =±,所以双曲线22143x y -=的渐近线方程是2y x =±.故答案为2y x =± 【点睛】本小题主要考查双曲线渐近线方程的求法,属于基础题.5.抛物线2y =上的点A A 到其焦点F 的距离为_____.【答案】【解析】【分析】求出抛物线的准线方程,利用抛物线的定义求解即可.【详解】解:抛物线2y =的准线方程为:x =,抛物线2y =上的点A则A 到其焦点F 距离为: =故答案为:【点睛】本题考查抛物线的简单性质的应用,是基本知识的考查,属于基础题.6.已知10sin ,sin 263ππαα⎛⎫<<-= ⎪⎝⎭,则2sin 23απ⎛⎫+ ⎪⎝⎭的值为_____.【答案】9-. 【解析】【分析】 由已知结合同角平方关系可求cos()6πα-,然后结合诱导公式可求1sin()3απ+,1cos()3απ+,最后再用二倍角的正弦公式可求 【详解】解:10,sin 263ππαα⎛⎫<<-= ⎪⎝⎭,cos 63πα⎛⎫∴-= ⎪⎝⎭,11sin sin cos 36263ππαπαπα⎛⎫⎛⎫⎛⎫∴+=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111cos cos sin 36263ππαπαπα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则2111sin 22cos sin 2333339απαπαπ⎛⎫⎛⎫⎛⎫⎛⎫+=++=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为: 9-【点睛】本题主要考查了诱导公式,二倍角正弦公式在三角函数求值中的应用,属于基础试题.7.已知n S 是等差数列{}n a 的前n 项和,若36410S S =,=,则9S =_____. 【答案】18.【解析】【分析】等差数列{}n a 中, 36396,S S S S S --,成等差数列,代入即可求解.【详解】解:等差数列{}n a 中,36396,S S S S S --,成等差数列, 92104410S ∴-+-()=则918S =.故答案为:18【点睛】本题主要考查了等差数列的性质的简单应用,属于基础题. 8.如图,已知棱长为a 的正方体ABCD MNPQ -的体积为1V ,以,,,B D M P 为顶点的三棱锥P BDM -的体积为2V ,则21V V =________.【答案】13【解析】【分析】先由题意求出正方体的体积1V ,然后运用1V 减去四个三棱锥的体积得到三棱锥P BDM -的体积为2V ,然后可得所求比值.【详解】依题意得正方体的体积31V a =,三棱锥A BDM -的体积21132A BDM M ABD V V a a --==⨯⨯ 36a =, 又三棱锥P BDM -为正四面体, 由对称性知3332114463A BDM a V V V a a -=-=-⨯=,所以2113V V =. 故答案为13. 【点睛】求几何体的体积时首先要确定几何体的形状,然后再求出体积,对于一些不规则的几何体,可采用分割或补形的方法转化为规则几何体的体积后进行求解,考查转化思想方法的运用,属于基础题.9.若x ,y 满足约束条件10,{0,40,x x y x y -≥-≤+-≤则yx的最大值 .【答案】3 【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法【此处有视频,请去附件查看】10.已知椭圆()222210x y a b a b +=>>的左焦点为()1,0F c -,右焦点为()20F c,.若椭圆上存在一点P ,线段2PF 与圆2224c x y +=相切于点E ,且E 为线段2PF 中点,则该椭圆的离心率为_____.1. 【解析】 【分析】连接OE ,1F P .利用切线的性质可得2OE PF ⊥.利用三角形中位线定理可得:1122c OE PF ==,1//OE PF .再利用勾股定理与离心率计算公式即可得出. 【详解】解:如图所示,连接1OE F P ,.线段2PF 与圆2224c x y +=相切于点E ,2OE PF ∴⊥.又O 为12F F 的中点,111//22c OE OE PF ∴=PF ,.12122290PF c PF a c F PF OEF ∴-∠∠︒=,=,==.()()22222c a c c ∴=+-, 化为:2220,01e e e +-<<=解得1e =.1.【点睛】本题考查了椭圆的标准方程及其性质、直线与圆相切性质、三角形中位线定理、勾股定理,考查了推理能力与计算能力,属于难题. 11.已知正实数,x y 满足x y xy +=,则1911yx y +--的最小值是_____. 【答案】15. 【解析】 【分析】由已知可得,(1)(1)1x y --=,而191991111y x y x y +=++----,利用基本不等式即可求解. 【详解】解:正实数x ,y 满足x y xy +=,01yx y ∴=>-, 1y ∴>,同理1x >, (1)(1)1x y ∴--=,则191999151111y x y x y +=++=----…, 当且仅当1911x y =--且(1)(1)1x y --=,即43x =,4y =时取得等号, 故答案为:15.【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑,属于基础题. 12.已知1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,且AB =||PA PB +的最小值是___________.【答案】2 【解析】 【分析】由两直线方程可知两直线垂直,且分别过定点(3,1)、(1,3),所以点P 的轨迹为以两定点连线段为直径的圆,方程为(x ﹣2)2+(y ﹣2)2=2.因为要求||PA PB +的最小值,可作垂直线段CD ⊥AB ,根据向量的运算可得,||=2PA PB PD +,根据条件求得CD 的长度为1,所以点D 的轨迹为()221)11x y +++=(.根据两圆方程可知点P 的轨迹与点D 的轨迹外离,故||PA PB +的最小值为两圆的圆心距减去两圆的半径.【详解】∵l 1:mx ﹣y ﹣3m +1=0与l 2:x +my ﹣3m ﹣1=0, ∴l 1⊥l 2,l 1过定点(3,1),l 2过定点(1,3),∴点P 的轨迹方程为圆(x ﹣2)2+(y ﹣2)2=2,作垂直线段CD ⊥AB ,CD=1, 所以点D 的轨迹为()221)11x y +++=(,则||=|22|PA PB PC CA PC CB PC CD PD ++++=+=, 因为圆P和圆D 的1=>所以两圆外离,所以|PD |最小值为11=, 所以||PA PB +的最小值为﹣2. 故答案为42﹣2.【点睛】平面向量具有代数与几何双重身份,是沟通代数与几何的桥梁.平面向量模的最值问题一般以选择题或填空题的形式出现.解决此类问题关键在于正确运用相关知识,进行合理转化,常用方法有(1)利用向量基本知识转化为函数最值问题;(2)利用坐标进行转化,结合图形求最值;(3)利用向量模的性质求解;(4)利用几何意义,数形结合求解. 13.已知函数()[](]2,0,1,1,3x x x f x e x -⎧∈⎪=⎨∈⎪⎩,其中e 为自然对数的底数,若存在实数12x x ,满足1203x x ≤≤<,且12()()f x f x =,则212x x ﹣的取值范围为_____. 【答案】2]1ln ∞-(-,. 【解析】 【分析】先讨论1x ,2x ,在同一区间内的最大值,最小值,再讨论在不同区间时的情况,利用导数求出最值. 【详解】解:记212m x x =-,①当1201x x 剟? 时,11()f x x =,22()f x x =,所以12x x =,则2m x =-, 故其最大值在20x =时取得,为0,其最小值在21x =时取得,为1-;②当1213x x <剟时,121()x f x e -=,222()x f x e -=,所以1222x x e e --=,即12x x =,则2m x =-, 故其最大值()11max m m <=-,其最小值()33min m m =-…;③当12013x x <剟? 时,11()f x x =,222()x f x e -=,所以221x x e -=, 所以212x lnx -=,即212x lnx =+,故1122m lnx x =+-, 设()22g x lnx x =+-,[0x ∈,1],则1()2g x x '=-,令()0g x '=,得12x =, 当1(0,)2x ∈时,()0g x '>,()g x 单调递增, 当1(2x ∈,1)时,()0g x '<,()g x 单调递减,所以当0x →时,()g x 的值无限趋于-∞; 所以当12x =时,()g x 取极大值也是最大值,即11()2112122max m g ln ln ==+-=->-,所以212x x -最大值为12ln -.故答案为:(-∞,12]ln -.【点睛】本题考查分段函数的应用,结合导数知识,关键理清不同区间上表达式的形式,求出对应的最值,属于中档题.14.已知函数()xf x ae lnx lna +=﹣,其中e 为自然对数的底数,若对任意正实数x ,都有()0f x ≥,则实数a 的最小值为_____.【答案】1e. 【解析】 【分析】根据题意得x ae lnx lna --…恒成立令()x g x ae lnx =-,(0)x >,min ()g x lna ≥-,对()g x 求导通过单调性分析最小值,得000()()x min g x g x ae lnx ==-,所以00xae lnx lna -≥-,()00000120x x u x e x lnx x e=--≥,求出0x 的取值范围,进而求出a 取值范围.【详解】解:若对任意正实数x 都有()0f x …, 则0x ae lnx lna -+…,则x ae lnx lna --…恒成立, 令()x g x ae lnx =-,(0)x >,min ()g x lna ≥-,11()(0)x xaxe g x ae x x x-'=-=>,当0a …时,()0g x '<,()g x 在(0,)+∞上单调递减,()g x 无最小值,不符合题意,当0a >时,令()1x h x axe =-,在(0,)+∞上是增函数, 所以存在0(0,)x ∈+∞,使得0010ax e -=, 001x a x e ∴=,00)lna lnx x =-- 当0(0,)x x ∈时,()0h x <,()0g x '<,()g x 单调递减, 当0(x x ∈,)+∞时,()0h x >,()0g x '>,()g x 单调递增, 所以000()()x min g x g x ae lnx ==-, 所以00x ae lnx lna -≥-, 即0000120x x e x lnx x e --≥, 即000120x lnx x --≥, 令1()2(0)u x x lnx x x=-->, 2221()0(0)x x u x x x ---'=<>,所以()u x 在(0,)+∞上单调递减, 又()10u =,所以001x <≤, 001x a x e =由基本初等函数的单调性可知xy xe =在(]0,1上单调递增,1y x=在(]0,1上单调递减,由复合函数的单调性得()1xf x xe =在(]0,1上单调递减, 所以()()11f x f e≥= 即1a e≥. 故a 的最小值为1e故答案为:1e. 【点睛】本题考查利用导数研究函数的单调性、最值,属于中档题.二、解答题15.如图,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,点O 为对角线BD 的中点,点E ,F 分别为棱PC ,PD 的中点,已知PA⊥AB,PA⊥AD.(1)求证:直线PB∥平面OEF ; (2)求证:平面OEF⊥平面ABCD . 【答案】详见解析 【解析】 【分析】(1)根据O 为PB 中点,F 为PD 中点,所以,PB∥FO,之后应用线面垂直的判定定理证得结果;(2)根据题意,得到PA ∥OE ,结合题中所给的条件因为PA⊥AB,PA⊥AD,AB∩AD=A ,可得PA⊥平面ABCD ,从而得到OE⊥平面ABCD ,根据面面垂直的判定定理证得结果. 【详解】(1)O 为PB 中点,F 为PD 中点,所以,PB∥FO 而PB ⊄平面OEF ,FO ⊂平面OEF , ∴ PB∥平面OEF .(2)连结AC ,因为ABCD 为平行四边形,∴AC 与BD 交于点O ,O 为AC 中点,又E 为PC 中点, ∴ PA ∥OE ,因为PA⊥AB,PA⊥AD,AB∩AD=A , ∴ PA⊥平面ABCD , ∴ OE⊥平面ABCD 又OE ⊂平面OEF , ∴ 平面OEF⊥平面ABCD【点睛】该题考查的是有关证明空间关系的问题,涉及到的知识点有线面平行的判定和面面垂直的判定,熟练掌握基础知识是正确解题的关键.16.在三角形ABC 中,角A,B,C 的对边分别为a,b,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b = (1)求sin B 的值;(2)求边c 的长.【答案】(1)sin 10B = (2)13c = 【解析】 【分析】(1)由()sin sin B A A B ⎡⎤=--⎣⎦,分别求得sin cos A A ,,()()sin cos A B A B --,得到答案;(2)利用正弦定理sin sin a A b B=得到 a =13c =.【详解】(1)因为角C 为钝角,3sin 5A = ,所以4cos 5A == ,又()1tan 3A B -= ,所以02A B π<-< ,且()()sinA B A B -=-= , 所以()()()sin sin sin cos cos sin B A A B A A B A A B ⎡⎤=--=---⎣⎦3455== .(2)因为sin sin 5a Ab B ==,且5b = ,所以a =, 又()cos cos cos cos sin sinC A B A B A B =-+=-+= ,则2222cos 952525169c a b ab C ⎛=+-=+-⨯= ⎝ ,所以 13c = .17.已知圆C 经过点()()2,0,2,0A B -,且圆心C 在直线y x =上,又直线:1l y kx =+与圆C 交于P,Q 两点.(1)求圆C 的方程;(2)若2OP OQ ⋅=-,求实数k 的值;(3)过点()0,1作直线1l l ⊥,且1l 交圆C 于M,N 两点,求四边形PMQN 的面积的最大值.【答案】(1)x 2 +y 2=4(2)k=0(3)7【解析】试题分析:(1)设圆心为(,)C a a ,半径为r .故AC AB r ==,建立方程,从而可求圆C 的方程;(2)利用向量的数量积公式,求得120POQ ︒∠=,计算圆心到直线l 的距离d ,即可求解实数k 的值;(3)方法1、设圆O 到直线1,l l 的距离分别为1,d d ,求得2211d d +=,根据垂径定理和勾股定理,可得22PQ MN ==PMQN 面积的最大值;方法2、利用弦长公式12PQ x =-=,MN ==积,在利用基本不等式,可求四边形PMQN 面积的最大值.试题解析:(1)设圆心为(,)C a a ,半径为r .故AC AB r ==,易得0,2a r ==, 因此圆的方程为224x y +=.(2)因为22cos ,2OP OQ OP OQ ⋅=⨯⨯=-,且OP 与OQ夹角为POQ ∠,故1cos 2POQ ∠=-,120POQ ︒∠=,所以C 到直线l 的距离1d =,又d =,所以0k =.又解:设P 11(,)x y ,22(,)Q x y ,则2OP OP ⋅=-,即12122x x y y +=-,由221{4y kx x y =++=得22(1)230k x kx ++-=,∴12212221{31kx x k x x k -+=+-=+,代入12122x x y y +=-得20k =,∴0k =;(3)设圆心O 到直线1,l l 的距离分别为1,d d ,四边形PMQN 的面积为S .因为直线1,l l 都经过点(0,1),且1l l ⊥,根据勾股定理,有2211d d +=,又22PQ MN == 故1222S =⨯==7≤==当且仅当1d d =时,等号成立,所以max 7S =.(3)又解:由已知12S PQ MN =,由(2)的又解可得12PQ x =-=同理可得MN ==∴S ==7==≤=,当且仅当21k =时等号成立,所以max 7S =.考点:直线与圆的方程的应用;点到直线的距离公式的应用;圆的标准方程.【方法点晴】本题主要考查了直线的方程与圆的方程的应用、点到直线的距离公式的应用,同时着重考查了向量的数量积的运算和圆的性质、四边形面积的计算和基本的运用,属于中档试题解答的关键是准确表达,PQ MN 的长度,正确表示四边形PMQN 的面积合理运用基本不等式求解四边形PMQN 面积的最值,同时注意基本不等式等号成立的条件.18.已知圆()222:0O x y r r +=>与椭圆()2222:10x y C a b a b+=>>相交于点M (0,1),N (0,-1),且椭圆的离心率为2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 交圆O 和椭圆C 分别于A ,B 两点.①若23MB MA =,求直线l 的方程;②设直线NA 的斜率为1k ,直线NB 的斜率为2k ,问:21k k 是否为定值? 如果是,求出定值;如果不是,说明理由. 【答案】(1)2212x y +=;(2)①12y x =±+;②2112k k = 【解析】【分析】(1)由交点M (0,1)可求b ,由离心率可求a ,从而得到椭圆方程;(2)①设出直线l 的方程,分别联立椭圆方程和圆的方程,解出A ,B 两点的坐标,由23MB MA =得到关于k 的方程,求解即可得到结果;②结合①中A ,B 两点的坐标,利用斜率公式直接用k 表示1k 和2k ,由此可求得结果.【详解】(1)因为圆()222:0O x y r r +=>与椭圆()2222:10x y C a b a b +=>>相交于点M (0,1)所以b =r =1.又离心率为c e a ==,所以a =22:12x C y +=. (2)①因为过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点,所以设直线l 的方程为1(0)y kx k =+≠,由22112y kx x y =+⎧⎪⎨+=⎪⎩,得()222140k x kx ++=, 则222421,2121k k B k k ⎛⎫--+ ⎪++⎝⎭,同理2211y kx x y =+⎧⎨+=⎩,解得22221,11k k A k k ⎛⎫--+ ⎪++⎝⎭, 因为23MB MA =,则224223211k k k k --=++, 因为0k ≠,所以2k =±,即直线l的方程为12y x =±+. ②根据①,22221,11k k A k k ⎛⎫--+ ⎪++⎝⎭,222421,2121k k B k k ⎛⎫--+ ⎪++⎝⎭,2212111121A N NA A N k y y k k k k x x k k -++-+====---+,22222111214221B N NB B N k y y k k k k x x kk -++-+====---+, 所以2112k k =为定值. 【点睛】本题考查圆的方程和椭圆的方程,考查了直线与圆,直线与椭圆的位置关系,计算量较大,尤其是化简过程比较多,注意仔细审题,认真计算,属难题.19.巳知函数2()22ln f x x ax a x =--,22()ln 2g x x a =+,其中0,x a R >∈.(1)若1x =是函数()f x 的极值点,求a 的值;(2)若()f x 在区间(2,)+∞上单调递增,求a 的取值范围;(3)记()()()F x f x g x =+,求证:1()2F x ≥. 【答案】(1)12;(2)4(,]3-∞;(3)参考解析 【解析】试题分析:(1)由函数2()22ln f x x ax a x =--,所以可得2'()22(0)a f x x a x x=-->,又1x =是函数()f x 的极值点,即12220,2a a a --=∴=. (2)因为()f x 在区间(2,)+∞上单调递增,所以对函数()f x 求导,然后把变量a 分离,求函数2()1x M x x =+的最值即可.(3)由()()()F x f x g x =+即可得到,222()22ln ln 2F x x ax a x x a =--++,按a 的降幂写成二次三项的形式,然后再配方,即可得到2222ln ln ln 2()2[()()]222x x x x x x P a a +++=--+.再用放缩法即可得到结论.试题解析:(1)由2()22ln f x x ax a x =--, 得22222()22(0)a x ax a f x x a x x x----'==>, ∵1x =是函数()f x 的极值点,∴(1)2220f a a =--=',解得12a =,经检验1x =为函数()f x 的极值点,所以12a =.(2)∵()f x 在区间(2,)+∞上单调递增, ∴2222()0x ax a f x x--'=≥在区间(2,)+∞上恒成立, ∴21x a x ≤+对区间(2,)+∞恒成立, 令2()1x M x x =+,则22222(1)2()(1)(1)x x x x x M x x x =+'+-+=+ 当(2,)x ∈+∞时,()0M x '>,有24()(2)13x M x M x =>=+, ∴a 的取值范围为4(,]3-∞.(3) 解法1:222()22ln ln 2F x x ax a x x a =--++ 222ln 2[(ln )]2x x a x x a +=-++,令222ln ()(ln )2x x P a a x x a +=-++, 则2222ln ln ln ()()()222x x x x x x P a a +++=--+222ln (ln )(ln )()244x x x x x x a +--=-+≥ 令()ln Q x x x =-,则11()1x Q x x x-=-=', 显然()Q x 在(0,1]上单调递减,在[1,)+∞上单调递增, 则min ()(1)1Q x Q ==,则1()4P a ≥, 故11()242F x ≥⨯=. 解法2:222()()()22ln ln 2F x f x g x x ax a x x a =+=--++22()(ln )x a x a =-+-则()F x 表示ln y x =上一点(,ln )x x 与直线y x =上一点(,)a a 距离的平方.由ln y x =得1y x'=,让011y x '==,解得01x =, ∴直线1y x =-与ln y x =的图象相切于点(1,0),(另解:令()1ln N x x x =--,则1()1N x x=-', 可得()y N x =在(0,1]上单调递减,在[1,)+∞上单调递增,故min ()(1)0N x N ==,则1ln x x x >-≥,直线1y x =-与ln y x =的图象相切于点(1,0)),点(1,0)到直线y x =的距离为2,则2221()()(ln )2F x x a x a =-+-≥=. 考点:1.函数的极值.2函数的单调性.3.构造新函数求解.4.放缩法的思想.20.已知数列{}n a 与{}n b 的前n 项和分别为n A 和n B ,且对任意()*112,n n n n n N a a b b ++∈--=恒成立. (1)若21,2n A n b ==,求n B ;(2)若对任意*n ∈N ,都有n n a B =及31241223341 (3)n n n b b b b a a a a a a a a ++++++<成立,求正实数1b 的取值范围. 【答案】(1)232n n n B +=;(2)[3)+∞,. 【解析】【分析】(1)根据1112n n n A n a A A n -=⎧=⎨-≥⎩可得n a .再由112()n n n n a a b b ++-=-,利用等差数列的通项公式求和公式即可得出.(2)对任意*n N ∈,都有n n a B =,可得111n n n n n a a B B b +++-=-=.11111()22n n n n n b b a a b +++-=⨯-=.化为12n n b b +=,10b >.可得数列{}n b 是等比数列,公比为2.可得1121(21)21n n n B b b -==--.另一方面:1111111n n n n n n n n n b B B a a B B B B +++++-==-.利用3124122334113n n n b b b b a a a a a a a a +++++⋯+<成立,及其数列的单调性即可得出. 【详解】解:(1)2n A n =,2n ∴…时,221(1)21n n n a A A n n n -=-=--=-. 1n =时,11a =.1n =时适合上式.21n a n ∴=-.112()n n n n a a b b ++-=-,11212n n b b +∴-=⨯=,又12b =. ∴数列{}n b 是等差数列,首项为2,公差为1.2(1)32122n n n n n B n -+∴=+⨯=. (2)对任意*n N ∈,都有n n a B =,111n n n n n a a B B b +++∴-=-=.11111()22n n n n n b b a a b +++∴-=⨯-=. 12n n b b +∴=,10b >.∴数列{}n b 是等比数列,公比为2.1121(21)21n n n B b b -∴==--. 另一方面:1111111n n n n n n n n n b B B a a B B B B +++++-==-.3124122334113n n n b b b b a a a a a a a a +++++⋯+<成立, ∴1223111111111111111(1)213n n n n B B B B B B B B b ++-+-+⋯⋯+-=-=-<-, 113(1)21n b ∴>-- 对任意*n N ∈,都成立,13b ∴…. ∴正实数1b 的取值范围是[3)+∞,.【点睛】本题考查了数列递推关系、等差数列与等比数列的通项公式求和公式、裂项求和方法、数列的单调性,考查了推理能力与计算能力,属于中档题.。

山东省菏泽市2014-2015学年高二上学期寒假作业(四)数

山东省菏泽市2014-2015学年高二上学期寒假作业(四)数

2015高二数学寒假作业(四)一、选择题1、椭圆x 2m + y 24 = 1 的焦距为2,则m 的值等于 ( ) A.5或3(B )8(C )5(D )162、设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为 ( )A .2B .3 C . 2 D .332 3、已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( )A .)4,1,3(--B .)4,1,3(---C .)4,1,3(D .)4,1,3(--4、空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( ) A .21 B .22 C .-21 D .0 5、已知)1,1,21()3,21,1(,==b a ,且,均在平面α 内,直线l 的方向向量)1,0,21(=,则( ) A .l ⊂α B .l 与α 相交C .l ∥αD .l ⊂α 或l ∥α6、如图所示,ABCD 为矩形,P A ⊥平面ABCD ,P A =AD ,M 、N 分别是PC 、AB 中点,则MN 与平面PCD 所成角的大小为( )A .30°B .45°C .60°D .90°二、填空7、方程x 224–k + y 216 + k = 1 表示椭圆,则k 的取值范围是 .8、已知向量=OA (1,-7,8),=OB (0,14,16),)cos 81,sin 71,2(αα=c ,α∈(0,π),若⊥c 平面OAB ,则=α__________________.9、已知PA 垂直于矩形ABCD 所在的平面,PA =3,AB =2,3=BC ,则二面角P -BD -A 的正切值为______. 三、解答题10、在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求OA ·OB 的值; (2)如果OA ·OB =-4,证明直线l 必过一定点,并求出该定点.11、在长方体ABCD —A 1B 1C 1D 1中,AA 1=1,AD =DC =3,在线段A 1C 1上有一点Q ,且11131A C Q C =,求平面QDC 与平面A 1DC 所成锐二面角的大小.12、如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中14,2,3,1AB BC CC BE ====. (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面1AEC F 的距离.2015高二数学寒假作业(四)参考答案一、选择题 1~6 AAADBD二、填空7、(–16, 4) (4, 24).8、4π3 9、221三、解答题10、解:(1)由题意:抛物线焦点为(1,0), 设l ∶x =ty +1代入抛物线y 2=4x ,消去x 得 y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4,∴OA ·OB =x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3(2)证明:设l ∶x =ty +b 代入抛物线y 2=4x ,消去x 得 y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b ,∴OA ·OB =x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b , 令b 2-4b =-4,∴b 2-4b +4=0, ∴b =2,∴直线l 过定点(2,0).11、解:建立空间直角坐标系,则D (0,0,0),)1,3,0(),1,0,3(),0,3.0(11C AC . )1,332,33(,31111Q A C Q C ∴=.设平面A 1CD ,平面QCD 的一个法向量分别为),,(111z y x n =,),,(222z y x m =由⎩⎨⎧=+=⇒⎪⎩⎪⎨⎧==⋅⋅03,00,01111z x y令x 1=1,∴z 1=.3-∴).3,0,1(-=n由⎪⎩⎪⎨⎧=+=⇒⎪⎩⎪⎨⎧==⋅⋅033,0,0,0222z x y DC m 令x 2=1,∴z 1=33-. ∴)33,0,1(-=m 6π,2332211||||,cos >=∴<=⨯+=>=<⋅m n m n m n .即平面QDC 与平面A 1DC 所成锐二面角为6π.12、解:(I )建立如图所示的空间直角坐标系,则(0,0,0)D,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C …设(0,0,)F z .∵1AEC F 为平行四边形,11,,(2,0,)(2,0,2),2.(0,0,2).(2,4,2).||A EC F A F EC z z F BF BF BF \\=-=-\=\\=--=uuu r uuu u ruuu ruuu r由为平行四边形由得于是即的长为(II )设1n 为平面1AEC F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为α,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面1AEC F 的距离为.11334333343cos ||1=⨯==αCC d。

2014-2015高一上学期数学寒假作业(二)

2014-2015高一上学期数学寒假作业(二)

2014-2015高一上学期数学寒假作业(二)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合{A y y ==,{B x y ==,则下列结论正确的是( )A .AB = B .A B ⊆C .B A ⊆D .{1}A B x x =≥2.函数21(0,1)x y a a a -=+>≠且的图象恒过定点( )A.(0,1)B.(1,1)C. (2,1)D. (2,2)3.与直线10x +=垂直的直线的倾斜角为( )A.30B.60C.120D.1504.已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10x ay -+=平行,则a 的值为( )A.12-B.2C.2-D.125.已知,x y R ∈,2+3=0x y -,则4+2y x 的最小值为( )A.7-B.6-C.5D.96.已知9log 5m =,37n =,则35log 9可以表示为( )A. 42n m +B. 22n m +C. 42m n +D. 22m n+ 7.空间中,PA 、PB 、PC 是从点P 引出的三条射线,两两夹角均为60,则直线PC 与平面PAB 所成角的余弦值为( )A.12B. 2C.3D.68.已知实数,x y 满足2220x y x +-=,则1y x +的取值范围是( )A.[33- B.3(,][,)33-∞-+∞ C.[ D.(,[3,)-∞+∞9.正四棱柱1111ABCD A BC D -中,1AB =,1AA E 为线段AB 上的一个动点,则1D E CE +的最小值是( )A. 1 D.210.已知函数()1f x x =,()2x g x x =+,()ln h x x x =+的零点分别为321,,x x x ,则有( )A .321x x x <<B .312x x x <<C .213x x x <<D .132x x x <<11.已知函数1()1f x x=-,若存在正实数,a b ,使得当()y f x =的定义域为(,)a b 时,值域恰为(,)ma mb ,则实数m 的取值范围是( )A .14m <B .104m <<C .14m <且0m ≠D .14m > 12.已知函数21()()(1)(0)0x x f x f x x -⎧-=⎨-≥<⎩,若方程()f x x a =-有且仅有两个不相等的实数根,则实数a 的取值范围是( )A .[0,)+∞B .[1,)-+∞C .(1,0]-D .(,0]-∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合{}x A y y x ==,{10}B x kx =-=,若R B CA =∅,则k 的值为_____. 14.已知函数1()2ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是______. 15.过(5,2)P 的圆22(2)(3)9x y -++=的切线方程是_______________________.16.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,有如下四个结论:①AC BD ⊥;②△ACD 是等边三角形;③AB 与CD 所成的角为60;④二面角A BC D --的大小为60.其中正确结论的序号是____________.三、解答题(本大题共6小题,共70分)17.设22{190}A x x ax a =-+-=,2{560}B x x x =-+=,2{280}C x x x =+-=.(1)若A B =,求实数a 的值;(2)若A B ≠∅,A C =∅,求实数a 的值.18.已知定点(0,2)M ,(2,0)N -,直线:22l y kx k =-+.(1)求证:直线l 恒过第一象限;(2)若点M 、N 到直线l 的距离相等,求l 的方程.19. 某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (单位:/mg L )与时间t (单位:h )间的关系为010k t P P -=⨯,如果在前5个小时内消除了10%的污染物,请回答以下问题(参考数据:lg 20.3010≈,lg30.4771≈):(1)10小时后还剩百分之几的污染物?(2)污染物减少50%需要花多少时间?(请保留两位有效数字)20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PB BC ⊥,PD CD ⊥,且2PA =.E 为PD 上一点,且3PD PE =.(1)证明:PA ⊥平面ABCD ;(2)在线段BC 上是否存在点F , 使得PF ∥平面EAC ?若存在,试确定点F 的位置;若不存在,请说明理由.B21.已知圆C 经过(2,4)A 、(3,5)B 两点,且圆心C 在直线:220l x y --=上.(1)求圆C 的方程;(2)若对任意的[0,1]b ∈,直线4y kx b =++与圆C 总有公共点,求实数k 的取值范围.22.已知函数32()f x ax bx cx =++是R 上的奇函数,且(1)3f =,(2)12f =.(1)求()f x 的解析式;(2)若实数,m n 满足3(1)240m m -+-=,3(1)20n n -+=,求m n +的值.(3)若不等式2(4)(2)0f x f kx k -++>对任意的(0,1)x ∈恒成立,求k 的取值范围.。

云南省2014届高三数学寒假作业(4)

云南省2014届高三数学寒假作业(4)

云南省2013-2014学年高三寒假作业(4)数学 Word 版含答案第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题(题型注释)1.若函数()x f 满足()()111+=+x f x f ,当[]1,0∈x 时,()x x f =,若在区间(]1,1-上,()()m mx x f x g --=有两个零点,则实数m 的取值范围是( )A .⎪⎭⎫⎢⎣⎡21,0B .⎪⎭⎫⎢⎣⎡+∞,21C .⎪⎭⎫⎢⎣⎡31,0D .⎥⎦⎤ ⎝⎛21,02.在平行四边形ABCD 中,a AB = ,b AD =,NC AN 3=,M 为BC 的中点,则MN =( )A .b a 4141+-B .b a 2121+-C .b a 21+D .b a 4343+-3.已知集合}{1log 2≤=x x M ,}{022≤-=x x x N ,则“M a ∈”是“N a ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.阅读右面的程序框图,则输出的S =( )A. 14B.20C.30D.555.设i 为虚数单位,则ii+-15等于( ) A .i 32-- B .i 32+- C .i 32- D .i 32+6.已知函数f (x )=asinx+acosx (a <0)的定义域为[0,π],最大值为4,则a 的值为( ) A . ﹣B . ﹣2C . ﹣D . ﹣47.下列有关命题的叙述,错误的个数为( ) ①若p 或q 为真命题,则p 且q 为真命题。

②“5x >”是“2450x x -->”的充分不必要条件。

③命题P :∃x ∈R,使得x 2+x-1<0,则⌝p :∀x ∈R,使得x 2+x-1≥0。

④命题“若2320x x -+=,则x=1或x=2”的逆否命题为“若x ≠1或x ≠2,则2320x x -+≠”。

A. 1B. 2C. 3D. 48.一个几何体的三视图如下图所示,则该几何体的表面积为 ( ) A .312+ B. 310+ C. 3210+ D. 311+第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题(题型注释)9.设满足条件221x y +≤的点(,)x y 构成的平面区域的面积为1S ,满足条件22[][]1x y +≤的点(,)x y 构成的平面区域的面积为2S (其中[]x ,[]y 分别表示不大于x ,y 的最大整数,例如[0.3]1-=-,[1.2]1=),给出下列结论: ①点12(,)S S 在直线y x =左上方的区域内; ②点12(,)S S 在直线7x y +=左下方的区域内; ③12S S <; ④12S S >.其中所有正确结论的序号是___________.10.已知双曲线22221(0,0)x y a b a b -=>>的渐近线与圆22420x y x +-+=有公共点,则该双曲线离心率的取值范围是__________.11.在平面直角坐标系中,若点(1,1)A ,(2,4)B ,(1,3)C -,则||AB AC -=________.12.右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为 .13.已知P 是以F 1,F 2为焦点的椭圆22221(0)x y a b a b+=>>上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α5,sin(α+β)=35,则此椭圆的离心率为 .14.椭圆22221x y a b +=(0a b >>)的离心率12e =,右焦点(,0)F c ,方程20ax bx c +-= 的两个根分别为1x ,2x ,则点12(,)P x x 与圆222x y +=的位置关系是评卷人得分三、解答题(题型注释)15.(本小题满分12分) 某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n 和频率分布直方图中x 、y 的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望.16.(本题满分14分)设函数2()2(4)ln f x ax a x x =+++. (Ⅰ)若()f x 在x=41处的切线与直线4x+y=0平行,求a 的值; (Ⅱ)讨论函数()f x 的单调区间;(Ⅲ)若函数()y f x =的图象与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明0()0f x '<.17.(本题满分12分)如图,四边形ABCD 为矩形,四边形ADEF 为梯形,AD//FE ,∠AFE=60º,且平面ABCD⊥平面ADEF ,AF=FE=AB=12AD =2,点G 为AC 的中点. (Ⅰ)求证:EG//平面ABF ; (Ⅱ)求三棱锥B-AEG 的体积;(Ⅲ)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由.18.设函数x b x x f ln )1()(2+-=,其中b 为常数。

名师原创 全国通用2014-2015学年高三寒假作业 数学(七)Word版含答案.pdf

名师原创 全国通用2014-2015学年高三寒假作业 数学(七)Word版含答案.pdf
(I)求 a,b 的值;
(II)若对 x [−1,2] , f (x) c2 恒成立,求 c 的取值范围。
16.(本小题满分 12 分)
在△ABC 中,角 A,B,C 的对边分别是 a,b,c,若 3 acos C=csin A.
(1)求角 C 的大小;
(2)若 a=3,△ABC 的面积为 3 3 ,求 CA · AB 的值. 2
率为

x2 13.已知双曲线 C: a2

y2 b2
=1
(a>0,b>0)的一条渐近线与直线 l: x +
3y = 0 垂直,C
的一个焦点到 l 的距离为 1,则 C 的方程为__________________.
三、计算题 14.(本小题满分 12 分)
( ) 如图,已知椭 E: x2 + y2 a2 b2
(2)由(1)知: f (x) = x3 − 1 x2 − 2x + c 2
f '(x) = 3x2 − x − 2 = (x −1)(3x + 2)
x [-1,
−2
( − 2 ,1) 1
3
3
(1,2]
学海无涯
−2) 3
y' +


y
极大值
f (−1) , f (− 2) , f (2) 中的最大值 f (2) = 2 + c 3
A. ⊥ , = n, m ⊥ n
B. = m, ⊥ , ⊥
C. ⊥ , ⊥ , m ⊥
D. n ⊥ , n ⊥ , m ⊥
3.已知
U={y|y=
log
2
x
},P={y|y=
1 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学寒假作业(四)
一、选择题,每小题只有一项是正确的。

1.设全集{|0}=≥U x x ,集合{1}=P ,则U
P =ð
(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞ 2.已知1,0≠>a a ,x
a x x f -=2
)(,当)1,1(-∈x 时,均有2
1
)(<x f ,则实数a 的取 值范围是( )
A.[)∞+⋃⎥⎦⎤ ⎝⎛

,2210 B.(]2,1121⋃⎪⎭⎫⎢⎣⎡, C.[)∞+⋃⎥⎦
⎤ ⎝
⎛,
,4410 D.(]4,1141⋃⎪⎭
⎫⎢⎣⎡, 3.若函数f(x)=e x
(x ≤0)的反函数为y=f 1
(x),则函数y=f 1
(2x─1)的定义域为( ) (A)(0,1]
(B)( 1,1]
(C)( ∞,
12
] (D)(
1
2
,1] 4.已知整数数列{}n a 共5项,其中51,4a a ==,且对任意14i ≤≤都有12i i a a +-≤,则符合条件的数列个数为( )
A .24
B .36
C .48
D .52
5.若3sin()5πα+=
,α是第三象限的角,则
sin
cos
22sin cos 22
πα
πα
παπα++-=--- ( ) A .
12 B .1
2
- C .2 D .2- 6.如图,已知,,3AB a AC b BD DC === ,用,a b 表示AD ,则AD =
( )
A .34a b +
B .1344
a b +
C .1144a b +
D .3144
a b +
7. 已知,x y 满足不等式420,
280,2,
x y x y x -+≥⎧⎪
+-≥⎨⎪≤⎩
设y z x =,则z 的最大值与最小值的差为( )
A. 4
B. 3
C. 2
D. 1
8.抛物线22y x =上两点1122(x ,y ),(x ,y )A B 关于直线y x m =+对称,且121x x 2
=-
,则m =( )
A .
32 B .2 C .5
2
D .3 9.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方
多2分或打满6局时停止.设甲在每局中获胜的概率为
23,乙在每局中获胜的概率为1
3
,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为( ▲ )。

A .
241
81
B .
266
81
C .
274
81
D .670243
二、填空题
10.已知复数z 满足(1i)1z -⋅=,则z =_____.
11.若连续掷两此骰子,第一次掷得的点数为m ,第二次掷得的点数为你n ,则点(m,n )落在圆162
2
=+y x 内的概率是_________.
12.理:设8877108)1(x a x a x a a x ++++=- ,则=++++8710a a a a . 13.设n S 是等比数列{}n a 的前n 项的和,若51020a a +=,则20
10
S S 的值是
三、计算题
14.(本小题满分12分)
在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3a =,4b =,2
B A π
=
+.
(1)求cos B 的值; (2)求sin 2sin A C +的值. 15.
(本题满分14分)
如图,在正三棱柱ABC -A 1B 1C 1中,A 1A
,D ,E ,F 分别为线段AC ,A 1A ,C 1B 的中点.
(1)证明:EF ∥平面ABC ; (2)证明:C 1E ⊥平面BDE .
16.(本题满分12分)
已知函数2()x f x e x a =-+,x ∈R 的图像在点0x =处的切线为y bx =.(2.7182e ≈).
(1)求函数()f x 的解析式;
(理科)(2)若k ∈Z ,且21()(352)02
f x x x k +--≥对任意x ∈R 恒成立,求k 的最大值. (文科)(2)若()f x kx >对任意的(0,)x ∈+∞恒成立,求实数k 的取值范围.
高三数学寒假作业(四)参考答案一、选择题
1~5 ABDDB 6~9 BAAB
二、填空题
10.1+ 2 i
11.2/9
12.256
28=
13.5 4
三、计算题
14.
(1)
3 cos
5
B=-;
(2)
24731 sin2sin
252525
A C
+=+=.
15.
证明(1)如图,取BC的中点G,连结AG,FG.
因为F为C1B的中点,所以FG
1
//
2
C1C.
在三棱柱ABC-A1B1C1中,A1A//C1C,且E为A1A的中点,所以FG//EA.
所以四边形AEFG是平行四边形.
所以EF∥AG.………………………… 4分
因为EF 平面ABC ,AG 平面ABC ,
所以EF ∥平面ABC . ………………………… 6分
(2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD 平面ABC , 所以A 1A ⊥BD .
因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .
因为A 1A ∩AC =A ,A 1A 平面A 1ACC 1,AC 平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E 平面A 1ACC 1,所以BD ⊥C 1E . ………………………… 9分
根据题意,可得EB =C 1E ,C 1B , 所以EB 2
+C 1E 2
=C 1B 2
.从而∠C 1EB =90°,即C 1E ⊥EB .……………………… 12分 因为BD ∩EB =B ,BD 平面BDE , EB 平面BDE ,
所以C 1E ⊥平面BDE . ………………………… 14分 16.
(1)2()x f x e x a =-+,()2x f x e x '=-.
由已知(0)101
(0)11
f a a f b b =+==-⎧⎧⇒⎨⎨
'===⎩⎩, 2()1x f x e x =--.………………………4分 (理科)(2)21
()(352)02
f x x x k +--≥对任意x ∈R 恒成立,
215
1022x e x x k ⇔+
---≥对任意x ∈R 恒成立, 215
122x k e x x ⇔≤+--对任意x ∈R 恒成立. ………………………………………6分
令215()122x h x e x x =+--,5
()2
x h x e x '=+-,易知()h x '在R 上单调递增,
又3(0)02h '=-<,3
(1)02
h e '=->,1
21()202h e '=-<,
333
44
23777771() 2.56 1.6204444444
h e '=->-=-=>-=>, ∴ 存在唯一的013
(,)24
x ∈,使得0()0h x '=,………………………………………8分 且当0(,)x x ∈-∞时,()0h x '<,0(,)x x ∈+∞时,()0h x '>. 即()h x 在0(,)x -∞单调递减,在0(,)x +∞上单调递增,
02min 00015()()122x h x h x e x x ==+--,又0()0h x '=,即00502x e x +-=,005
2
x e x =-.
∴ 22
0000005151()1(73)2222h x x x x x x =-+--=-+,
∵ 013(,)24x ∈,∴ 0271()(,)328h x ∈--.215
122x k e x x ≤+--对任意x ∈R 恒成立,
0()k h x ⇔≤,又k ∈Z ,∴ max 1k =-.………………………………………12分
(文科)(2)()f x kx >对任意的(0,)x ∈+∞恒成立()
f x k x
⇔>对任意的(0,)x ∈+∞恒成立,令()
(),0f x g x x x
=
>, ∴ 2222
()()(2)(1)(1)(1)
()x x x xf x f x x e x e x x e x g x x x x '--------'===.
易证:当(0,)x ∈+∞时,10x e x -->恒成立,………………………8分 令()0g x '>,得1x >;()0g x '<,得01x <<.
∴ ()g x 的增区间为(1,)+∞,减区间为(0,1).min ()(1)0g x g ==.
∴ min ()(1)0k g x g <==,∴ 实数k 的取值范围为(,0)-∞.………………12分。

相关文档
最新文档