2017-2018学年湖北省宜昌市长阳中学高一(上)数学期末试卷 及解析
湖北省宜昌市长阳一中2017-2018学年高三上学期期末数学试卷(理科) Word版含解析

2017-2018学年湖北省宜昌市长阳一中高三(上)期末数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题意.)1.在复平面内,复数的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.“x>1”是“<1”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.等比数列{a n}中,a3=9,前三项和为S3=27,则公比q的值是()A..1 B.﹣C.1或﹣D.﹣1或﹣4.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.35.若(9x﹣)n(n∈N*)的展开式的第3项的二项式系数为36,则其展开式中的常数项为()A.252 B.﹣252 C.84 D.﹣846.已知x,y∈R*,且x+y++=5,则x+y的最大值是()A.3 B.3.5 C.4 D.4.57.给出30个数:1,2,4,7,…其规律是第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;…以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤29;p=p+i+1 B.i≤30;p=p+i﹣1 C.i≤30;p=p+i D.i≤31;p=p+i8.设x,y满足约束条件,则的取值范围是()A.[1,5]B.[2,6]C.[2,10]D.[3,11]9.如图,在等腰直角△ABO中,OA=OB=1,C为AB上靠近点A的四等分点,过C作AB的垂线l,P为垂线上任一点,则等于()A.﹣B.C.﹣D.10.已知集合M={1,2,3},N={1,2,3,4}.定义映射f:M→N,则从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的概率为()A.B.C.D.11.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得(+)•=0 (其中O为坐标原点),且||=||,则双曲线的离心率为()A.﹣1 B.C.D. +112.对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α﹣β|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=e x﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,则实数a的取值范围为()A. B. C.[2,3]D.[2,4]二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡上对应位置上. 13.在平面直角坐标系中,已知函数y=log a(x﹣3)+2(a>0,且a≠1)过定点P,且角α的终边过点P,始边是以x正半轴为始边,则3sin2α+cos2α的值为______.14.设函数y=f(x)在其图象上任意一点(x0,y0)处的切线方程为y﹣y0=(3﹣6x0)(x﹣x0),且f(3)=0,则不等式≥0的解集为______.15.某几何体的三视图如图,则该几何体的外接球表面积______.16.设点M(x0,x0+),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则X0的取值范围______.三、解答题:本大题共70分,解答须写出文字说明、证明过程和演算步骤.17.设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列{x n}.(1)求数列{x n}的通项公式;(2)令b n=,设数列的前n项和为s n,求证S n<.18.前不久,省社科院发布了2013年度“安徽城市居民幸福排行榜”,芜湖市成为本年度安徽最“幸福城”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(Ⅲ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.19.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.20.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个焦点恰好与抛物线y2=4x的焦点重合.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,过点A作椭圆C的两条动弦AB,AC,若直线AB,AC斜率之积为,直线BC是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.21.已知函数f(x)=在点(1,f(1))处的切线与x轴平行.(Ⅰ)求实数a的值及f(x)的极值;(Ⅱ)是否存在区间(t,t+)(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;(Ⅲ)如果对任意的,有|f(x1)﹣f(x2)|≥k||,求实数k的取值范围.选做题(请考生在第22/23/24三题中任选一题作答,如果多做,则按所做的第一题计分)【选修4-1:几何证明选讲】22.如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P.求证:(Ⅰ)四点P、D、C、E共圆;(Ⅱ)AP⊥CP.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x﹣a|+a.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.2017-2018学年湖北省宜昌市长阳一中高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题意.)1.在复平面内,复数的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的除法运算,将复数表示出来,根据复数的几何意义,即可得到答案.【解答】解:复数=,∴复数在复平面内对应的点为(1,﹣2),故复数的对应点位于第四象限.故选:D.2.“x>1”是“<1”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:当“x>1”则“<1”成立,当x<0时,满足“<1”但“x>1”不成立,故“x>1”是“<1”的充分不必要条件,故选:A3.等比数列{a n}中,a3=9,前三项和为S3=27,则公比q的值是()A..1 B.﹣C.1或﹣D.﹣1或﹣【考点】等比数列的性质.【分析】根据条件,建立方程组即可求出等比数列的公比q的值.【解答】解:∵a3=9,前三项和为S3=27,∴,即,∴=,即2q2﹣q﹣1=0,解得q=1或q=,故选:C.4.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.3【考点】余弦定理.【分析】将“c2=(a﹣b)2+6”展开,另一方面,由余弦定理得到c2=a2+b2﹣2abcosC,比较两式,得到ab的值,计算其面积.【解答】解:由题意得,c2=a2+b2﹣2ab+6,又由余弦定理可知,c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴﹣2ab+6=﹣ab,即ab=6.==.∴S△ABC故选:C.5.若(9x﹣)n(n∈N*)的展开式的第3项的二项式系数为36,则其展开式中的常数项为()A.252 B.﹣252 C.84 D.﹣84【考点】二项式系数的性质.【分析】由条件求得n=9,在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:由题意可得,=36,∴n=9,=•99﹣r•∴(9x﹣)n=(9x﹣)9(n∈N*)的展开式的通项公式为T r+1•,令9﹣=0,求得r=6,故其展开式中的常数项为•93•=84,故选:C.6.已知x,y∈R*,且x+y++=5,则x+y的最大值是()A.3 B.3.5 C.4 D.4.5【考点】基本不等式.【分析】利用基本不等式和一元二次不等式即可得出.【解答】解:由,化为,∵x>0,y>0,∴=.令x+y=t>0,∴,化为t2﹣5t+4≤0,解得1≤t≤4.∴x+y的最大值是4.故选:C.7.给出30个数:1,2,4,7,…其规律是第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;…以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤29;p=p+i+1 B.i≤30;p=p+i﹣1 C.i≤30;p=p+i D.i≤31;p=p+i【考点】循环结构.【分析】由已知中程序的功能是给出30个数:1,2,4,7,…其规律是:第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;…以此类推,要计算这30个数的和,我们可以根据循环次数,循环变量的初值,步长计算出循环变量的终值,得到①中条件;再根据累加量的变化规则,得到②中累加通项的表达式.【解答】解:由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;…故②中应填写p=p+i故选C8.设x,y满足约束条件,则的取值范围是()A.[1,5]B.[2,6]C.[2,10]D.[3,11]【考点】简单线性规划.【分析】==1+2×,设k=,利用z的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:其中A(0,4),B(3,0)==1+2×,设k=,则k=的几何意义为平面区域内的点到定点D(﹣1,﹣1)的斜率,由图象知BD的斜率最小,AD的斜率最大,则BD的斜率k=1,AD的斜率为k=,即1≤k≤5,则2≤2k≤10,3≤1+2k≤11,即的取值范围是[3,11],故选:D9.如图,在等腰直角△ABO中,OA=OB=1,C为AB上靠近点A的四等分点,过C作AB的垂线l,P为垂线上任一点,则等于()A.﹣B.C.﹣D.【考点】平面向量数量积的运算.【分析】将,带入,然后根据条件进行数量积的运算即可求得答案.【解答】解:由已知条件知,AB=,∠OAB=45°;又,;∴===.故选A.10.已知集合M={1,2,3},N={1,2,3,4}.定义映射f:M→N,则从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的概率为()A.B.C.D.【考点】古典概型及其概率计算公式;映射.【分析】根据题意,映射f:M→N的数目,用列举法可得构成△ABC且AB=BC的事件数目,由等可能事件的概率计算可得答案.【解答】解:∵集合M={1,2,3},N={1,2,3,4}.∴映射f:M→N有43=64种,∵由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC,∴f(1)=f(3)≠f(2),∵f(1)=f(3)有四种选择,f(2)有3种选择,∴从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的事件有4×3=12种,∴任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的概率为.故选:C.11.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得(+)•=0 (其中O为坐标原点),且||=||,则双曲线的离心率为()A.﹣1 B.C.D. +1【考点】双曲线的简单性质.【分析】依题意双曲线右支上存在一点M,使得(+)•=0判断出∠F1MF2=90°,设出|MF2|=t,则|MF1|=t,进而利用双曲线定义可用t表示出a,根据勾股定理求得t和c的关系,最后可求得双曲线的离心率.【解答】解:∵双曲线右支上存在一点M,使得(+)•=0,∴∠F1MF2=90°设|MF2|=t,则|MF1|=t,∴a=t,∵t2+3t2=4c2,∴t=c∴e==+1故选:D.12.对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α﹣β|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=e x﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,则实数a的取值范围为()A. B. C.[2,3]D.[2,4]【考点】函数的零点.【分析】先得出函数f(x)=e x﹣1+x﹣2的零点为x=1.再设g(x)=x2﹣ax﹣a+3的零点为β,根据函数f(x)=e x﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,及新定义的零点关联函数,有|1﹣β|≤1,从而得出g(x)=x2﹣ax﹣a+3的零点所在的范围,最后利用数形结合法求解即可.【解答】解:函数f(x)=e x﹣1+x﹣2的零点为x=1.设g(x)=x2﹣ax﹣a+3的零点为β,若函数f(x)=e x﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,根据零点关联函数,则|1﹣β|≤1,∴0≤β≤2,如图.由于g(x)=x2﹣ax﹣a+3必过点A(﹣1,4),故要使其零点在区间[0,2]上,则g(0)×g(2)≤0或,解得2≤a≤3,故选C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡上对应位置上. 13.在平面直角坐标系中,已知函数y=log a(x﹣3)+2(a>0,且a≠1)过定点P,且角α的终边过点P,始边是以x正半轴为始边,则3sin2α+cos2α的值为.【考点】对数函数的图象与性质.【分析】由log a1=0(a>0,且a≠1)恒成立,可得P点坐标,进而求出sinα=,结合二倍角公式,化简3sin2α+cos2α为1+sin2α,代入可得答案.【解答】解:令x﹣3=1,则x=4,y=log a1+2=2,故P点坐标为(4,2),则sinα=,∴3sin2α+cos2α=1+sin2α=,故答案为:14.设函数y=f(x)在其图象上任意一点(x0,y0)处的切线方程为y﹣y0=(3﹣6x0)(x﹣x0),且f(3)=0,则不等式≥0的解集为(﹣∞,0)∪(0,1]∪(3,+∞).【考点】利用导数研究曲线上某点切线方程.【分析】由函数y=f(x)在其图象上任意一点(x0,y0)处的切线方程得到函数f(x)在(x0,y0)处的导数值,即,进一步得到函数的导函数f′(x)=3x2﹣6x,从而求得原函数f(x)=x3﹣3x2+C.再由f(3)=0求出c的值,则函数f(x)的解析式可求,代入不等式≥0求解分数不等式得答案.【解答】解:∵函数y=f(x)在其图象上任意一点(x0,y0)处的切线方程为y﹣y0=(3﹣6x0)(x﹣x0),∴,则f′(x)=3x2﹣6x,f(x)=x3﹣3x2+C.又f(3)=0,得33﹣3×32+c=0,即C=0.∴f(x)=x3﹣3x2,∴不等式≥0⇔.即x2(x﹣1)(x﹣3)≥0 (x≠0,3),解得:x<0或0<x≤1或x>3.∴不等式≥0的解集为(﹣∞,0)∪(0,1]∪(3,+∞).故答案为:(﹣∞,0)∪(0,1]∪(3,+∞).15.某几何体的三视图如图,则该几何体的外接球表面积20π.【考点】球的体积和表面积;简单空间图形的三视图.【分析】由三视图还原原几何体,然后找出多面体外接球的球心,求出半径OB,代入球的表面积得答案.【解答】解:由三视图作出原几何体如图,三棱锥A﹣BCD的底面BCD为等腰直角三角形,BC⊥侧面ABD,侧面ABD为等腰三角形,且腰长为2,在△ABD中,由余弦定理求得AD=,由正弦定理得(r为△ABD的外接圆的半径),则r=,设△ABD的外心为G,过G作平面ABD的垂线,与BC的垂直平分线交于O,∴OB2=OG2+BG2=12+22=5.∴几何体的外接球表面积为4πR2=4π×5=20π.故答案为:20π.16.设点M(x0,x0+),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则X0的取值范围.【考点】点与圆的位置关系.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:点M(x0,x0+)在直线y=x+上,与圆O:x2+y2=1相切,要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时,一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时有MN=1,∴x0的取值范围为.故答案为:.三、解答题:本大题共70分,解答须写出文字说明、证明过程和演算步骤.17.设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列{x n}.(1)求数列{x n}的通项公式;(2)令b n=,设数列的前n项和为s n,求证S n<.【考点】数列与函数的综合;数列的求和.【分析】(1)求出f(x)的导数,由导数大于0,可得区间;导数小于0,可得减区间;可得极小值,进而得到所求通项公式;(2)求得b n==,=•,运用裂项相消求和,以及不等式的性质即可得证.【解答】解:(1)f(x)=+sinx,令,得(k∈Z),f'(x)>0⇒(k∈Z),f'(x)<0⇒(k∈Z),当(k∈Z)时,f(x)取得极小值,所以(n∈N*);(2)证明:∵b n==,∴=•=,∴==,∴.18.前不久,省社科院发布了2013年度“安徽城市居民幸福排行榜”,芜湖市成为本年度安徽最“幸福城”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(Ⅰ)指出这组数据的众数和中位数;(Ⅱ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(Ⅲ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.【考点】离散型随机变量的期望与方差;茎叶图.【分析】(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“极幸福”包括有一个人是极幸福和有零个人是极幸福,根据古典概型公式得到结果.(3)由于从该社区任选3人,记ξ表示抽到“极幸福”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.【解答】解:(Ⅰ)众数:8.6;中位数:8.75;(Ⅱ)设A i 表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则;(Ⅲ)ξ的可能取值为0,1,2,3.;;;.ξ所以E ξ=.另解:ξ的可能取值为0,1,2,3.则ξ~B (3,),.所以E ξ=.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点. (Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法. 【分析】(Ⅰ)以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,得到E 、F 、B 、C 点的坐标,易求得此•=0,所以EF ⊥BC ;(Ⅱ)设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),依题意,可求得一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,可求得sin θ的值.【解答】(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E(0,,),F(,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF⊥BC.(Ⅱ)解:在图中,设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,由题意知θ为锐角,则cosθ=|cos<,>|=||=,因此sinθ==,即所求二面角正弦值为.20.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个焦点恰好与抛物线y2=4x的焦点重合.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,过点A作椭圆C的两条动弦AB,AC,若直线AB,AC斜率之积为,直线BC是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)由抛物线的方程可得焦点,进而得到椭圆的半焦距c,再利用离心率及其b2=a2﹣c2即可得出椭圆的标准方程;(2)由椭圆的方程可得A(0,1).设直线AB的斜率为k,直线AC的斜率为,可得直线AB、AC的方程,分别与椭圆的方程联立可得点B,C的坐标,进而得到直线BC的方程,即可得出定点.【解答】解:(1)由抛物线y2=4x,可得焦点(1,0)又为椭圆的一个焦点,因此c=1,又离心率e==,∴a=,∴b2=a2﹣c2=1.∴椭圆C的方程为.(2)由椭圆的方程可得A(0,1).设直线AB的斜率为k,则直线AC的斜率为,得到直线AB、AC的方程分别为:y=kx+1,.联立,化为(1+2k2)x2+4kx=0,解得x=0或,∴,∴y B=,∴.把点B的坐标中的k换成可得C.∴k BC=.∴直线AB的方程为:,可得y=+==3.令x=0,得到y=3.因此直线BC一定经过一定点(0,3).21.已知函数f(x)=在点(1,f(1))处的切线与x轴平行.(Ⅰ)求实数a的值及f(x)的极值;(Ⅱ)是否存在区间(t,t+)(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;(Ⅲ)如果对任意的,有|f(x1)﹣f(x2)|≥k||,求实数k的取值范围.【考点】利用导数研究曲线上某点切线方程.【分析】(Ⅰ)由函数f(x)在(1,f(1))处的切线与x轴平行求得a的值,然后利用函数的导函数的符号求出函数的单调期间,则函数的极值可求;(Ⅱ)假设存在区间(t,t+)(t>0),使函数f(x)在此区间上存在极值和零点,则得到,解此不等式组求得t的取值范围;(Ⅲ)由(I)的结论知,f(x)在[e2,+∞)上单调递减,然后构造函数F(x)=f(x)﹣,由函数在[e2,+∞)上单调递减,则其导函数在在[e2,+∞)上恒成立,由此求得实数k的取值范围.【解答】解:(I)由f(x)=,得.∵f(x)在点(1,f(1))处的切线与x轴平行,∴,∴a=1,∴,x>0,.当0<x<1时,f′(x)>0,当x>1时,f′(x)<0.∴f(x)在(0,1)上单调递增,在(1,+∞)单调递减,故f(x)在x=1处取得极大值1,无极小值;(Ⅱ)∵x>1时,,当x→0时,y→﹣∞,由(I)得f(x)在(0,1)上单调递增,∴由零点存在原理,f(x)在区间(0,1)存在唯一零点,函数f(x)的图象如图所示:∵函数f(x)在区间(t,t+),t>0上存在极值和零点.∴,解得.∴存在符合条件的区间,实数t的取值范围为();(III)由(I)的结论知,f(x)在[e2,+∞)上单调递减,不妨设,则|f(x1)﹣f(x2)|≥k||,则.∴.∴函数F(x)=f(x)﹣在[e2,+∞)上单调递减,又,∴在[e2,+∞)上恒成立,∴k≤lnx在[e2,+∞)上恒成立.在[e2,+∞)上,k≤2.选做题(请考生在第22/23/24三题中任选一题作答,如果多做,则按所做的第一题计分)【选修4-1:几何证明选讲】22.如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P.求证:(Ⅰ)四点P、D、C、E共圆;(Ⅱ)AP⊥CP.【考点】圆內接多边形的性质与判定.【分析】(I)由已知条件推导出△ABD≌△BCE,由此能证明四点P,D,C,E共圆.(II)连结DE,由正弦定理知∠CED=90°,由四点P,D,C,E共圆知,∠DPC=∠DEC,由此能证明AP⊥CP.【解答】证明:(I)在△ABC中,由BD=,CE=,知:△ABD≌△BCE,…∴∠ADB=∠BEC,即∠ADC+∠BEC=π.所以四点P,D,C,E共圆.…(II)如图,连结DE.在△CDE中,CD=2CE,∠ACD=60°,由正弦定理知∠CED=90°.…由四点P,D,C,E共圆知,∠DPC=∠DEC,所以AP⊥CP.…【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【考点】圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.【分析】(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解答】解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d== [sin()+2]当sin()=﹣1时,d取得最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x﹣a|+a.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.【考点】绝对值不等式的解法;函数最值的应用.【分析】(Ⅰ)不等式f(x)≤6,即,求得a﹣3≤x≤3.再根据不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,从而求得实数a的值.(Ⅱ)在(Ⅰ)的条件下,f(n)=|2n﹣1|+1,即f(n)+f(﹣n)≤m,即|2n﹣1|+|2n+1|+2≤m.求得|2n﹣1|+|2n+1|的最小值为2,可得m的范围.【解答】解:(Ⅰ)∵函数f(x)=|2x﹣a|+a,故不等式f(x)≤6,即,求得a﹣3≤x≤3.再根据不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,∴实数a=1.(Ⅱ)在(Ⅰ)的条件下,f(x)=|2x﹣1|+1,∴f(n)=|2n﹣1|+1,存在实数n使f(n)≤m﹣f(﹣n)成立,即f(n)+f(﹣n)≤m,即|2n﹣1|+|2n+1|+2≤m.由于|2n﹣1|+|2n+1|≥|(2n﹣1)﹣(2n+1)|=2,∴|2n﹣1|+|2n+1|的最小值为2,∴m ≥4,故实数m的取值范围是[4,+∞).2016年9月30日。
宜昌市长阳中学高一上数学期末试卷(附答案)

3
9
则 sin 2α = − 8 .
3. 函数 y
=
9
[
sin x,其增函数对应的单调递增区间为: 2kπ −
π
, 2kπ +
π
] ,k
∈
Z.
令 k = 0,可得 − π ⩽ x ⩽ π .
2
2
4. ∵ −→a ∥−→b ,
2
2
∴ −4 − 2x = 0,解得 x = −2.
5. f (x) 是偶函数,其定义域为 (−∞, +∞),且在 [0, +∞) 上是减函数,
22.
设向量
−→α
=
(√ 3
sin
2x,
cos
x
+
sin
x),−→β
=
(1,
cos
x
−
sin
x),其中
x
∈
R,函数
f
(x)
=
−→α
·
−→β .
(1) 求 f (x) 的最小正周期;
(2) 若 f (θ) = 1,其中 0 < θ <
π 2
,求
cos
( θ
−
π ) 的值. 6
人教版高一上学期期末考试试卷
可得 2x − 1 > 0,解得 x >
则 f (−4) = f (4),且 f (4) < f (3),则 f (−4) < f (3).
6. 因为 B = {x | − 1 < x < 3, x ∈ Z} = {0, 1, 2},
所以 A ∪ B = {0, 1, 2, 3}.
7. 要使函数 f (x) = lg (2x − 1) 有意义,
2017-2018学年湖北省宜昌市第一中学高一上学期期末考试数学试题含解析

宜昌市第一中学2017年秋季学期高一年级期末考试数学试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的图象是()A. B. C. D.【答案】A【解析】,定义域为,排除;是偶函数,排除,,故选2. 的值为()A. B. 2 C. 3 D. 4【答案】D【解析】原式故选3. 扇形的周长是4,面积为1,则该扇形的圆心角的弧度数是()A. B. C. D.【解析】设扇形的弧长为,半径为,扇形的圆心角的弧度数是,则,①,②解①②得:,扇形的圆心角的弧度数故选4. 将函数()的图像上的所有点的横坐标伸长到原来的倍,(纵坐标不变),再将所得到的图像向左平移个单位,可以得到一个奇函数的图像,则的值为( ) A. B. C. D.【答案】A【解析】图像上的所有点的横坐标伸长到原来的倍得函数解析式为,再将所得到的图像向左平移个单位得函数解析式为,得到一个奇函数的图像,当时,,代入得,故故选5. 共点力作用在物体M上,产生位移,则共点力对物体做的功为()A. B. C. D.【答案】D【解析】根据题意得:共点力的合力是对物体做的功为故选6. 已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则等于()A. B. C. D.【解析】试题分析:由角的定义可知,考点:1.三角函数定义;2.诱导公式;3.同角间的三角函数关系7. 若定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,下列式子正确的是( )A. f(6)>f(7)B. f(6)>f(9)C. f(7)>f(9)D. f(7)>f(10)【答案】D【解析】试题分析:∵y=f(x+8)为偶函数,又∵f(x)在(8,+∞)上为减函数,∴f(x)在(-∞,8)上为增函数.由f(8+2)=f(8-2),即f(10)=f(6),又由6<7<8,则有f(6)<f(7),即f(7)>f(10).考点:函数奇偶性的性质;函数单调性的性质8. 函数()的图象经过、两点,则()A. 最大值为B. 最小值为C. 最大值为D. 最小值为【答案】D【解析】试题分析:因为分别为图象上的最低点和最高点,,即,所以,故选择D.考点:三角函数的图象与性质.9. 函数的零点的个数为()A. 3B. 4C. 5D. 6【答案】C【解析】函数的零点个数就是对应的函数与的交点个数根据图象判断有个交点个数故选点睛:本题考查了函数零点问题,在解答这类问题时可以分成两个函数,转化为两个函数图像交点个数问题,通过转化,结合图形即可求出结果,注意在画图中的函数奇偶性、周期性、单调性10. 对于定义在R上的函数,有关下列命题:①若满足,则在R上不是减函数;②若满足,则函数不是奇函数;③若满足在区间上是减函数,在区间也是减函数,则在R上也是减函数;④若满足,则函数不是偶函数.其中正确的命题序号是()A. ①②B. ①④C. ②③D. ②④【答案】B【解析】对于①变形为:定义在上的函数是减函数,则满足,显然是真命题;对于②,给出函数,满足,但是奇函数,故为假命题;对于③,给出函数,在区间上是减函数,在区间也是减函数,但在R上不是减函数,故为假命题;对于④,逆否命题为:定义在上的函数是偶函数,则,显然是真命题;综上所述,故选11. 若,则()A. B. C. D.【答案】B【解析】故选点睛:本小题主要考查的知识点是三角函数的化简求值。
湖北省2017—2018学年高一数学上学期期末考试试卷(二)

湖北省2017—2018学年高一数学上学期期末考试试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题(共12小题,每小题5分,满分60分)1.设集合A={x|2x≤4},集合B={x|y=lg(x﹣1)},则A∩B等于()A.(1,2) B.[1,2]C.[1,2) D.(1,2]2.设x>0,0<b x<a x<1,则正实数a,b的大小关系为()A.1>a>b B.1>b>a C.1<a<b D.1<b<a3.sin210°的值为()A.B.﹣ C.D.﹣4.函数f(x)=lg(+a)是奇函数,则a的值为()A.0 B.1 C.﹣1 D.不存在5.函数y=,(﹣≤x≤)的定义域是()A.[﹣,0]B.[﹣,)C.[﹣,0) D.[﹣,]6.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或27.已知向量=(λ,1),=(λ+1,2),若(+)⊥(﹣),则λ=()A.1 B.0 C.﹣1 D.﹣28.设P为等边三角形ABC所在平面内的一点,满足=+2,若AB=1,则•=()A.4 B.3 C.2 D.19.函数f(x)=log2x+1与g(x)=2﹣x﹣1在同一平面直角坐标系下的图象大致是()A. B.C.D.10.若函数f(x)=log a(a x﹣t)(a>0且a≠1)在区间[,]上的值域为[m,n],则实数t的取值范围是()A.(0,1) B.(,)C.(0,)D.(,1)11.若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1],f(x)=1﹣x2,函数g(x)=则函数h(x)=f(x)﹣g(x)在区间[﹣4,5]内零点的个数为()A.6 B.7 C.8 D.912.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,设f(x)在[0,1]上为非减函数,且满足以下条件:(1)f(0)=0;(2)f()=f(x);(3)f(1﹣x)=1﹣f(x),则f()+f()=()A.B.C.1 D.二、填空题(共4小题,每小题5分,满分20分)13.已知幂函数f(x)的图象过点(2,16),则f()=.14.已知||=1,||=,且⊥(﹣),则向量与向量的夹角是.15.下列说法中,所有正确说法的序号是.①终边落在y轴上的角的集合是;②函数图象的一个对称中心是;③函数y=tanx在第一象限是增函数;④为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象向右平移个单位长度.16.定义域在R上的函数f(x)满足f(x+2)f(x)=1,当x∈[﹣1,1)时,f (x)=log2(4﹣x),则f的周期变为4,则f,代入已知f(x)的解析式,计算即可得到所求值.三、解答题(共70分)17.平面内的向量=(3,2),=(﹣1,2),=(4,1).(1)若(+k)⊥(2﹣),求实数k的值;(2)若向量满足∥,且||=,求向量的坐标.18.已知集合A={x|x2﹣2x﹣a2﹣2a<0},B={y|y=3x﹣2a,x<2}.(1)若a=3,求A∪B;(2)若A∩B=A,求实数a的取值范围.19.已知函数f(x)=Asin(ωx+)(A>0,ω>0)的部分图象如图所示.(1)求A和ω的值;(2)求函数y=f(x)在[0,π]的单调增区间;(3)若函数g(x)=f(x)+1在区间(a,b)上恰有10个零点,求b﹣a的最大值.20.扬州瘦西湖隧道长3600米,设汽车通过隧道的速度为x米/秒(0<x<17).根据安全和车流的需要,当0<x≤6时,相邻两车之间的安全距离d为(x+b)米;当6<x<17时,相邻两车之间的安全距离d为米(其中a,b是常数).当x=6时,d=10,当x=16时,d=50.(1)求a,b的值;(2)一列由13辆汽车组成的车队匀速通过该隧道(第一辆汽车车身长为6米,其余汽车车身长为5米,每辆汽车速度均相同).记从第一辆汽车车头进入隧道,至第13辆汽车车尾离开隧道所用的时间为y秒.①将y表示为x的函数;②要使车队通过隧道的时间y不超过280秒,求汽车速度x的范围.21.如图,在矩形ABCD中,点E是BC边上中点,点F在边CD上.(1)若点F是CD上靠近C的三等分点,设=λ+,求λ+μ的值.(2)若AB=,BC=2,当•=1时,求DF的长.22.已知f(e x)=ax2﹣x,a∈R.(1)求f(x)的解析式;(2)求x∈(0,1]时,f(x)的值域;(3)设a>0,若h(x)=[f(x)+1﹣a]•log x e对任意的x1,x2∈[e﹣3,e﹣1],总有|h(x1)﹣h(x2)|≤a+恒成立,求实数a的取值范围.参考答案一、单项选择题1.D.2.A.3.B4.C.5.A.6.D.7.D.8.B.9.D.10.C.11.B.12.A二、填空题13.答案为:9.14.答案为:.15.答案为:②④.17.解:(1)+k=(3+4k,2+k),2﹣=(﹣5,2),∵(+k)⊥(2﹣),∴(+k)•(2﹣)=(3+4k)×(﹣5)+(2+k)×2=0,解得k=﹣.(2)设=(x,y),∵∥,且||=,∴,解得,或,∴向量的坐标为,或.18.解:(1)将a=3代入A中不等式,得x2﹣2x﹣15<0,解得﹣3<x<5,即A=(﹣3,5).将a=3代入B中等式,得y=3x﹣6,∵x≤2,∴0<3x≤9,即﹣6<3x﹣6≤3,∴B=(﹣6,3],A∪B=(﹣6,5).(2)∵A∩B=A,∴A⊆B,由B中y的范围为﹣2a<y≤9﹣2a,即B=(﹣2a,9﹣2a).由A看不等式变形,得x2﹣2x+1﹣a2﹣2a﹣1<0,即(x﹣1)2﹣(a+1)2<0,整理得(x+a)(x﹣a﹣2)<0.∵A ∩B=A ,∴A ⊆B ,当a=﹣1时,A=∅,满足题意;当a +2>﹣a ,即a >﹣1时,A=(﹣a ,a +2).∵A ⊆B ,∴解得; 当a +2<﹣a ,即a >﹣1时,A=(a +2,﹣a ).∴A ⊆B ,∴解得(舍去).综上a=﹣1或.19.解:(1)A=2,,ω=2,所以.(2)令,k ∈Z ,求得.又因为x ∈[0,π],所以函数y=f (x )在[0,π]的单调增区间为和.(3)由,求得或,函数f (x )在每个周期上有两个零点,所以共有5个周期,所以b ﹣a 最大值为.20.解:(1)当x=6时,d=x +b=6+b=10,则b=4,当x=16时,,则a=1;所以a=1,b=4.…(2)①当0<x ≤6时,,当6<x <17时,所以.…②当0<x≤6时,,不符合题意,当6<x<17时,解得15≤x<123,所以15≤x<17∴汽车速度x的范围为[15,17).…21.解:(1)=﹣=+﹣(+)=+﹣(+)=+﹣(+)=﹣=λ+,∴λ=﹣,μ=,∴λ+μ=.(2)以AB,AD为x,y轴建立直角坐标系如图:AB=,BC=2则A(0,0),B(,0),E(,1),设F(x,2),∴=(,1),=(x﹣,2),∵•=1,∴(x﹣)+2=1,∴x=,∴|DF|=.22.解:(1)设e x=t,则x=lnt>0,所以f(t)=a(lnt)2﹣lnt所以f(x)=a(lnx)2﹣lnx(x>0);…(2)设lnx=m(m≤0),则f(x)=g(m)=am2﹣m当a=0时,f(x)=g(m)=﹣m,g(m)的值域为[0,+∞)当a≠0时,若a>0,,g(m)的值域为[0,+∞)若a<0,,g(m)在上单调递增,在上单调递减,g(m)的值域为…综上,当a≥0时f(x)的值域为[0,+∞)当a<0时f(x)的值域为;…(3)因为对任意总有所以h(x)在[e﹣3,e﹣1]满足…设lnx=s(s∈[﹣3,﹣1]),则,s∈[﹣3,﹣1]当1﹣a<0即a>1时r(s)在区间[﹣3,﹣1]单调递增所以,即,所以(舍)当a=1时,r(s)=s﹣1,不符合题意…当0<a<1时,则=a(s+)﹣1,s∈[﹣3,﹣1]若即时,r(s)在区间[﹣3,﹣1]单调递增所以,则若即时r(s)在递增,在递减所以,得若即时r(s)在区间[﹣3,﹣1]单调递减所以,即,得…综上所述:.。
湖北省宜昌市高一上学期数学期末考试试卷

湖北省宜昌市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高三上·凌源期末) 已知集合,,则()A .B .C .D .2. (2分) (2018高一上·会泽期中) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A . y=xB . y=lg xC . y=2xD . y=3. (2分) (2016高一下·宁波期中) 若,则α+β为()A .B .C .D .4. (2分)已知实数a=ln(lnπ),b=lnπ,c=2lnπ ,则a,b,c的大小关系为()A . a<b<cB . a<c<bC . b<a<cD . c<a<b5. (2分)下列函数中既是奇函数又是上的增函数的是()A .B .C .D .6. (2分) (2016高一下·雅安期末) 等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,则• =()A . 6B . ﹣6C . ﹣3D . 27. (2分)函数的部分图象如图所示,为了得到的图象,只需将f(x)的图象()A . 向右平移个单位B . 向右平移个单位C . 向左平移个单位D . 向左平移个单位8. (2分)已知cos(α﹣)=﹣,且α∈(﹣,0),则sin(α+ )等于()A . ﹣B .C .D . ﹣9. (2分)已知cosα=﹣,﹣π<α<0,则tanα等于()A .B . ﹣C .D . ﹣10. (2分) (2016高一上·赣州期中) 若f(lgx)=x,则f(3)=()A . 103B . 3C . 310D . lg311. (2分) (2016高一下·新化期中) 函数y=xcosx+sinx的图象大致为()A .B .C .D .12. (2分)已知,则f(1)+f(2)+…+f(2011)+f(2012)=()A . 0B .C . 1D . 2二、填空题 (共4题;共4分)13. (1分) (2019高一上·菏泽月考) 若扇形的圆心角为,半径为2,则扇形的面积为________.14. (1分) (2016高一上·长春期中) 若sinθ,cosθ是关于x的方程x2﹣x+a=0(a是常数)的两根,其中θ∈(0,π),则sinθ﹣cosθ=________15. (1分) M是△ABC的重心,则 =________.16. (1分)函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是________.三、解答题 (共6题;共40分)17. (5分)(2017·南京模拟) 已知△ABC是锐角三角形,向量 =(cos(A+ ),sin(A+ )), =(cosB,sinB),且⊥ .(Ⅰ)求A﹣B的值;(Ⅱ)若cosB= ,AC=8,求BC的长.18. (5分)已知正数x,y满足:x+y+3=xy,若对任意满足条件的x,y:(x+y)2﹣a(x+y)+1≥0恒成立,求实数a的取值范围.19. (10分) (2019高一上·盐城月考) 已知是定义在R上的奇函数,当时, .(1)求的解析式;(2)画出的图像,并根据图像写出函数的单调区间.20. (5分) (2017高一上·南开期末) 已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.21. (5分)为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月人住的游客人数,发现每年各个月份来客栈人住的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,人住客栈的游客人数基本相同;②人住客栈的游客人数在2月份最少,在8月份最多,相差约400人;③2月份人住客栈的游客约为100人,随后逐月递增直到8月份达到最多.(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;(2)请问哪几个月份要准备400份以上的食物?22. (10分) (2018高一上·集宁月考) 已知函数,且f(1)=3.(1)求m;(2)判断函数f(x)的奇偶性.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共40分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:。
数学---湖北省宜昌市长阳中学2017-2018学年高一(上)期末试卷(解析版)

湖北省宜昌市长阳中学2017-2018学年高一(上)期末数学试卷一、选择题1.(5分)若向量=(2,3),=(4,6),则=()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3)D.(﹣2,3)2.(5分)已知sinα+cosα=﹣,则sin2α=()A.B.C.D.3.(5分)下列区间中,使函数y=sin x为增函数的是()A.[﹣π,0] B.C.[0,π] D.4.(5分)已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣25.(5分)若f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)与f(3)的大小关系是()A.f(﹣4)<f(3)B.f(﹣4)>f(3)C.f(﹣4)=f(3)D.不能确定6.(5分)已知集合A={1,2,3},B={x|﹣1<x<3,x∈Z},则A∪B等于()A.{1} B.{1,2} C.{0,1,2,3} D.{1,2,3}7.(5分)函数f(x)=lg(2x﹣1)的定义域为()A.R B.(﹣∞,)C.[,+∞)D.(,+∞)8.(5分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣2,g(x)=C.f(x)=|x|,g(x)=D.f(x)=x,g(x)=()29.(5分)f(x)=,则f{f[f(﹣1)]}等于()A.0 B.π2C.πD.910.(5分)函数y=x﹣2在[,1]上的最大值是()A.B.C.﹣4 D.411.(5分)函数f(x)=2x+x﹣2的零点所在的区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)12.(5分)函数y=log(2x﹣x2)的单调减区间为()A.(0,1] B.(0,2)C.(1,2)D.[0,2]二、填空题13.(5分)cos300°的值等于.14.(5分)若log a3=m,log a2=n,a m+2n=.15.(5分)函数y=a x﹣2+2(a>0且a≠1)一定过定点.16.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.三、解答题17.(10分)已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},求:A∩B,A∪B,(∁U A)∩B,(∁U B)∩A,(∁U A)∩(∁U B).18.(12分)已知向量,的夹角为60°,且||=4,||=2,(1)求•;(2)求|+|.19.(12分)(1)已知cos b=﹣,且b为第二象限角,求sin b的值.(2)已知tanα=2,计算的值.20.(12分)已知=(1,1),=(1,﹣1),当k为何值时:(1)k+与﹣2垂直?(2)k+与﹣2平行?21.(12分)(1)已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.(2)已知f(x)为二次函数,且f(0)=2,f(x+1)﹣f(x)=x﹣1,求f(x).22.(12分)设向量=(sin2x,cos x+sin x),=(1,cos x﹣sin x),其中x∈R,函数f(x)=•.(1)求f(x)的最小正周期;(2)若f(θ)=1,其中0<θ<,求cos(θ﹣)的值.【参考答案】一、选择题1.A【解析】根据题意,向量=(2,3),=(4,6),则=﹣=(﹣2,﹣3);故选:A.2.D【解析】把sinα+cosα=﹣两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+sin2α=,则sin2α=﹣.故选D.3.B其增函数对应的单调递增区间为:[,],k∈Z.令k=0,可得,故选:B.4.D【解析】∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.5.A【解析】f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)=f(4),且f(4)<f(3),则f(﹣4)<f(3),故选:A.6.C【解析】∵B={x|﹣1<x<3,x∈Z}={0,1,2},∴A∪B={0,1,2,3},故选:C.7.D【解析】函数f(x)=lg(2x﹣1)有意义,可得2x﹣1>0,解得x>,则定义域为(,+∞).故选D.8.C【解析】A.函数g(x)=x0的定义域为{x|x≠0},所以两个函数的定义域不同,所以A不是相同函数B.g(x)==x﹣2,g(x)的定义域为{x|x≠﹣2},所以两个函数的定义域不同,所以B不是相同函数.C.由g(x)==|x|,得两个函数的定义域和对应法则,所以C表示的是相同函数.D.g(x)=()2=x,x≥0,两个函数的定义域不相同则,所以D表示的是不是相同函数.故选C.9.B【解析】由分段函数的表达式得f(﹣1)=0,f(0)=π,f(π)=π2,故f{f[f(﹣1)]}=π2,故选:B.10.D【解析】根据幂函数的性质函数在[,1]递减,故x=时,函数取最大值,最大值是4,故选:D.11.B【解析】因为函数f(x)=2x+x﹣2为递增函数,f(﹣1)=﹣1﹣2=﹣<0,f(0)=20+0﹣2=﹣1<0,f(1)=2+1﹣2=1>0,f(2)=4>0,f(3)=9>0,所以零点在区间(0,1)上,故选B.12.A【解析】令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.二、填空题13.【解析】cos300°=cos(﹣60°)=cos60°=,故答案为:.14.12【解析】由log a3=m,log a2=n,得a m=3,a n=2,则a m+2n=a m•a2n=3×4=12.故答案为:12.15.(2,3)【解析】由x﹣2=0,得x=2,此时y=3.∴函数y=a x﹣2+2(a>0且a≠1)一定过定点(2,3).故答案为(2,3).16.【解析】由题意可知A=3,T=2()=4π,ω==,当x=时取得最大值3,所以3=3sin(+φ),sin()=1,,∵,所以φ=,函数f(x)的解析式:f(x)=.故答案为:.三、解答题17.解:∵全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则∁U A={2,4,6,7},∁U B={0,1,3,7}∴A∩B={5,8},A∪B={0,1,2,3,4,5,6,8},(∁U A)∩B={2,4,6},(∁U B)∩A={0,1,3},(∁U A)∩(∁U B)={7}.18.解:(1)向量,的夹角为60°,且||=4,||=2,可得•=4×2×cos60°=8×=4;(2)|+|=====2.19.解:(1)∵cos b=﹣,且b为第二象限角,∴sin b==.(2)∵已知tanα=2,∴===.20.解:(1)=(1,1),=(1,﹣1),可得k+=(k+1,k﹣1),﹣2=(﹣1,3),由题意可得(k+)•(﹣2)=0,即为﹣(1+k)+3(k﹣1)=0,解得k=2,则k=2,可得k+与﹣2垂直;(2)k+与﹣2平行,可得3(k+1)=﹣(k﹣1),解得k=﹣,则k=﹣,可得k+与﹣2平行.21.解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[ax+b]=a(ax+b)+b=a2x+ab+b,又∵f[f(x)]=9x+4,∴a2x+ab+b=9x+4,即,解得或,∴f(x)=3x+1或f(x)=﹣3x﹣2;(2)∵f(x)为二次函数,∴设f(x)=ax2+bx+c,(a≠0),∵f(0)=2,∴c=2.由f(x+1)﹣f(x)=x﹣1,即a(x+1)2+b(x+1)+2﹣ax2﹣bx﹣2=x﹣1,解得:a=,b=﹣,∴f(x)的解析式为:f(x)=x2﹣x+2.22.解:(1)由题意得:f(x)=sin2x+(cos x+sin x)•(cos x﹣sin x),=sin2x+cos2x=2sin(2x+),故f(x)的最小正周期T==π;(2)由(1)可知,f(θ)=2sin(2θ+),若f(θ)=1,则sin(2θ+)=,又因为0<θ<,所以<2θ+<,则2θ+=,故θ=,当θ=时,cos(θ﹣)=cos(﹣)=,∴cos(θ﹣)的值.。
2017-2018高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。
一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。
错误!C .2D 。
错误!4。
函数()lg(2)f x x =+的定义域为 ( )A 。
(—2,1)B 。
[-2,1]C 。
()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。
湖北省宜昌市长阳县2017_2018学年高一数学上学期期末考试试题2_含答案 师生通用

长阳一中2017-2018学年度第一学期期末考试高一数学试卷考试时间 120分钟 试卷总分 150分一、选择题(每小题5分,共12小题,计60分)1、若{1,2}⊆A ⊆{1,2,3,4,5},则这样的集合A 有( )A.6个B.7个C.8个D.9个2、35sinπ的值是( ) A 、21B 、23C 、 23-D 、 21-3、已知α是第三象限的角,若1tan 2α=,则cos α=( ) A 、B、、D 、)322sin(34π-=x y 、函数 上单调递减、在区间]127,12[A ππ 上单调递增、在区间]127,12[B ππ上单调递减、在区间]3,6-[C ππ 上单调递增、在区间]3,6-[D ππ5、,则与向量已知点)1,4(B ),3,1(A - ( ) A 、(35,-45) B 、(45,-35) C 、(-35,45) D 、(-45,35)6、函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围( )A 、)1,1(-B 、 ),1(+∞-C 、}20|{-<>x x x 或D 、}11|{-<>x x x 或=β+α=β-π=α+π<β<π-π<α<)2cos(,33)24cos(,31)4cos(,02207则,、若A 、33 B 、-33 C 、539D 、-69方向上的投影为在向量则向量、若),4,3()1,2(8==A 、52B 、2C 、5D 、10的值,则的零点,且是函数,若实数、已知函数)x (f x x 0)x (f x x log )31()x (f 910102x <<-=A 、恒为正值B 、等于0C 、恒为负值D 、不大于0则有,、设,272cos 1c ,19tan 119tan 2b 7sin 237cos 21a 10002000-=-=+= A .b >a >c B .a >b >c C .a >c >b D .c >b >a11、已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<的最小正周期为π,若将()f x 的图象向左平移3π个单位后得到函数()g x 的图象关于y 轴对称,则函数()f x 的图象( ) A 、对称关于直线2x π= B 、对称关于直线3x π=C 、)对称,关于点(02πD 、 的解集为,则不等式上为减函数,且在、设奇函数0x)x (f )x (f 0)1(f )0,()x (f 12>--=-∞),1()0,1(+∞- 、A )1,0()1,( --∞、B ),1()1,(+∞--∞ 、C )1,0()0,1( -、D二、填空题(每小题5分,共4小题,计20分)是位于第三象限,则角、若点θθθθ)cos 2,cos (sin 13第 象限的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年湖北省宜昌市长阳中学高一(上)期末数学试卷一、选择题(共12小题,每题5分,在每小题给出的四个选项中,只有一项符合题目要求)1.(5.00分)若向量=(2,3),=(4,6),则=()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3) D.(﹣2,3)2.(5.00分)已知sinα+cosα=﹣,则sin2α=()A.B.C.D.3.(5.00分)下列区间中,使函数y=sinx为增函数的是()A.[﹣π,0]B.C.[0,π]D.4.(5.00分)已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣25.(5.00分)若f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)与f(3)的大小关系是()A.f(﹣4)<f(3)B.f(﹣4)>f(3)C.f(﹣4)=f(3)D.不能确定6.(5.00分)已知集合A={1,2,3},B={x|﹣1<x<3,x∈Z},则A∪B等于()A.{1}B.{1,2}C.{0,1,2,3}D.{1,2,3}7.(5.00分)函数f(x)=lg(2x﹣1)的定义域为()A.R B.(﹣∞,) C.[,+∞)D.(,+∞)8.(5.00分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣2,g(x)=C.f(x)=|x|,g(x)=D.f(x)=x,g(x)=()29.(5.00分)f(x)=,则f{f[f(﹣1)]}等于()A.0 B.π2C.πD.910.(5.00分)函数y=x﹣2在[,1]上的最大值是()A.B.C.﹣4 D.411.(5.00分)函数f(x)=2x+x﹣2的零点所在的区间是()A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)12.(5.00分)函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)cos300°的值等于.14.(5.00分)若log a3=m,log a2=n,a m+2n=.15.(5.00分)函数y=a x﹣2+2(a>0且a≠1)一定过定点.16.(5.00分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算过程)17.(10.00分)已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},求:A∩B,A∪B,(∁U A)∩B,(∁U B)∩A,(∁U A)∩(∁U B).18.(12.00分)已知向量,的夹角为60°,且||=4,||=2,(1)求•;(2)求|+|.19.(12.00分)(1)已知cosb=﹣,且b为第二象限角,求sinb的值.(2)已知tanα=2,计算的值.20.(12.00分)已知=(1,1),=(1,﹣1),当k为何值时:(1)k+与﹣2垂直?(2)k+与﹣2平行?21.(12.00分)(1)已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.(2)已知f(x)为二次函数,且f(0)=2,f(x+1)﹣f(x)=x﹣1,求f(x).22.(12.00分)设向量=(sin2x,cosx+sinx),=(1,cosx﹣sinx),其中x ∈R,函数f(x)=•.(1)求f(x)的最小正周期;(2)若f(θ)=1,其中0<θ<,求cos(θ﹣)的值.2017-2018学年湖北省宜昌市长阳中学高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每题5分,在每小题给出的四个选项中,只有一项符合题目要求)1.(5.00分)若向量=(2,3),=(4,6),则=()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3) D.(﹣2,3)【分析】根据题意,由向量运算的三角形法则可得=﹣,由向量的减法运算公式计算可得答案.【解答】解:根据题意,向量=(2,3),=(4,6),则=﹣=(﹣2,﹣3);故选:A.2.(5.00分)已知sinα+cosα=﹣,则sin2α=()A.B.C.D.【分析】把已知的等式两边平方,左边利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,整理后即可求出sin2α的值.【解答】解:把sinα+cosα=﹣两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+sin2α=,则sin2α=﹣.故选:D.3.(5.00分)下列区间中,使函数y=sinx为增函数的是()A.[﹣π,0]B.C.[0,π]D.【分析】根据正弦函数的性质即可求解.【解答】解:函数y=sinx其增函数对应的单调递增区间为:[,],k∈Z.令k=0,可得,故选:B.4.(5.00分)已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣2【分析】利用向量共线定理即可得出.【解答】解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.5.(5.00分)若f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)与f(3)的大小关系是()A.f(﹣4)<f(3)B.f(﹣4)>f(3)C.f(﹣4)=f(3)D.不能确定【分析】由题意可得f(﹣4)=f(4),且f(4)<f(3),即可得到所求大小关系.【解答】解:f(x)是偶函数,其定义域为(﹣∞,+∞),且在[0,+∞)上是减函数,则f(﹣4)=f(4),且f(4)<f(3),则f(﹣4)<f(3),故选:A.6.(5.00分)已知集合A={1,2,3},B={x|﹣1<x<3,x∈Z},则A∪B等于()A.{1}B.{1,2}C.{0,1,2,3}D.{1,2,3}【分析】根据集合并集的定义进行求解即可.【解答】解:∵B={x|﹣1<x<3,x∈Z}={0,1,2},∴A∪B={0,1,2,3},故选:C.7.(5.00分)函数f(x)=lg(2x﹣1)的定义域为()A.R B.(﹣∞,) C.[,+∞)D.(,+∞)【分析】函数f(x)=lg(2x﹣1)有意义,可得2x﹣1>0,解不等式即可得到所求定义域.【解答】解:函数f(x)=lg(2x﹣1)有意义,可得2x﹣1>0,解得x>,则定义域为(,+∞).故选:D.8.(5.00分)下列各组函数中,表示同一函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣2,g(x)=C.f(x)=|x|,g(x)=D.f(x)=x,g(x)=()2【分析】分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:A.函数g(x)=x0的定义域为{x|x≠0},所以两个函数的定义域不同,所以A不是相同函数B.g(x)==x﹣2,g(x)的定义域为{x|x≠﹣2},所以两个函数的定义域不同,所以B不是相同函数.C.由g(x)==|x|,得两个函数的定义域和对应法则,所以C表示的是相同函数.D.g(x)=()2=x,x≥0,两个函数的定义域不相同则,所以D表示的是不是相同函数.故选:C.9.(5.00分)f(x)=,则f{f[f(﹣1)]}等于()A.0 B.π2C.πD.9【分析】根据分段函数的表达式,利用代入法进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=0,f(0)=π,f(π)=π2,故f{f[f(﹣1)]}=π2,故选:B.10.(5.00分)函数y=x﹣2在[,1]上的最大值是()A.B.C.﹣4 D.4【分析】根据幂函数的单调性求出函数的最大值即可.【解答】解:根据幂函数的性质函数在[,1]递减,故x=时,函数取最大值,最大值是4,故选:D.11.(5.00分)函数f(x)=2x+x﹣2的零点所在的区间是()A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)【分析】将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为函数f(x)=2x+x﹣2为递增函数,f(﹣1)=﹣1﹣2=﹣<0,f(0)=20+0﹣2=﹣1<0,f(1)=2+1﹣2=1>0,f(2)=4>0,f(3)=9>0,所以零点在区间(0,1)上,故选:B.12.(5.00分)函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]【分析】令t=2x﹣x2>0,求得函数的定义域,且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质求得函数t在定义域内的增区间.【解答】解:令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5.00分)cos300°的值等于.【分析】利用诱导公式进行化简所给的式子,可得结果.【解答】解:cos300°=cos(﹣60°)=cos60°=,故答案为:.14.(5.00分)若log a3=m,log a2=n,a m+2n=12.【分析】由对数函数化为指数函数,然后由指数函数的运算性质计算得答案.【解答】解:由log a3=m,log a2=n,得a m=3,a n=2,则a m+2n=a m•a2n=3×4=12.故答案为:12.15.(5.00分)函数y=a x﹣2+2(a>0且a≠1)一定过定点(2,3).【分析】由指数式的指数等于0求得x值,进一步求得y值,则答案可求.【解答】解:由x﹣2=0,得x=2,此时y=3.∴函数y=a x﹣2+2(a>0且a≠1)一定过定点(2,3).故答案为(2,3).16.(5.00分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.【分析】由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值3,求出φ,得到函数的解析式,即可.【解答】解:由题意可知A=3,T=2()=4π,ω==,当x=时取得最大值3,所以3=3sin(+φ),sin()=1,,∵,所以φ=,函数f(x)的解析式:f(x)=.故答案为:.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算过程)17.(10.00分)已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},求:A∩B,A∪B,(∁U A)∩B,(∁U B)∩A,(∁U A)∩(∁U B).【分析】根据集合的基本运算进行求解即可.【解答】解:∵全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则∁U A={2,4,6,7},∁U B={0,1,3,7}∴A∩B={5,8},A∪B={0,1,2,3,4,5,6,8},(∁U A)∩B={2,4,6},(∁U B)∩A={0,1,3},(∁U A)∩(∁U B)={7}.18.(12.00分)已知向量,的夹角为60°,且||=4,||=2,(1)求•;(2)求|+|.【分析】(1)运用向量数量积的定义,计算即可得到所求值;(2)运用向量数量积的性质:向量的平方即为模的平方,计算即可得到所求值.【解答】解:(1)向量,的夹角为60°,且||=4,||=2,可得•=4×2×cos60°=8×=4;(2)|+|=====2.19.(12.00分)(1)已知cosb=﹣,且b为第二象限角,求sinb的值.(2)已知tanα=2,计算的值.【分析】(1)由题意利用同角三角函数的基本关系求得sinb的值.(2)由题意利用同角三角函数的基本关系求得要求式子的值.【解答】解:(1)∵cosb=﹣,且b为第二象限角,∴sinb==.(2)∵已知tanα=2,∴===.20.(12.00分)已知=(1,1),=(1,﹣1),当k为何值时:(1)k+与﹣2垂直?(2)k+与﹣2平行?【分析】(1)求得k+=(k+1,k﹣1),﹣2=(﹣1,3),由向量垂直的条件:数量积为0,解方程即可得到所求值;(2)运用两向量平行的条件可得3(k+1)=﹣(k﹣1),解方程即可得到所求值.【解答】解:(1)=(1,1),=(1,﹣1),可得k+=(k+1,k﹣1),﹣2=(﹣1,3),由题意可得(k+)•(﹣2)=0,即为﹣(1+k)+3(k﹣1)=0,解得k=2,则k=2,可得k+与﹣2垂直;(2)k+与﹣2平行,可得3(k+1)=﹣(k﹣1),解得k=﹣,则k=﹣,可得k+与﹣2平行.21.(12.00分)(1)已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.(2)已知f(x)为二次函数,且f(0)=2,f(x+1)﹣f(x)=x﹣1,求f(x).【分析】(1)由题意,设f(x)=ax+b,代入f[f(x)]中,利用多项式相等,对应系数相等,求出a、b的值即可;(2)由题意,设f(x)=ax2+bx+c,由f(0)=2,f(x+1)﹣f(x)=x﹣1,利用待定系数法求解即可.【解答】解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[ax+b]=a(ax+b)+b=a2x+ab+b,又∵f[f(x)]=9x+4,∴a2x+ab+b=9x+4,即,解得或,∴f(x)=3x+1或f(x)=﹣3x﹣2;(2)∵f(x)为二次函数,∴设f(x)=ax2+bx+c,(a≠0),∵f(0)=2,∴c=2.由f(x+1)﹣f(x)=x﹣1,即a(x+1)2+b(x+1)+2﹣ax2﹣bx﹣2=x﹣1,解得:a=,b=﹣,∴f(x)的解析式为:f(x)=x2﹣x+2.22.(12.00分)设向量=(sin2x,cosx+sinx),=(1,cosx﹣sinx),其中x ∈R,函数f(x)=•.(1)求f(x)的最小正周期;(2)若f(θ)=1,其中0<θ<,求cos(θ﹣)的值.【分析】(1)根据向量的坐标运算,二倍角公式及辅助角公式,求得f(x)=2sin(2x+),由T=,即可求得f(x)的最小正周期;(2)由f(θ)=1,及0<θ<,即可求得θ,代入即可求得答案.【解答】解:(1)由题意得:f(x)=sin2x+(cosx+sinx)•(cosx﹣sinx),=sin2x+cos2x…2 分=2sin(2x+),…4 分故f(x)的最小正周期T==π…5 分(2)由(1)可知,f(θ)=2sin(2θ+)…6 分若f(θ)=1,则sin(2θ+)=…7 分又因为0<θ<,所以<2θ+<,则2θ+=,故θ=…10 分当θ=时,cos(θ﹣)=cos(﹣)=,∴cos(θ﹣)的值.…12 分。