大体积混凝土温控技术
大体积混凝土施工温控措施(全文)

大体积混凝土施工温控措施(全文)文档一:正文:一:项目介绍该文档旨在详细介绍大体积混凝土施工的温控措施。
混凝土施工过程中,温度控制是十分重要的环节,对于确保混凝土的质量和性能具有重要影响。
本文将从混凝土浇筑前的准备工作、施工过程中的温度控制措施以及施工后的养护情况等方面进行详细介绍。
二:混凝土浇筑前的准备工作1. 环境温度监测:在进行混凝土浇筑前,需要对施工场地的环境温度进行监测,并记录下环境温度的变化情况。
这将有助于后续的施工过程中的温度控制。
2. 混凝土材料处理:在混凝土浇筑前,需要对混凝土材料进行处理,以控制混凝土的初始温度。
可以采取降温措施,如在水泥中添加冷却剂等。
三:施工过程中的温度控制措施1. 浇筑方式的选择:在大体积混凝土浇筑过程中,可以采用分层浇筑的方式进行。
即将混凝土分为若干层进行浇筑,并在每层浇筑结束后进行养护,以控制混凝土的温度上升。
2. 水泥浆温度控制:如果环境温度较高,可以适当降低水泥浆的温度,控制混凝土的温度上升速度。
可以通过控制水泥与水的比例、水温等方式实现。
3. 外部温度控制:在施工过程中,可以采取遮阳措施,降低环境温度对混凝土的影响。
可以利用遮阳网、喷水等方式进行控制,并且可以根据环境温度的变化进行调整。
四:施工后的养护情况1. 养护时间:混凝土浇筑完成后,需要进行养护,以控制温度的变化。
养护时间一般为28天,可以根据具体情况进行调整。
2. 养护方式:养护方式可以采用喷水、覆盖养护剂等方式进行。
养护过程中需要注意保持养护湿度,并避免混凝土表面过早干燥。
可以根据养护情况的变化,适时进行调整。
附件:1. 环境温度监测记录表2. 混凝土浇筑前处理记录3. 施工过程中温度控制记录4. 养护情况记录表法律名词及注释:1. 温度控制:混凝土施工过程中,通过采取一系列措施,控制混凝土的温度,以确保施工质量和性能。
2. 养护:混凝土施工完成后的一种保护性措施,目的是控制混凝土的温度和湿度,以增强混凝土的强度和耐久性。
大体积混凝土温控措施及监控技术

数据采集与传输
采用自动化数据采集系统,定期收集 和传输温度数据,以供分析和决策。
数据分析与预警
对收集到的温度数据进行实时分析, 预测混凝土温度变化趋势,及时提出 预警。
信息化管理系统
建立大体积混凝土温控信息化管理系 统,实现温度监测数据的可视化和管 理。
实施效果评估
温度控制效果 混凝土性能检测
工程安全评估 经验教训总结
分析实施温控措施后混凝土内部和表面的温度变化,评估温控 措施的有效性。
对实施温控措施后的混凝土进行抗压强度、抗裂性能等关键性 能的检测,确保混凝土质量满足设计要求。
综合考虑温控措施实施效果及混凝土性能检测结果,对工程安 全性进行评估。
总结实践过程中的经验教训,为后续类似工程提供借鉴和改进 思路。
05
监测系统布局
温控监测点的布置应与大体积混凝土温控监测系统相配合 ,形成有效的温度监测网络,实现对混凝土温度变化的全 面监控。
温度监测设备与方法
01
温度传感器
常用的温度传感器有热电偶、热电阻等,它们能够实时测量混凝土内部
的温度,并将数据传输给监测系统进行处理分析。
02
数据采集设备
数据采集设备负责接收温度传感器传输的数据,并进行初步处理,将处
理后的数据发送给监测系统进行分析和展示。
03
监测方法
常用的监测方法有实时监测和定期监测两种。实时监测能够随时掌握混
凝土内部温度变化情况,定期监测则可根据需要设定监测时间间隔,了
解混凝土温度变化的趋势。
温控数据分析与处理
数据处理流程
温控数据分析与处理流程包括数据接收、预处理、特征提取、模型建立和预测等步骤,通 过对数据的深入挖掘和分析,为混凝土温控提供科学依据。
大体积混凝土温控措施

大体积混凝土温控措施一、背景介绍随着建筑业的不断发展,大体积混凝土的使用越来越广泛。
然而,由于混凝土的自身性质,其在养护期间易受温度影响,从而导致裂缝、变形等问题。
因此,对于大体积混凝土的温控措施显得尤为重要。
二、温度对混凝土的影响1.温度变化会导致混凝土内部产生应力,从而引起裂缝。
2.高温会使得混凝土过早干燥,从而降低强度。
3.低温会使得混凝土的硬化速率变慢,从而延长养护时间。
三、大体积混凝土的温控措施1.预防性措施(1)选择合适的材料:选择早强水泥、矿物掺合料等材料可以缩短养护时间。
(2)调整配合比:通过调整水灰比、骨料粒径等参数可以改善混凝土内部结构,提高其耐久性和抗裂性。
(3)采用降温剂:在混凝土中加入降温剂可以有效降低混凝土的温度,从而减小温度应力。
(4)使用遮阳板:在混凝土表面覆盖遮阳板可以防止太阳直射,从而避免混凝土过早干燥。
2.治理性措施(1)喷水养护:在混凝土表面喷水可以降低其表面温度,从而缓解温度应力。
(2)覆盖湿布:在混凝土表面覆盖湿布可以保持其表面湿润,从而延长养护时间。
(3)加热养护:在低温环境下采用加热设备对混凝土进行养护,可以提高其硬化速率。
四、具体实施步骤1.根据工程要求选择合适的预防性措施,并在施工前进行预处理。
2.采用实时监测技术对混凝土内部温度进行监测,并根据实际情况调整治理性措施。
3.严格控制施工过程中的环境条件,如遮阳、通风等。
4.对于高重要性的工程,应采用加热养护等措施进行强化处理。
5.根据实际情况及时调整措施,并对温度变化进行记录和分析,以便于后期总结经验。
五、总结大体积混凝土的温控措施是建筑工程中非常重要的一环。
通过选择合适的材料、调整配合比、采用降温剂等预防性措施和喷水养护、覆盖湿布、加热养护等治理性措施,可以有效降低混凝土内部应力,避免裂缝和变形等问题的发生。
在实施过程中需要严格控制环境条件,并根据实际情况及时调整措施。
最终达到保证建筑质量和提高工作效率的目的。
大体积混凝土施工温控指标

大体积混凝土施工温控指标大体积混凝土施工中,温度的控制是非常重要的。
温度的控制不仅影响着混凝土的强度、耐久性和变形性能,还影响着混凝土的开裂和裂缝的发生。
因此,我们需要对大体积混凝土施工中的温度进行控制。
一、大体积混凝土施工中温度的控制1.控制混凝土的温升速率大体积混凝土的温升速率不能过快,应该控制在3℃/h以下。
如果温升速率过快,会导致混凝土出现裂缝和变形等问题。
2.控制混凝土的最高温度大体积混凝土的最高温度一般控制在70℃以下。
如果温度过高,会导致混凝土内部的水分蒸发过快,从而引起混凝土的收缩和变形。
3.控制混凝土的温度梯度大体积混凝土的温度梯度应该控制在20℃以下。
如果温度梯度过大,会导致混凝土的收缩和变形,从而引起裂缝的发生。
二、大体积混凝土施工中的温控措施1.冷却措施在大体积混凝土施工中,可以采取冷却措施来控制温度。
例如,在混凝土的配合中添加冰块或冰水,或在混凝土表面喷水冷却等。
2.保温措施在大体积混凝土施工中,可以采取保温措施来控制温度。
例如,在混凝土表面覆盖保温材料,或在混凝土表面喷涂保温材料等。
3.减少混凝土的体积在大体积混凝土施工中,可以采取减少混凝土体积的措施来控制温度。
例如,分段施工,或采用小型模板施工等。
4.控制混凝土配合比在大体积混凝土施工中,可以通过控制混凝土配合比来控制温度。
例如,通过减少水泥用量,增加细集料用量等。
三、大体积混凝土施工中的注意事项1.混凝土施工时要注意天气条件,避免在高温、低温和潮湿的天气条件下施工。
2.混凝土施工时要注意混凝土的浇筑方式,避免浇筑过程中出现温度差异。
3.混凝土施工时要注意混凝土的养护,保持混凝土表面的湿润。
4.混凝土施工时要注意加强施工管理,确保施工质量。
大体积混凝土施工中的温度控制是非常重要的,需要采取相应的措施来控制温度。
同时,施工过程中需要注意一些细节问题,确保施工质量。
大体积混凝土温控技术

引言概述:大体积混凝土温控技术是指在施工过程中对大体积混凝土结构进行温度控制的一种技术手段。
由于大体积混凝土结构在硬化过程中会产生热量,导致温度升高,进而引起热应力和收缩裂缝的产生。
因此,合理有效地控制大体积混凝土的温度,对确保结构的质量和安全具有重要意义。
正文内容:1.温控技术的必要性1.1大体积混凝土的特点描述大体积混凝土的特点,如厚度、体积等。
1.2热应力和收缩裂缝的危害说明热应力和收缩裂缝对结构的危害,如减弱承载能力、影响使用寿命等。
1.3温控技术的作用引出温控技术的重要性,如预防裂缝的产生、提高结构的耐久性等。
2.温度监测与预测2.1温度监测的方法与设备介绍常用的温度监测方法和设备,如测温仪、无线传感器等。
2.2温度预测的模型与计算方法说明温度预测的常用模型和计算方法,如数值模拟、经验公式等。
3.温度控制策略3.1冷却措施分析常用的冷却措施,如水冷却、降温剂等,以降低混凝土温度。
3.2保温措施理解保温措施的重要性,如覆盖保温材料、增加外保温等,以减缓混凝土温度下降速度。
3.3控温措施探讨控温措施的实施方法,如采用节能型混凝土材料、控制施工进度等。
4.混凝土配合比的优化4.1卷曲热应力优化设计阐述通过优化混凝土配合比,减少卷曲热应力的方法。
4.2收缩裂缝控制设计介绍通过混凝土配合比的优化,减少收缩裂缝的控制设计。
4.3抗早期升温设计分析通过优化配合比,降低混凝土早期升温速率的设计。
5.温控技术的施工管理5.1温控技术的方案编制着重指出温控技术方案的编制,包括施工流程和措施的制定。
5.2温控技术的实施措施提出温控技术实施中需要关注的方面,如现场监测控温等。
5.3温控技术的验收和评估强调温控技术的验收和评估方法,如试验数据的分析和结构性能评估。
总结:大体积混凝土温控技术是确保结构质量和安全的重要手段。
通过温度监测与预测、温度控制策略、混凝土配合比的优化以及施工管理等方面的综合应用,可以有效地控制大体积混凝土的温度,预防裂缝的产生,提高结构的耐久性。
大体积混凝土的温控施工技术措施

大体积混凝土的温控施工技术措施1. 混凝土浇筑前,要对混凝土的温度、环境温度、浇筑方式和混凝土配合比进行合理设计和调整,以确保混凝土浇筑后能够控制温度的变化。
2. 采用冻土灌浆混凝土浇筑时,应在混凝土中掺加适量的冰块,以控制混凝土的温度。
3. 在夏季高温季节,可以采用夜间或清晨进行混凝土浇筑,以避免白天高温时对混凝土的影响。
4. 在严寒季节,应采取必要的保温措施,例如棚盖、加热设备等,以保证混凝土浇筑后能够充分凝固。
5. 在地下工程的混凝土浇筑中,应考虑地下水的影响,适当控制混凝土中的水泥用量,同时控制混凝土的水灰比,以避免混凝土出现冷缝等现象。
6. 在混凝土浇筑前应进行试块试验,以确保混凝土的强度符合要求。
7. 在混凝土浇筑时,应采用慢浇淋的方法,避免局部温度过高,影响混凝土的强度和稳定性。
8. 在混凝土浇筑完成后,应及时覆盖塑料薄膜或湿布等,以控制混凝土表面的蒸发,避免过快干燥导致开裂。
9. 对于大体积混凝土浇筑,应控制每次浇筑的体积,避免混凝土温度过高,导致混凝土强度、密实度不良。
10. 大体积混凝土浇筑前,应适当减少混凝土中的冷却剂用量,以避免混凝土温度过低,造成混凝土强度下降。
11. 在混凝土浇筑后应及时进行养护,确保混凝土的强度和稳定性,避免开裂、渗水等现象。
12. 在混凝土浇筑过程中应配合施工人员的操作,控制混凝土的密度,避免混凝土松散,导致混凝土强度下降。
13. 大体积混凝土浇筑时,采用水泥预冷处理,可以有效控制混凝土温度变化,提高混凝土强度和耐久性。
14. 大体积混凝土浇筑前应加装补偿器,避免因混凝土收缩导致混凝土开裂。
15. 混凝土浇筑前应采用布帘等方式保证混凝土充分凝固后,方可拆除布帘等措施,避免混凝土流失。
16. 在混凝土浇筑前应对施工场地进行必要的控制,如加盖遮阳棚等,以防止外部环境对混凝土的影响。
17. 在混凝土浇筑过程中应注意加强施工质量的监督管理,确保混凝土浇筑的质量和速度。
大体积混凝土温度控制

第2部分
确定灌浆温度是温控的又一标准。由于 坝体内部混凝土的稳定温度随具体部位而 异,一般情况下灌浆温度并不等于稳定温 度。通常在确定灌浆温度时,将坝体断面 的稳定温度场进行区分,对灌浆温度进行 分区处理,各区的灌浆温度取各区稳定温 度的平均值。
第2部分
稳定温度场是指混凝土坝经长期散热 后,浇筑时的初始温差和水化热影响趋于 消失,坝内各点温度趋于稳定,基本上不 再随时间有大的变化。一般当混凝土的温 度变幅小于外部水温或气温变幅的10%, 即可视为温度场基本稳定,坝内温度场由 变温场转变为常温场——稳定温度场。
第2部分
用基础约束应力作为控制标准,则
Tp Tr
Tf
T
(1 ) p
KK pREa
用混凝土的拉伸应变来控制,则
Tp Tr
Tf
T
(1 ) p
KK pRa
第2部分
注意: 在确定大体积混凝土温度控制标准时,须把
理论分析同已建工程的经验紧密结合起来。温 度控制的理论分析,忽略了不少实际因素。
1、混凝土材料的非均匀性; 2、浇筑块各向温度变化的非均匀性; 3、骨料的性质和类型; 4、基岩面的起伏程度; 5、基岩的吸热作用。
第1部分
贯穿裂缝和深层裂缝
变形和约束时产生应力的两个必要条件。 将基岩与已凝固的下部混凝土视为刚性基础, 这种基础对新浇混凝土升温膨胀期施加的约束称 为基础约束。 基础约束在降温收缩时引起拉应力,当拉应力 超过混凝土允许抗拉强度,产生基础约束裂缝。
第1部分
特点:
这种裂缝自基础面向上开展,严重时可能 贯穿整个坝段,称为贯穿裂缝,裂缝切割的深 度可达3~5m,也称深层裂缝。
大体积混凝土的温控方法

大体积混凝土的温控方法大体积混凝土(Mass Concrete)是指靠自身重力和内部温度控制来抵抗龟裂和温度变形的混凝土结构。
由于其较大的体积和热量积累效应,大体积混凝土在硬化过程中产生的温度升高会导致内部温度应力的产生,并可能引发龟裂,从而影响结构的安全性和可持续性。
为了解决大体积混凝土的温度控制问题,本文将介绍几种常用的温控方法。
1.预冷技术预冷技术是通过在混凝土浇筑前对骨料和水进行冷却处理,以降低混凝土的浇筑温度,减缓混凝土的升温速度,从而控制混凝土的内部温度变化。
预冷技术可以采用冰水或冰块将骨料和水进行预冷,也可以借助冷却剂的作用来实现。
预冷技术能有效降低大体积混凝土的温度升高速度,减小混凝土的温度差异,从而减少龟裂和变形的产生。
2.降温剂的应用降温剂是一种添加剂,可以通过改变混凝土内部的物理和化学反应,减少产热反应,降低混凝土的温度。
常用的降温剂包括冰冻盐水、冰冻融雪剂等。
在混凝土浇筑过程中适量添加降温剂,可以有效地降低混凝土的温度升高速度,控制内部温度差异,减少龟裂的风险。
3.隔热措施隔热措施是通过在混凝土结构的外部表面或内部设置隔热材料,减缓混凝土的热量传递速度,从而控制混凝土的温度升高。
常用的隔热材料包括聚苯板、泡沫混凝土等。
在大体积混凝土结构的外表面或内部适当安装隔热材料,可以有效减少外界温度对混凝土的影响,降低混凝土的温度升高速度。
4.冷却系统冷却系统是一种通过向混凝土结构中引入冷却剂或者水来降低混凝土温度的方法。
冷却系统通常由冷却管线、冷凝器和水泵等组成。
通过冷却系统,可以将冷却剂或水循环导入混凝土结构内部,降低混凝土的温度,有效控制混凝土的温度升高速度。
综上所述,大体积混凝土的温控方法包括预冷技术、降温剂的应用、隔热措施和冷却系统。
这些方法旨在减缓混凝土的温度升高速度,控制内部温度差异,降低龟裂和变形的风险。
在实际工程中,应根据具体情况选择适合的温控方法,并综合考虑材料成本、施工条件和项目要求等因素,以确保大体积混凝土结构的安全性和可持续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁波铁路枢纽大体积混凝土温控技术摘要随着我国地铁交通事业的蓬勃发展,大体积混凝土的使用也随之增加。
而大体积混凝土的裂缝问题也日益突出,已成了普遍性的问题。
本文通过开展对宁波南站站大体积混凝土温度控制研究,选用中低热水泥,掺入矿粉和粉煤灰,降低水化热,设计冷却系统,严格控制保温养护措施,对施工过程实施温度监测,实现了大体积混凝土温度控制的信息化施工,达到了预期的混凝土防裂要求。
关键词:大体积混凝土;温度控制;裂缝;水化热.1.引言大体积混凝土施工地铁车站施工中最为常见的施工工艺,而通过温控措施,保证大体积混凝土结构的质量,控制温度应力导致的结构裂缝便是重中之重。
大体积混凝土特点是:体积大、钢筋密、混凝土用量多,结构厚实、工程条件复杂,施工技术和质量要求高,水泥水化热易积聚而使结构产生温度变形、混凝土绝热温升高和收缩大。
本文通过对宁波铁路枢纽南站改工程底板大体积混凝土施工的温控研究,采取降温措施,监控混凝土内部温度,达到了预期的混凝土防裂要求。
2工程概况宁波市轨道交通二号线铁路南站站车站全长245.45m(外包),里程为SDK6+404.184~SDK6+581.784。
车站标准段基坑形状不规则,标准段净宽43.7m~46.1m,南端头井净宽约为60.2m,北端净宽约为58.4m。
铁路南站站主体占地面积约为11863平方米。
结构底板厚度为2.5m,局部厚度3.85m,其中最大一块底板混凝土方量共为5000m³,该段底板南北距离为41m,东西距离为47m。
3大体积混凝土的温控方案设计3.1优化配合比,降低水化热铁路南站站底板厚2.5m,底板梁厚3.85m,混凝土为C40P10。
底板施工时正值夏季,昼夜温差大,白天温度高达35℃左右,导致混凝土结构内外温差大,容易产生温度裂缝。
为了减少温度裂缝产生对混凝土的质量的影响,项目部搅拌站根据图纸及规范要求进行多次配合比论证,降低水化热。
同时降低混凝土的出机温度,混凝土入模温度以达到控制温度裂缝的目的。
因此,项目部从原材料处入手,优化配合比,优选了如下材料:(1)水泥:水泥用量控制在285kg/m3左右;水泥进场时必须有质量证明书并及时进行取样复试试验报告,同时要求水泥入机温度不大于60℃。
(2)粉煤灰:粉煤灰作为胶凝材料的一部分起增强作用,发热的速率较低,等量取代水泥可使混凝土内部顶峰温度显著降低。
达到顶峰温度的时间也向后推迟,水化热缓慢释放,减小了升温的幅度,从而降低了混凝土内外部的温差,防止大体积混凝土开裂。
粉煤灰代替部分水泥,同时也可代替部分砂子而增加混凝土的和易性、流动性、粘聚性、保水性、稳定性和可泵性,增加灰浆,减少了泌水性,提高了密实度和抗渗性,也改善混凝土的后期强度。
(3)矿粉:本工程采取矿粉和粉煤灰双掺的方式以充分发挥二者之间的“优势互补效应”。
粉煤灰和矿粉的微集料效应和二次水化效应,使后期强度均有大幅度的增长,解决大体积混凝土的水化热和收缩问题,提高其抗裂性。
(4)细骨料:采用河砂,级配良好,细度模数宜在2.6~2.8之间,含泥量在3%以下,砂率应控制在38%~42%之间。
(5)粗骨料:采用5-25mn连续级配、空隙率小的碎石,其含泥量不超过1.0%,选择强度高、含泥量低的粗骨料,一是为了增强骨料本身的强度,二是可以提高骨料在混凝土中的所占体积,能大幅度降低水泥用量,而且石块本身也吸收热量,从而降低混凝土的温升,使水化热进一步降低。
(6)减水剂:北京中砼缓凝型高效减水剂,在保持混凝土强度不变的情况下,一般可减少拌和用水15%左右,相应也减少水泥用量。
缓凝型减水剂可减缓水泥的硬化速度,延长混凝土初凝时间,为混凝土分层分块施工提供了有利条件,同时延缓水泥水化热峰值出现时间,而且为大体积混凝土的连续浇筑提供了保障。
项目搅拌站试验室根据规范及图纸要求,选定了水胶比分别为0.44、0.42、0.40、0.38的配合比进行试配。
同时根据试验混凝土拌合结果绘制强度、龄期(图2-1)曲线:图2-1 混凝土强度、龄期曲线通过不同水胶比的比对,选定了如下理论配合比:水泥:掺合料1:掺合料2:细骨料:粗骨料:外加剂:膨胀剂:抗裂纤维:水=1:0.23:0.154:2.77:3.67:0.022:0.154:0.61。
水胶比为0.40,水泥用量为285kg/m³。
该配比泵送混凝土应具有良好的和易性和粘聚性,不离析,不泌水。
按材料实际情况,进一步优选施工配合比;同时结合现场施工和材料情况,对施工配合比进行调整。
3.2控制浇筑温度,合理浇筑在每次混凝土开盘之前,试验室要量测水泥、砂、石、水的温度,并做记录,计算其出机温度,并估算浇筑温度。
根据计算的出机温度,反馈搅拌站,采取必要措施进行降温处理。
同时,搅拌站试验室对首盘混凝土进行开盘鉴定,全面了解本次浇筑混凝土首盘的工作性能。
对首盘混凝土测量其坍落度,观察混凝土坍落时分散情况、和易性等。
及时反馈首盘混凝土的质量至搅拌楼,搅拌站根据反馈信息进行进一步的调整与优化。
3.3优化浇筑方案,合理降温保温底板施工时,严格按照要求分层,原则上砼分层厚度不大于50cm,在上层砼即将初凝前浇筑下层砼,确保混凝土维持较好的工作性能,保证砼施工质量,杜绝板的龟裂出现。
在大体积混凝土施工过程中为了有效降低大体积混凝土的内外温差常采用分块浇筑。
为了保证结构的整体性和施工的连续性,采用全面分层法浇筑。
在浇筑过程中,混凝土振捣是一个重要环节,一定要严格按操作规程操作,做到快插慢拔,快插是为了防止上层混凝土振实后而下层混凝土内气泡无法排出,慢拔是为了能使混凝土能填满棒所造成的空洞。
浇筑混凝土时,振动器振实过程应做到:(1)使用插入式振动器时,移动间距不应超过振动器作用半径的1.5倍,与侧模应保持5-lOcm距离,应避开预埋件或监控元件10—15cm,应插入下层混凝土5-lOcm;(2)对每一部位混凝土必须振动到密实为止,密实的标志是:混凝土停止下沉,不再冒气泡,表面呈平坦、泛浆。
同时及时处理混凝土由于泌水而产生的水。
大体积混凝土浇筑完成后,采用外排内保的养护方式进行保温保湿养护,养护要求并应符合下列规定①、应专人负责保温养护工作,并应按本规范的有关规定操作,同时应做好测试记录;②、保湿养护的持续时间不得少于14d,应经常检查塑胶薄膜或养护剂涂层的完整情况,保持混凝土表面湿润。
③、保温覆盖层的拆除应分层逐步进行,当混凝土的表面温度与环境最大温差小于20℃时,可全部拆除。
④、在混凝土浇筑完毕初凝前,宜立即进行喷雾养护工作。
⑤、塑胶薄膜、麻袋、阻燃保温被等,可作为保温材料覆盖混凝土和模板,必要时,可搭设挡风保温棚或遮阳降温棚。
在保温养护过程中,应对混凝土浇筑体的里表温差和降温速率进行现场监测,当实测结果不满足温控指标的要求时,应及时调整保温养护措施。
3.3优化降温方案除了对混凝土配合比、浇筑方法控制外,在浇筑前,优化降温方案,通过两比选,选取最优降温措施。
预埋散热管,通入管内注水将内部热量散发。
在砼浇筑之前,预先在浇筑范围内按间距a=1.5m放置Ф48的钢管作散热管。
砼中心温度通过散热管传递到保温层下面,提高砼表面温度,减小温差。
散热管在底板地面找平前用同标号砼将其灌实。
选取A1板进行埋设散热管方案降温,测温并绘制A1板测温记录(图2-2)。
在底板钢筋绑扎过程中,在结构中心部位埋设Ф48的钢管作冷凝管。
冷凝管按双S型布置,进水管设置于底板一角,出水管设置于进水管对角。
底板混凝土浇筑完成后,往进水管里注水,通过循环水将混凝土内部热量带出,实现人工导热。
在混凝土内部温度稳定并停止测温后,往冷凝管进行注浆封闭。
选取A3板进行埋设冷凝管降温方案,测温并绘制A3板测温记录(图2-3)。
图2-2 A1板测温记录图2-3 A3板测温记录通过A1、A3板测温记录分析,3天混凝土温度均达到最大值,A1板温度为58.31℃,A3板温度为53.54℃,埋设冷凝管降温措施优于埋设散热管降温。
为了确认埋设冷凝器管方案的优越性,选取B4板埋设埋设冷凝管降温,并绘制了B4板测温记录(图2-4)。
图2-4 B4板测温记录通过对B4板测温记录,3天温度峰值为55.24℃,升温速率、降温速率接近A3板测温曲线。
可得出埋设冷凝管,采用循环水降温较好。
同时,采用冷凝管降温,相对于散热管灌注同标号混凝土后期注浆施工方便。
4混凝土温控现场监测在混凝土浇筑完成后及时进行温度监测,实现信息化控制,在混凝土内部布设8个温度测点,随时控制混凝土内的温度变化,以便及时调整保温及养护措施,使混凝土的温度梯度和湿度不至过大,以有效控制裂缝。
4.1温控监测的内容和要求在监测砼温度变化的同时,还应对气温、冷却水管进出口水温、混凝土出机温度,入模温度、浇筑温度等均进行监测。
出机温度、入模温度、浇筑温度监测应在砼浇筑过程中进行。
砼的温度监测,冷却水温度监测应在砼浇筑完成后立即进行且每天不少于4次测温,持续7天,转入每天测2次,随着砼温差变化减少,逐渐延长监测间隔时间,直到温度变化基本稳定。
每次检测完后及时填写混凝土测温记录表。
4.2温控标准针对本工程特点,依据相关规范标准,制定了如下温控标准:①砼浇注体升温:混凝土浇筑体在入模温度基础上的升温值不大于40℃。
②里表温差:混凝土浇筑体的里表温差不大于25℃。
③降温速度:混凝土浇筑体的降温速率为2℃/d。
④大气温差:混凝土浇筑体表面与大气温差不大于20℃。
4.3测温元件的选择与布置本工程采用的温度测试元件为型号为FAS-T-DZ120型温度传感器,其主要技术指标为:温度测量范围-50℃~+120℃;温度测量精度±0.3℃;采用的温度采集仪为FAS-XZRB-B1型便携式采集仪,其主要技术指标为:频率500~3500HZ;温度-50℃~120℃;精度±0.3℃。
大体积混凝土浇筑体内监测点的布置,应真实地反映出混凝土浇筑体内最高温升、里表温差、降温速率及环境温度,可按下列方式布置:①、监测点的布置范围应以所选混凝土浇筑体平面图对称轴线的半条轴线为测试区,在测试区内监测点按平面分层布置;②、在测试区内,监测点的位置与数量可根据温凝土浇筑体内温度场分布情况及温控的要求确定;③、在每条测试轴线上,监测点位宜不少于4处,应根据结构的几何尺寸布置;④、沿混凝土浇筑体厚度方向,必须布置外面、底面和中凡温度测点,其余测点宜按测点间距不大于600mm布置;⑤、保温养护效果及环境温度监测点数量根据具体需要确定;⑥、混凝土浇筑体的外表温度,宜为混凝土外表以内50mm处的温度;⑦、混凝土浇筑体底面的温度,宜为混凝土浇筑体底面上50mm处的温度。
详见如下示意图3-1、3-24-1 测温元件平面布置图 4-2测温元件立面布置图4.4温控监测的结果与分析根据所测温度,汇总混凝土温度情况表,绘制底板砼分块断面平均温度过程曲线(见图2-2、2-3、2-4)。