2012年广东省高考数学考试大纲解读全部高考考点

合集下载

2012年全国统一高考数学试卷(理科)(大纲版)答案与解析

2012年全国统一高考数学试卷(理科)(大纲版)答案与解析
菁优网版权所有
∴n=8 展开式的通项 = 令8﹣2r=﹣2可得r=5 此时系数为 =56 故答案为:56 【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的
2012年全国统一高考数学试卷(理科)(大纲 版)
参考答案与试题解析
一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的.) 1.(5分)复数 =( ) A.2+i B.2﹣i C.1+2i D.1﹣2i 【考点】复数代数形式的乘除运算. 【专题】计算题. 【分析】把 的分子分母都乘以分母的共轭复数,得 ,由此利用复数的代数形式的乘除运算,能求出结果. 【解答】解: = = =1+2i. 故选C. 【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认 真审题,仔细解答. 2.(5分)已知集合 ,B={1,m},A∪B=A,则m=( ) A.0或
. 故答案为: . 【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查 辅助角公式的应用与正弦函数的性质,将y=sinx﹣ cosx(0≤x<2π)化为y=2sin(x﹣ )(0≤x<2π)是关键,属于中档题. 15.(5分)若 的展开式中第3项与第7项的二项式系数相等,则该展开式中 的系数为 56 . 【考点】二项式系数的性质. 【专题】计算题;压轴题. 【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通 项可求满足条件的系数 【解答】解:由题意可得,
所有
菁优网版权
【专题】计算题. 【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数 y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等 于0,由此可求c的值. 【解答】解:求导函数可得y′=3(x+1)(x﹣1), 令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1; ∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减, ∴函数在x=﹣1处取得极大值,在x=1处取得极小值. ∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点, ∴极大值等于0或极小值等于0.

2012年高考数学广东卷含参考答案(理科)

2012年高考数学广东卷含参考答案(理科)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B y =C . 1()2xy =D . 1y x x=+5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-16.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ 和βα 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B .1 C .32 D .52二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 10.261()x x+的展开式中3x 的系数为__________.(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =________. 12.曲线33y x x =-+在点(1,3)处的切线方程为__________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为_______.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的 参数方程分别为⎩⎨⎧==ty t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,圆O 的半径为1,A ,B ,C 是圆上三点,且满足︒=∠30ABC ,过点A 做圆O 的切线与OC 的延长线交与点P ,则PA= .图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(2)(πω+=x x f (其中R x ∈>,0ω)的最小正周期为π10.(1) 求ω的值;(2) 设,56)355(,2,0,-=+⎥⎦⎤⎢⎣⎡∈παπβαf 1716)655(=-πβf ,求)cos(βα+的值. 17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100], (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a ++⋅⋅⋅+<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1) 求椭圆C 的方程(2) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.)21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012年普通高等学校招生全国统一考试(广东卷)理科数学A 卷参考答案一、选择题:1. D2. C3. A4. A5. B6. C7. D8. C 二、填空题:9.12x x ⎧⎫≤-⎨⎬⎩⎭ 10. 20 11. 2n-1 12. y=2x+1 13. 814. (1,1) 15.三、解答题:16. 解:(1)由f(x)得: 其最小正周期(2)由(1)得:同理由:又17. 解:(1)由图得:(2)由图得:由题知:21105T w w ππ==⇒=15w ∴=0,w >又1()2cos()56f x x π=+515(5)2cos 53536f παπαπ⎡⎤⎛⎫∴+=++ ⎪⎢⎥⎝⎭⎣⎦62cos 25πα⎛⎫=+=-⎪⎝⎭3sin 5α⇒=5168(5)cos 61717f βπβ-==得:,0,παβ⎡⎤∈⎢⎥4cos 5α∴==15sin 17β=cos()cos cos sin sin αβαβαβ∴+=-483151351751785=⨯-⨯=-()0.0060.0060.010.0540.006101x +++++⨯=0.018x ⇒=()()8090100.18901000.006100.06P X x P X ≤<==≤<=⨯=[)8090∴⨯在,的学生人数为:0.1850=9[)90100⨯在,的学生人数为:0.0650=30,1,2ξ=()()()2122993322212121212910,1,2222222C C C C P P P C C C ξξξ=========18. 解: (1)证明:(2)由(1)得:在矩形ABCD 中,如图所示建立直角坐标系,由(1)知,所以,二面角B-PC-A 的正切值为:3。

2012年高考数学广东卷(理科)附答案

2012年高考数学广东卷(理科)附答案

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)【详解人】佛山市南海区石门中学 黄伟亮参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高. 圆锥的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 一、选择题01. 设i 为虚数单位,则复数56ii-=( ) A .65i +B .65i -C .65i -+D .65i --解析:D .56i65i i-=--. 02. 设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6解析:C .{}3,5,6U C M =.3.(向量)若向量()2,3BA = ,()4,7CA =,则BC = ( )A .()2,4--B .()2,4C .()6,10D .()6,10--解析:A .()2,4BC BA CA =-=--.4.(函数)下列函数中,在区间()0,+∞上为增函数的是( ) A .()ln 2y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A .()ln 2y x =+在()2,-+∞上是增函数.5.已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-解析:B .画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11. 6.(立体几何)某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π解析:C .该几何体下部分是半径为3,高为5的圆柱,体积为23545V ππ=⨯⨯=,上部分是半径为3,高为4的圆锥,体积为2134123V ππ=⨯⨯⨯=,所以体积为57π.7.(概率)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A .49B .13C .29D .19解析:D .两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为51459=. 8.对任意两个非零的平面向量α和β,定义⋅=⋅ αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则= a b ( )A .12B .1C .32D .52解析:C .⋅==⋅ a a b a b b b b 1cos 2k θ=,= b b a a 2cos 2k θ=,两式相乘,可得212cos 4k kθ=.因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以1k 、2k 都是正整数,于是2121cos 124k k θ<=<,即1224k k <<,所以123k k =.而0≥>a b ,所以13k =,21k =,于是32= a b . 二、填空题(一)必做题(9—13题)9.(不等式)不等式21x x +-≤的解集为__________________.解析:1,2⎛⎤-∞- ⎥⎝⎦.2x x +-的几何意义是x 到2-的距离与x 到0的距离的差,画出数轴,先找出临界“21x x +-=的解为12x =-”,然后可得解集为1,2⎛⎤-∞- ⎥⎝⎦.10.(二项式定理)621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为_________.(用数字作答)解析:20.621x x ⎛⎫+ ⎪⎝⎭的展开式通项为()621231661kk k k kk T C x C x x --+⎛⎫== ⎪⎝⎭,令1233k -=,解得3k =,所以621x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为3620C =.11.(数列)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________.解析:21n -.设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-. 12.曲线33y x x =-+在点()1,3处的切线方程为___________________.解析:210x y -+=.21|3112x y ='=⨯-=,所以切线方程为()321y x -=-,即210x y -+=.13.(算法)执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为______.解析:8.第一次循环,()11221s =⨯⨯=,4i =,2k =;第二次循环,()12442s =⨯⨯=,6i =,3k =;第三次循环,()14683s =⨯⨯=,8i =,4k =.此时退出循环,输出s 的值为8.(二)选做题(14—15题)线1C 和14.(坐标系与参数方程)在平面直角坐标系xOy 中,曲2C 的参数方程分别为x ty =⎧⎪⎨⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 与2C 的交点坐标为________.解析:()1,1.法1:曲线1C 的普通方程是2y x =(0y ≥),曲线2C 的普通方程是222x y +=,联立解得11x y =⎧⎨=⎩,所以交点坐标为()1,1.法2:联立t θθ⎧=⎪22sin θθ=,即22cos 20θθ-=,解得cos θ=cos θ=(舍去),所以11t =⎧⎪,交点坐标为()1,1.15.(几何证明选讲)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足30ABC ∠=︒,过点A 作圆O 的切线与OC 的延长线交于点P ,则PA =__________.连接OA ,则60AOC ∠=︒,90OAP ∠=︒,因为1OA =,所以PA =三、解答题16.(三角函数)(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3sin 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c 1s 5α,15sin 17β=,所以()4831513co s co s c o s s in s i51751785αβαβαβ+=-=⨯-⨯=-.17.(概率统计)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中数学期望.成绩在90分以上(含90分)的人数记为ξ,求ξ的解析:(Ⅰ)由()0.00630.010.054101x ⨯+++⨯=,解得0.018x =.(Ⅱ)分数在[)80,90、[]90,100的人数分别是500.018109⨯⨯=人、500.006103⨯⨯=人.所以ξ的取值为0、1、2.()023921236606611C C P C ξ====,()113921227916622C C P C ξ====,()20392123126622C C P C ξ====,所以ξ的数学期望是691111012112222222E ξ=⨯+⨯+⨯==.18.(立体几何)(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.解析:(Ⅰ)因为PC ⊥平面BDE ,BD ⊂平面BDE ,所以PC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥.而PC PA P = ,PC ⊂平面PAC ,PA ⊂平面PAC ,所以BD ⊥平面PAC .(Ⅱ)由(Ⅰ)可知BD ⊥平面PAC ,而AC ⊂平面PAC ,所以BD AC ⊥,而ABCD 为矩形,所以ABCD 为正方形,于是2AB AD ==.z 轴,建立法1:以A 点为原点,AB 、AD 、AP 为x 轴、y 轴、空间直角坐标系A BDP -.则()0,0,1P 、()2,2,0C 、()2,0,0B 、()0,2,0D ,于是()0,2,0BC = ,()2,0,1PB =-.设平面PBC 的一个法向量为=1n (),,x y z ,则0BC PB ⎧⋅=⎪⎨⋅=⎪⎩11n n ,从而2020y x z =⎧⎨-=⎩,令1x =,得()1,0,2=1n .而平面PAC 的一个法向量为=2n ()2,2,0BD =- .所以二面角B PC A--的余弦值为cos ,⋅<>==121212n n n n n n ,于是二面角B P C --的正切值为3.法2:设AC 与BD 交于点O ,连接OE .因为PC ⊥平面BDE ,OE ⊂平面BDE ,BE ⊂平面BDE ,所以PC OE ⊥,PC BE ⊥,于是O E ∠就是二面角B PC A --的平面角.又因为BD ⊥平面PAC ,OE ⊂平面PAC ,所以OEB ∆是直角三角形.由OEC ∆∽PAC ∆可得OE PAOC PC=,而2A B A D ==,所以AC =OC =1PA =,所以3PC =,于是13PA OE OC PC =⨯=而OB =于是二面角B PC A --的正切值为3OB OE=.19.设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,n ∈*N ,且1a 、25a +、3a 成等差数列. (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1211132n a a a +++< . 解析:(Ⅰ)由()()12123213232725a a a a a a a a ⎧=-⎪+=-⎨⎪+=+⎩,解得11a =.(Ⅱ)由11221n n n S a ++=-+可得1221n n n S a -=-+(2n ≥),两式相减,可得122n n n n a a a +=--,即132n n n a a +=+,即()11232n n n n a a +++=+,所以数列{}2n n a +(2n ≥)是一个以24a +为首项,3为公比的等比数列.由1223a a =-可得,25a =,所以2293n n n a -+=⨯,即32n n n a =-(2n ≥),当1n =时,11a =,也满足该式子,所以数列{}n a 的通项公式是32n n n a =-.(Ⅲ)因为1113323222n n n n n ----=⋅≥⋅=,所以1323n n n --≥,所以1113n n a -≤,于是112111111131331113323213nnn n a a a -⎛⎫- ⎪⎡⎤⎛⎫⎝⎭+++≤+++==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- .点评:上述证法实质上是证明了一个加强命题1211131123nn a a a ⎡⎤⎛⎫+++≤-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,该加强命题的思考过程如下.考虑构造一个公比为q 的等比数列{}n b ,其前n 项和为()111n n b q T q-=-,希望能得到()1121111312nn b q a a a q -+++≤<- ,考虑到()11111n b q b q q-<--,所以令1312b q =-即可.由n a 的通项公式的形式可大胆尝试令13q =,则11b =,于是113n n b -=,此时只需证明1113n n n b a -≤=就可以了.当然,q 的选取并不唯一,也可令12q =,此时134b =,132n n b +=,与选取13q =不同的地方在于,当1n =时,1n nb a >,当2n ≥时,1n n b a <,所以此时我们不能从第一项就开始放缩,应该保留前几项,之后的再放缩,下面给出其证法.当1n =时,11312a =<;当2n =时,121113152a a +=+<;当3n =时,12311111315192a a a ++=++<. 当4n ≥时,1n nb a <,所以 31231132211111113311151951916212n n a a a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+++<+++<+++<- . 综上所述,命题获证.下面再给出1211132n a a a +++< 的两个证法. 法1:(数学归纳法) ①当1n =时,左边111a ==,右边32=,命题成立. ②假设当n k =(2k ≥,k ∈N )时成立,即113322ki ii =<-∑成立.为了证明当1n k =+时命题也成立,我们首先证明不等式:1111132332i i i i++<⋅--(1i ≥,i ∈N ). 要证1111132332i i i i++<⋅--,只需证1111132332i i i i +++<--⋅,只需证11132332i i i i +++->-⋅,只需证1232i i +->-⋅,只需证23->-,该式子明显成立,所以1111132332i i i i++<⋅--. 于是当1n k =+时,111211111113311323232332322k k ki ii i i i i i i ++====+<+<+⨯=----∑∑∑,所以命题在1n k =+时也成立.综合①②,由数学归纳法可得,对一切正整数n ,有1211132n a a a +++< . 备注:不少人认为当不等式的一边是常数的时候是不能用数学归纳法的,其实这是一个错误的认识. 法2:(裂项相消法)(南海中学钱耀周提供) 当1n =时,11312a =<显然成立.当2n =时,121113152a a +=+<显然成立. 当3n ≥时,()32122nn n n n a =-=+-12211122222n n n n n n n C C C --=+⋅+⋅++⋅+-()12211221222221n n n n n n C C C C n n --=+⋅+⋅++⋅>⋅=- ,又因为()252221a =>⨯⨯-,所以()21n a n n >-(2n ≥),所以()111112121n a n n n n ⎛⎫<=- ⎪--⎝⎭(2n ≥),所以 123111111111111311112234122n a a a a n n n ⎛⎫⎛⎫++++<+-+-++-=+-< ⎪ ⎪-⎝⎭⎝⎭ . 综上所述,命题获证.20.(解析几何)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.解析:(Ⅰ)因为e =,所以2223c a =,于是223a b =.设椭圆C 上任一点(),P x y ,则()()2222222222122443y PQ x y a y y y b b ⎛⎫=+-=-+-=--++ ⎪⎝⎭(b y b -≤≤).当01b <<时,2PQ 在y b =-时取到最大值,且最大值为244b b ++,由2449b b ++=解得1b =,与假设01b <<不符合,舍去.当1b ≥时,2PQ 在1y =-时取到最大值,且最大值为236b +,由2369b +=解得21b =.于是23a =,椭圆C 的方程是2213x y +=. (Ⅱ)圆心到直线l 的距离为d =,弦长AB =,所以O A B ∆的面积为12S A B d =⋅=,于是()2222211124S d d d ⎛⎫=-=--+ ⎪⎝⎭.而(),M m n 是椭圆上的点,所以2213m n +=,即2233m n =-,于是22221132d m n n==+-,而11n -≤≤,所以201n ≤≤,21323n ≤-≤,所以2113d ≤≤,于是当212d =时,2S 取到最大值14,此时S 取到最大值12,此时212n =,232m =.综上所述,椭圆上存在四个点⎝⎭、⎛ ⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 点评:此题与2012年南海区高三8月摸底考试的试题相似度极高.(2012年南海区高三8月摸底考试)已知椭圆C 的两焦点为()11,0F -、()21,0F ,并且经过点31,2M ⎛⎫⎪⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆O :221x y +=,直线l :1mx ny +=,证明:当点(),P m n 在椭圆C 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 所截得的弦长的取值范围.21.(不等式、导数)(本小题满分14分)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = . (Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点. 解析:(Ⅰ)考虑不等式()223160x a x a -++>的解.因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况: ①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞.②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ . ③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则1x =2x ={}12B x x x x x =<>或.当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中11x -,2x =(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当11a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得所以()f x 在D 内有极大值点1,极小值点a . ②当1a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根11m a ==,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点. 综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.。

2012年广东省高考数学试卷(理科)及详解

2012年广东省高考数学试卷(理科)及详解

2012年广东省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3D.﹣16.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.8.(5分)(2012•广东)对任意两个非零的平面向量和,定义•=.若平面向量,满足||≥||>0,与的夹角θ∈(0,),且•和•都在集合{|n∈Z}中,则•=()A.B.1C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.10.(5分)(2012•广东)中x3的系数为_________.(用数字作答)11.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=_________.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为_________.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_________.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为_________.15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与O C 的延长线交于点P,则图PA=_________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设,,,求cos(α+β)的值.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E 在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.19.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.2012年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i是虚数单位,则复数=()A.6+5i B.6﹣5i C.﹣6+5i D.﹣6﹣5i考点:复数代数形式的乘除运算.专题:计算题.分析:把的分子分母同时乘以i,得到,利用虚数单位的性质,得,由此能求出结果.解答:解:===﹣6﹣5i.故选D.点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}考点:补集及其运算.专题:计算题.分析:直接利用补集的定义求出C U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,2,4},则∁U M={3,5,6},故选C.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.3.(5分)(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)考点:平面向量的坐标运算.专题:计算题.分析:由向量,向量,知,再由,能求出结果.解答:解:∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.点评:本题考查平面向量的坐标运算,是基础题.解题时要认真解答,仔细运算.4.(5分)(2012•广东)下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.考点:对数函数的单调性与特殊点;函数单调性的判断与证明.专题:计算题.分析:利用对数函数的图象和性质可判断A正确;利用幂函数的图象和性质可判断B错误;利用指数函数的图象和性质可判断C正确;利用“对勾”函数的图象和性质可判断D的单调性解答:解:A,y=ln(x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A正确;B,在[﹣1,+∞)上为减函数;排除BC,在R上为减函数;排除CD,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选A点评:本题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,简单复合函数的单调性,属基础题5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=3x+y的最大值为()A.12 B.11 C.3D.﹣1考点:简单线性规划.专题:计算题.分析:先画出线性约束条件表示的可行域,在将目标函数赋予几何意义,数形结合即可得目标函数的最值解答:解:画出可行域如图阴影部分,由得C(3,2)目标函数z=3x+y可看做斜率为﹣3的动直线,其纵截距越大,z越大,由图数形结合可得当动直线过点C时,z最大=3×3+2=11故选B点评:本题主要考查了线性规划的思想、方法、技巧,二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题6.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π考点:由三视图求面积、体积.专题:计算题.分析:由题设知,组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱,分别根据两几何体的体积公式计算出它们的体积再相加即可得到正确选项解答:解:由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C点评:本题考查三视图还原几何体及求组合体的体积,解题的关键是熟练记忆相关公式及由三视图得出几何体的长宽高等数据,且能根据几何体的几何特征选择恰当的公式进行求体积的运算,7.(5分)(2012•广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C.D.考点:古典概型及其概率计算公式.专题:计算题;压轴题.分析:先求个位数与十位数之和为奇数的两位数的个数n,然后再求个位数与十位数之和为奇数的两位数的个数,由古典概率的求解公式可求解答:解:个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有=45记:“个位数与十位数之和为奇数的两位数中,其个位数为0”为事件A,则A包含的结果:10,30,50,70,90共5个由古典概率的求解公式可得,P(A)=故选D点评:本题主要考查了古典概率的求解公式的应用,解题的关键是灵活利用简单的排列、组合的知识求解基本事件的个数8.(5分)(2012•广东)对任意两个非零的平面向量和,定义•=.若平面向量,满足||≥||>0,与的夹角θ∈(0,),且•和•都在集合{|n∈Z}中,则•=()A.B.1C.D.考点:平面向量数量积的运算.专题:计算题;压轴题;新定义.分析:由题意可得•==,同理可得•==,故有n≥m且m、n∈z.再由cos2θ=,与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1),由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈(0,),可得cos2θ∈(,1),即∈(,1).故有n=3,m=1,∴•==,故选C.点评:本题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈(,1),是解题的关键,属于中档题.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)(2012•广东)不等式|x+2|﹣|x|≤1的解集为.考点:绝对值不等式的解法.不等式左边变形为分段函数的形式,然后再分三段解不等式,将每一段的不等式的解集并起来即可得到所求不等式的解集解答:解:∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为点评:本题考查绝对值不等式的解法,其常用解题策略即将其变为分段函数,分段求解不等式.10.(5分)(2012•广东)中x3的系数为20.(用数字作答)考点:二项式定理.出二项式的通项,再由通项确定出x3是展开式中的第几项,从而得出其系数解答:解:由题意,的展开式的通项公式是Tr+1==x12﹣3r令12﹣3r=3得r=3所以中x3的系数为=20故答案为20点评:本题考查二项式定理的通项,属于二项式考查中的常考题型,解答的关键是熟练掌握二项式的通项公式11.(5分)(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=2n﹣1.考点:等差数列的通项公式.专题:计算题.分析:由题意,设公差为d,代入,直接解出公式d,再由等差数列的通项公式求出通项即可得到答案解答:解:由于等差数列{a n}满足a1=1,,令公差为d所以1+2d=(1+d)2﹣4,解得d=±2又递增的等差数列{a n},可得d=2所以a n=1+2(n﹣1)=2n﹣1故答案为2n﹣1点评:本题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,需要熟练记忆公式.12.(5分)(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为2x﹣y+1=0.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先求出导函数,然后将x=1代入求出切线的斜率,利用点斜式求出直线的方程,最后化成一般式即可.解答:解:y′=3x2﹣1令x=1得切线斜率2所以切线方程为y﹣3=2(x﹣1)即2x﹣y+1=0故答案为:2x﹣y+1=0点评:本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.13.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.考点:循环结构.专题:阅读型.分析:由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.解答:解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:8点评:本题主要考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,同时考查了运算求解能力,属于基础题.14.(5分)(2012•广东)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为(1,1).考点:抛物线的参数方程;圆的参数方程.专题:压轴题.分析:把曲线C1与C2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C1与C2的交点坐标.解答:解:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为y2=x,x2+y2=2.解方程组可得,故曲线C1与C2的交点坐标为(1,1),故答案为(1,1).点评:本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于中档题.15.(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与O C 的延长线交于点P,则图PA=.考点:与圆有关的比例线段.专题:计算题;证明题;压轴题.分析:连接OA,根据同弧所对的圆周角等于圆心角的一半,得到∠AOC=60°.因为直线PA与圆O相切于点A,且OA是半径,得到△PAO是直角三角形,最后利用三角函数在直角三角形中的定义,结合题中数据可得PA=OAtan60°=.解答:解:连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=OAtan60°=故答案为:点评:本题给出圆周角的度数和圆的半径,求圆的切线长,着重考查了圆周角定理和圆的切线的性质,属于基础题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设,,,求cos(α+β)的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:(1)由题意,由于已经知道函数的周期,可直接利用公式ω==解出参数ω的值;(2)由题设条件,可先对,与进行化简,求出α与β两角的函数值,再由作弦的和角公式求出cos(α+β)的值.解答:解:(1)由题意,函数(其中ω>0,x∈R)的最小正周期为10π所以ω==,即所以(2)因为,,分别代入得及∵∴∴点评:本题考查了三角函数的周期公式及两角和与差的余弦函数,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于成熟题型,计算题.17.(13分)(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;古典概型及其概率计算公式.专题:计算题.分析:(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)不低于8(0分)的学生有12人,9(0分)以上的学生有3人,则随机变量ξ的可能取值有0,1,2,然后根据古典概型的概率公式求出相应的概率,从而可求出数学期望.解答:解:(1)由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018(2)由题意知道:不低于8(0分)的学生有12人,9(0分)以上的学生有3人随机变量ξ的可能取值有0,1,2∴点评:本题主要考查了频率分布直方图,以及古典概型的概率公式和离散型随机变量的数学期望,同时考查了计算能力和运算求解的能力,属于基础题.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E 在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:计算题;证明题;数形结合.分析:(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.解答:解:(1)∵PA⊥平面ABCD∴PA⊥BD∵PC⊥平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAC(2)设AC与BD交点为O,连OE∵PC⊥平面BDE∴PC⊥OE又∵BO⊥平面PAC∴PC⊥BO∴PC⊥平面BOE∴PC⊥BE∴∠BEO为二面角B﹣PC﹣A的平面角∵BD⊥平面PAC∴BD⊥AC∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3∴OC=在△PAC∽△OEC中,∴∴二面角B﹣PC﹣A的平面角的正切值为3点评:本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握19.(14分)(2012•广东)设数列{a n}的前n项和为S n,满足,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.考点:数列与不等式的综合;等差数列的性质;数列递推式.专题:计算题;证明题;综合题.分析:(1)在2S n=a n+1﹣2n+1+1中,令分别令n=1,2,可求得a2=2a1+3,a3=6a1+13,又a1,a2+5,a3成等差数列,从而可求得a1;(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1①,a n+1=3a n+2n②,由①②可知{a n+2n}为首项是3,3为公比的等比数列,从而可求a n;(3)(法一),由a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1可得≤,累加后利用等比数列的求和公式可证得结论;(法二)由a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n可得,<•,于是当n≥2时,<•,<•,,…,<•,累乘得:<•,从而可证得+++…+<.解答:解:(1)在2S n=a n+1﹣2n+1+1中,令n=1得:2S1=a2﹣22+1,令n=2得:2S2=a3﹣23+1,解得:a2=2a1+3,a3=6a1+13又2(a2+5)=a1+a3解得a1=1(2)由2S n=a n+1﹣2n+1+1,得a n+2=3a n+1+2n+1,又a1=1,a2=5也满足a2=3a1+21,所以a n+1=3a n+2n对n∈N*成立∴a n+1+2n+1=3(a n+2n),又a1=1,a1+21=3,∴a n+2n=3n,∴a n=3n﹣2n;(3)(法一)∵a n=3n﹣2n=(3﹣2)(3n﹣1+3n﹣2×2+3n﹣3×22+…+2n﹣1)≥3n﹣1∴≤,∴+++…+≤1++ +…+=<;(法二)∵a n+1=3n+1﹣2n+1>2×3n﹣2n+1=2a n,∴<•,,当n≥2时,<•,<•,,…<•,累乘得:<•,∴+++…+≤1++×+…+×<<.点评:本题考查数列与不等式的综合,考查数列递推式,着重考查等比数列的求和,着重考查放缩法的应用,综合性强,运算量大,属于难题.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.考点:圆与圆锥曲线的综合;直线与圆相交的性质;椭圆的标准方程.专题:综合题;压轴题.分析:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2,求出椭圆上的点到点Q的距离,利用配方法,确定函数的最大值,即可求得椭圆方程;(2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M的坐标.解答:解:(1)由得a2=3b2,椭圆方程为x2+3y2=3b2椭圆上的点到点Q的距离=①当﹣b≤﹣1时,即b≥1,得b=1②当﹣b>﹣1时,即b<1,得b=1(舍)∴b=1∴椭圆方程为(2)假设M(m,n)存在,则有m2+n2>1∵|AB|=,点O到直线l 距离∴=∵m2+n2>1∴0<<1,∴当且仅当,即m2+n2=2>1时,S△AOB取最大值,又∵解得:所以点M的坐标为或或或,△AOB的面积为.点评:本题考查椭圆的标准方程,考查三角形面积的求解,考查基本不等式的运用,正确表示三角形的面积是关键.21.(14分)(2012•广东)设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示);(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.考点:利用导数研究函数的极值;交集及其运算;一元二次不等式的解法.专题:计算题;压轴题.分析:(1)根据方程2x2﹣3(1+a)x+6a=0的判别式讨论a的范围,求出相应D即可;(2)由f'(x)=6x2﹣6(1+a)x+6a=0得x=1,a,然后根据(1)中讨论的a的取值范围分别求出函数极值即可.解答:解:(1)记h(x)=2x2﹣3(1+a)x+6a(a<1)△=9(1+a)2﹣48a=(3a﹣1)(3a﹣9)当△<0,即,D=(0,+∞)当,当a≤0,(2)由f'(x)=6x2﹣6(1+a)x+6a=0得x=1,a①当,f(x)在D内有一个极大值点a,有一个极小值点②当,∵h(1)=2﹣3(1+a)+6a=3a﹣1≤0h(a)=2a2﹣3(1+a)a+6a=3a﹣a2>0∴1∉D,a∈D∴f(x)在D内有一个极大值点a③当a≤0,则a∉D又∵h(1)=2﹣3(1+a)+6a=3a﹣1<0∴f(x)在D内有无极值点点评:本题主要考查了一元二次不等式的解法,以及利用导数研究函数的极值,同时考查了计算能力和分类讨论的数学思想,属于中档题.。

2012年广东省高考数学试题(文科)-标准答案和解析

2012年广东省高考数学试题(文科)-标准答案和解析

绝密★启用前 试卷类型:B2012年普通高等学校招生全国统一试卷(广东卷)数学(文科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:球的体积公式343V R π=,其中R 为球的半径. 锥体体积公式13V Sh =,其中S为锥体的底面积,h为锥体的高. 一组数据12,,,n x x x 的标准差()++-n s x x =, 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,则复数3+4i i= A.43i -- B .43i -+ C.43i + ﻩ D.43i -2.设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U C M =A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U3.若向量()1,2AB =,向量()3,4BC =,则AC =A.(4,6) B .(4,6)-- C .(2,2)-- D .(2,2)4.下列函数为偶函数的是A.sin y x =B.3y x = C .xy e = D .2+1y x =5.已知变量,x y 满足约束条件11+10x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2z x y =+的最小值为A .3B .1C .5- D.6-6.在ABC ∆中,若60A ∠=︒,45B ∠=︒,32BC =,则AC =A.3 B.3 3ﻩ 37.某几何体的三视图如图1所示,它的体积为A.72π B.48π C .30π D .24π8.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦 AB 的长等于A .33 B.23 3 D.19.执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为A .105 B.16 C.15D .110.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若两个非零的平面向量,a b 满足 图2 图1。

2012-2014年广东高考数学文科试卷考点分析

2012-2014年广东高考数学文科试卷考点分析
15
几何证明(三角形的相似比)
几何证明(垂直及余弦定理)
几何证明(相似三角形的性质)
解答
16
三角函数(三角函数的周期、诱导公式、同角关系式、两角和的余弦)
三角函数(三角函数诱导公式、同角关系式、两角和的余弦)
三角函数(特殊角三角函数值,两角和与差的正弦,同角三角函数关系)
17
概率(频率分布直方图)
概率(频数分布表,分层抽样,概率)
2012-2014年广东高考数学文科试卷考点分析
题型
题号
2012
2013
2014
选择
1
复数(简单运算)
集合运算(交集运算)
集合运算(列举法求并集)
2
集合运算(数集,补集运算)
函数的性质(定义域)
复数(乘除法运算)
3
平面向量(坐标运算)
复数(乘法运算,求模)
平面向量(坐标运算)
4
函数(函数的性质,偶函数知识)
20
圆曲线(直线、圆与圆锥曲线的综合问题,直线与椭圆相切的代数求解)
圆锥曲线(椭圆的几何性质,导数求曲线的切线,求最值)
圆锥曲线(椭圆的几何性质,直线与椭圆相切的代数求解)(运算量较大)
21
导数(集合的交集,解含参数的二次不等式;求含参数的三次函数的极值点,分类讨论思想)
导数(函数求单调区间,二阶导数求函数的最值)
概率(抽样概率)
13
概率与统计(平均数、中位数及标准差相关知识)
线性规划(求截距型最值)
数列,函数(等比数列的角标性质,对数运算性质)
14
极坐标和参数方程(知直线与圆的参数方程,求交点坐标)
极坐标和参数方程(极坐标方程和参数方程的互换)

2012大纲全国卷高考数学试题(理科)及答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A=},B={1,m} ,A B=A, 则m=A 0或3 C 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=为CC1的中点,则直线AC1与平面BED的距离为(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B) (C) (D)(7)已知α为第二象限角,sinα+sinβcos2α=(A) (B)(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

2012年高考数学理(广东卷)及参考答案Word版

2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为13V sh=,其中S为锥体的底面积,h为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设i为虚数单位,则复数56ii-=A.65i+B.65i-C.65i-+D.65i--2.设集合U={1,2,3,4,5,6},M={1,2,4 } 则UC M=A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}3.若向量BA=(2,3),CA=(4,7),则BC=A.(-2,-4)B.(2,4) C.(6,10) D.(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A.ln(2)y x=+B.y=C.y=12x⎛⎫⎪⎝⎭D.1y xx=+25.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1- 6.某几何体的三视图如图1所示,它的体积为A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是 A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。

2012年高考数学理(广东卷)及答案!!!!

2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。

锥体的体积公式为13V sh =,其中S 为锥体的底面积,h 为锥体的高。

一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 2.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量BA=(2,3),CA =(4,7),则BC =A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+B .y =C .y=12x⎛⎫⎪⎝⎭D .1y x x =+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1- 6.某几何体的三视图如图1所示,它的体积为 A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是 A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。

广东省2012届高考数学文二轮专题复习课件解析几何 圆锥曲线与方程


x y 变 式1 已 知 椭 圆 C: 1 , F1、 F 2 是 其 左 、 右 焦 点 . 12 4
2
2
1 若 Q 为 椭 圆 上 的 动 点 , 求 co s F1Q F 2的 最 小 值 ; 2 若 A1、 A 2 分 别 是 椭 圆 长 轴 的 左 、 右 端 点 , Q 为 椭 圆 上
sin A sin C sin B

ac b
, 由 椭 圆 定 义 可 得 B A B C的 值 ;
2从椭圆、双曲线的定义入手求解.
解析
1 由 椭 圆 定 义 可 知 B A B C
sin A sin C sin B 10 8 5 4
2 5 10,
b AC 8, 所以 .
3.
P F1
2
P F2
2
F1 F 2
2
2 P F1 P F 2 3 ) 16
2

3ቤተ መጻሕፍቲ ባይዱ ( 6 3 )( 6
2( 6

1 3
.
3)
答案: (1)
5 4
(2)B
1.涉及椭圆、双曲线上的点到两焦点的 距离问题时,要自觉地运用椭圆、双曲线的定 义.涉及抛物线上的点到焦点的距离时,常利 用定义转化到抛物线的准线的距离. 2.要注意挖掘椭圆、双曲线、抛物线的 定义中的隐含条件.如双曲线的定义中||PF1||PF2||=2a , 只 有 当 |F1F2|>2a>0 时 才 表 示 双 曲 线.
2 已 知 T (1 , 1), 设 H 是 E 上 动 点 , 求 值,并给出此时点H的坐标; 3 过 点 T (1 , 1) 且 不 平 行 于 y 轴 的 直 线 l1与 轨 迹 E 有 且 只 有 两 个 不 同 的 交 点 , 求 直 线 l1的 斜 率 k 的 取 值 范 围 . HO HT 的 最 小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年广东省高考数学考试大纲解读全部高考考点2012年广东省高考数学考试大纲解读全部高考考点Ⅰ.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的基本原则,适当体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养、发挥数学作为主要基础学科的作用,考察考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能。

Ⅱ.考试内容与要求一、考核目标与要求1. 知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。

各部分知识的整体要求以及其定位参照《课程标准》相应模块的有关说明。

对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关问题中识别和认识它。

这一层次涉及的主要行为动词有:了解,知道,识别,模仿,会求,理解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道之所见的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

这一层次涉及的主要行为动词有:描述,说明,表达,推测,想象,比较,判别,初步应用等。

(3)掌握:要求能对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

这一层次涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。

2. 能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能以及应用意识和创新意识。

(1)空间想象能力能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地解释揭示问题的本质。

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图像的想象能力。

识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换。

对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志。

(2)抽象概括能力实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括个部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构。

(1)对数学基础知识的考查,既要全面又要突出重点,对于掌握学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。

注意学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。

从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点设计试题,使对数学基础知识的考察达到必要的深度。

(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学的考查,反应考生对数学思想的掌握程度。

(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。

对能力的考察要全面,强调综合性,应用性,并要切合考生实际,对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形与样的相互转化上;对运算求解能力的考查主要是对运算和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是运用概率统计的基本方法和思想方法解决实际问题的能力。

(4)对应用意识的考查主要采用解决应用问题的形式,名提示要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学的设计和考生的年龄特点,并结合实践经验,是数学应用问题的难度符合考生的水平。

(5)对创新意识的考查是对高层次理性思维的考查,在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题,要注意问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探究型、开放型等类型的试题。

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。

命题以教育部考试中心《普通高等学校招生全国统一考试数学(理科)考试大纲(课程标准实验•2012年版)》和本说明为依据。

试题适用于使用全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生。

二、考试范围与要求(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系① 理解集合之间包含于相等的含义,能识别给定集合的子集。

② 在具体情境中,了解全集与空集的含义。

(3)集合的基本运算① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③ 能使用韦恩(Venn )图表达集合的关系及运算。

2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择适当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值以及几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图象理解和研究函数的性质。

(2)指数函数① 了解指数函数模型的实际背景。

② 理解有理数指数幂的含义,了解实数幂的意义,掌握幂的运算。

③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

(3)对数函数① 理解对数函数的概念以及运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

② 理解对数函数的概念;理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③ 知道对数函数是一类重要的函数模型.④ 了解指数函数x a y =与对数函数x y a log =互为反函数(1,0≠>a a 且)(4)幂函数① 了解幂函数的概念。

② 结合函数2132,1,,,x y xy x y x y x y =====的图像,了解它们的变化情况。

(5)函数与方程① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

② 根据具体函数的图像,能够用二分法求相应方程的近似解。

(6)函数模型及其应用① 了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.立体几何初步(1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。

③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。

④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。

◆公理2:过不在同一直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

◆公理4:平行于同一条直线的两条直线互相平行。

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。

理解以下判定定理:◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面互相平行。

◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。

理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行。

◆如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。

◆垂直于同一个平面的两条直线平行。

◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。

③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。

4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

③能根据两条直线的斜率判定这两条直线平行或垂直。

④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

⑤能够解方程组的方法求两直线的交点坐标。

⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程,判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

④初步了解代数方法处理几何问题的思想。

(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标系表示点的位置。

相关文档
最新文档