材料力学截面的几何性质
材料力学第六章 截面的几何性质惯性矩

IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交
材料力学 截面的几何性质

录
附录Ⅰ
§Ⅰ-1 §Ⅰ-2 §Ⅰ-3 §Ⅰ-4
截面的几何性质
截面的静矩和形心位置 惯性矩、惯性积和惯性半径 平行移轴公式 转轴公式 主惯性矩
静矩与形心
一、静矩的定义(与力矩类似)(也称面积矩或一次矩) 截面对z轴的静矩: y 截面对y轴的静矩:
Sz Sy
dS
A A
z
ydA
A
3
z 100
I
C
CI
a1 a2
I y I yI I yII 443 10 768 10
4
4
y
1211 104 mm 4
由于z轴是对称轴 ,故图形对两轴的惯性积为
140 103.3
CII
II
y
I yz 0
20
I z y 2 dA 2h y 2 bdy
3
附
录
组合截面形心
组合截面:如果截面的图形是由几个简单图形(如矩形、圆形 等)组成的,这种截面称为组合截面。 组合截面对X、Y轴静矩的计算:
S x Ai yci Ayc
i
n
S y Ai xci Axc
i
n
Ai——任一简单图形的面积; xci,yci——任一简单图形的形心坐标; n——全部简单图形的个数。 确定组合截面形心位置的公式:
C H/2
X
1 h 1 h yc 1 y1 ( y1 ) ( y1 ) 2 2 2 2
h 1 h S x Ayc 1 b( y 1 ) ( y 1 ) 2 2 2
b
b 2 2 (h 4y1 ) 8
例2、图形对 x 轴的静矩为
材料力学 截面图形几何性质

(此为平行移轴公式 )
注意: •式中的a、b代表坐标值,有时可能取负值。
•等号右边各首项为相对于形心轴的量。
9
材料力学Ⅰ电子教案
2.组合截面的惯性矩和惯性积
根据惯性矩和惯性积的定义易得组合截面对于某 轴的惯性矩(或惯性积)等于其各组成部分对于同一 轴的惯性矩(或惯性积)之和:
n
Ix
i1
I
xi
n
Iy
1
材料力学Ⅰ电子教案
二、形心公式:
yc
Sz A
; zc
Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i 1
n
S y Ai zci; i 1
n
四、组合截面形心公式:
Ai yci
yc
i 1 n
;
Ai
i 1
例5-1 求图示T形截面形心位置。
n
Ai zci
(20010) (5 150) 2 (10 300) 0 20010 2 (10 300)
38.8 mm
由于对称知: xc=0
3
y y1 200
C O
10 150 yC x1
x
目录
材料力学Ⅰ电子教案
求图示半径为r的半圆形对其直径轴x的静矩及其形心坐标yC。
解:过圆心O作与x轴垂直的y轴,在距x任意高度y处取一个与x 轴平行的窄条,
y
d A 2 r2 y2 • d y
dA
dy
yC
所以
Sx
A
yd
A
r
0
y( 2
r2 y2 )d y 2 r3 3
Cr
y
材料力学 截面的几何性质

1、矩形截面 h
Iz
y2dA
A
2 h
y 2bdy
h
2
dy y
b y 3 2 1 bh3 3 h 12
2
同理
Iy
z2dA 1
A
12
hb3
b h z
y
26
2、实心圆截面
y
已知
IP
A2dA
D 4 32
D
z
则 I P A2 d A A y 2 d A A z 2 d I A z I y
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z
y
o
A dA
z
y
惯性积
定义
Iyz
yzdA
A
z y
A dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
4.3 形心主惯性轴和形心主惯性矩
若主惯性轴通过形心,则该轴称为形心主惯性轴(principal centroidal axis)。
图形对形心主惯性轴的惯性矩称为形心主惯性矩。 由于图形对于对称轴的惯性积等于零,而对称轴又过形心,所以,图形 的对称轴就是形心主惯性轴。
形心主惯性轴的特点可归纳为以下几点: ⑴形心主惯性轴是通过形心,由角定向的一对互 相垂直的坐标轴。
32
32
圆环形对y(或z)轴的惯性矩为
IyIz1 2Ip6 D4414
由于y轴为对称轴,故
Iyz 0
z
y
d D
第4章(截面的几何性质)重要知识点总结(材料力学)

【陆工总结材料力学考试重点】之(第4章)截面的几何性质1、静矩与形心?答:图形几何形状的中心称为形心。
对于图示的任意平面图形,任取一微元dA,设其坐标为(y,z),则定义:平面图形对于z轴的静矩:S z=∫ydAA平面图形对于y轴的静矩:S y=∫zdAA定义平面图形对于坐标轴(y,z)的惯性积:I yz=∫yzdAA根据积分的性质可知:当选取的y、z轴不一样时,则惯性积I yz也不一样。
若对于某对坐标轴y0、z0使得I y=0,则该对坐标轴y0、z0称为主轴,过0z0形心的主轴称为形心主轴(注:求主轴非常麻烦,大家只需记住以下结论)。
结论:1)圆截面的任何两条过圆心的且互相垂直的直径都是形心主轴;2)矩形截面的两条对称轴就是形心主轴;3)若截面有2跟对称轴,此两轴即为形心主轴,若截面只有一根对称轴,则该轴必为形心主轴,令一形心主轴为通过形心且与该对称轴垂直的轴。
2、简单截面的惯性矩与极惯性矩?答:(1)惯性矩与极惯性矩的定义如图,任意图形的面积为A,在其上任取微元dA,坐标为(y,z),则定义:平面图形对于z轴的惯性矩为:I z=∫y2dAA平面图形对于y轴的惯性矩为:I y=∫z2dAA平面图形对坐标原点O点的极惯性矩为:I p=∫ρ2dAA式中:ρ为该微元dA到原点的距离,由图可知:y2+z2=ρ2则:I p=I y+I z。
(2)常用截面的惯性矩和极惯性矩①实心圆截面(注:直径为d,对于形心主轴(即y、z轴过圆心O))I p=πd432,又:I p=I y+I z,故:I y=I z=πd464②空心圆截面(注:外径为D,内径为d,空心比α=dD,对于形心主轴)I p=πD432(1−α4),又:I p=I y+I z,故:I y=I z=πD464(1−α4)③矩形截面(注:设z轴方向宽度为b,y轴方向高度为h,对于形心主轴)I y=ℎb312I z=bℎ3123、组合截面的惯性矩与平行移轴公式?答:(1)组合截面惯性矩的计算对于图所示的组合截面(从圆截面中挖掉一个正方形后剩下的阴影部分),则根据负面积法求组合截面对轴的惯性矩:Iz组=Iz圆−Iz矩(2)惯性矩的平行移轴公式I z1=I z+Aa2式中:A为平面图形的面积,a为z轴与z1轴之间的距离。
截面的几何性质

图形对于 z 轴的静矩
附录 截面的几何性质 /一 静矩、形心及相互关系 y y
z zC
计算
dA
y
C A
z
yC
O
O
z
分力之矩之和
S y zdA
A
合力之矩
S y AzC
S z AyC
S z ydA
A
附录 截面的几何性质 /一 静矩、形心及相互关系
静矩与形心坐标之间的关系
S y zdA
i 1 n
例I-3 求图示T形截面的形心位置
解:把T形截面看做由①、②两 yC 个矩形截面组成。
100
C1 ①
z
20
A1 20 100 2000mm
2
C
yC1 10mm
A2 20 140 2800mm2
yC 2 90mm
yC
②
C2
140
y
Ay A
i i
Ci
A1 yC1 A2 yC 2 A1 A2
例题 矩形截面惯性矩的计算
b
I z y dA h y bdy
2
2
A
2
y b 3
同理:
3
h 2 h 2
bh 12
3
h
o
z
y
3 b 2 b 2
z 2 2 I y z dA b z hdz h 2 3 A
b 2
hb3 12
dy
h 2
y
附录 截面的几何性质/二 惯性矩、惯性积、极惯性矩与惯性半径
zc
h/2 z h/2 z1
dy y O
bh 3 2 h2 y 2bdy I z y dA A 12 2
第26讲第五章 材料力学(九)

第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。
对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。
【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。
截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。
截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。
若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。
例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。
对y轴惯性矩相同。
答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。
提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。
材料力学 3 截面的几何性质

大小:正,负,0。
y
量纲:[长度]3
二、截面的形心 几何形心=等厚均质薄片重心 z 形心坐标公式:
yc
C
zc
yc zc
y dA A z dA
A
A
Sz A Sy A
O
A
y
S y A zc
S z A yc
结论: 若 S z 0 yc 0 z 轴通过形心。反之,亦成立。
转轴公式
sin 2 I yz cos2
I y1 I z1 I y I z
二、形心主轴和形心主惯性矩 1、主轴和主惯性矩:坐标旋转到= 0 时,
Ix y
0 0
Ix I y 2
sin20 I xy cos 20 0
tan 2 0
2 I xy Ix Iy
z1
I yzc y1 z1 dA
A
a
O
z
yc
I z A y 2dA A (b y1 )2 dA
2 A ( y1 2by1 b 2 )dA
y
zc 为形心轴, S zc Ayc 0
I zc 2bS zc b 2 A
I zc b 2 A
2
a
2677710 .52 cm 4
平 衡 项 惯 性 矩 6686481 . 857.8 单 个 形 心 惯 性 矩 779.53
组合截面可以大大提高截面惯性矩。
I y Iz 2 cos2 I yz sin 2 cos2 I yz sin 2
I y Iz 2
I y Iz 2
当=0时,
dI y1 d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
,I y I yi,
i
2 I y dA , 元面积对z轴的惯性矩就等于将各元 因 z
面积对z轴的惯性矩求和,因质量连续分布,求和则为积 分。
应用于圆环的情形,可看成两个圆形截面,
I I 1 I 2 I z I y 2I z 2I y,
定义:I A 2 dA
I zy A zydA ——平面图形对z,y轴的惯性积;
极惯性矩.
• 二、性质
1、 I z、I y 恒为正, I zy 可正、可负、也可以为零,其正 负值与坐标轴的位置有关。 2、单位:(长度)4;
例4-4 : 计算直径为d的圆截面对形心轴z,y的惯性矩 和惯性积。 解:用平面极坐标 (r , ).
y
dy
R
o
y
sz A ydA y z dy
z
z
0 2 R sin cos d
3 2
dz
R3 3
y R
o
z
z
sz 4R 3 yc 2 A R 3 4
R3
z R cos y R sin dy R cosd
sz A zdA z y dz
270 50
S y zci Ai 0,( z1 z2 0);
i
y
s z yci Ai y1 A1 y2 A2 15 300 30
i
270 30 270 50 23.625 105 (mm) 2 , 2
• 4-2 惯性矩和惯性积
1 d 4 64
因坐标轴是对称轴,如对左右的 dA (如上图),
zydA z ydA 0
• 结论:截面如有一根对称轴,则截面对这根轴与另 一根与之垂直的轴的 I zy 0 .
对矩形截面,过形心轴的惯性矩:
y
h
o
b
z
1 3 I z bh 12
1 3 I y hb 12
• 若为组合图形,对z轴,y轴的惯性矩:
决如何用最少的材料,制造出能承担较大荷载的杆件的 问题的.
•
4—1 截面的静矩和形心
y
一、静矩的定义 设平面图形,取zoy坐标系, 取面积元dA,坐标为(z,y), 整个截面对z、y轴的静矩为:
yc
y
dA
o
z
zc z
——整个截面对z轴的静矩; sz ydA
A
s y zdA ——整个截面对y轴的静矩;
dA
( z、y)
y
d
dA d d
y sin ; z cos .
(z、y) d
I z A y dA
2
z
1 4 4
d 2
2 o
d
o 2 2 sin 2 d d
4
d
2 o 2 3d o sin 2 d
一、惯性矩的定义
y y
dA
o
------面积对坐标轴的二次矩. 设一平面图形,取一元面积 dA,坐 标为(z,y),距原点的距离为 ,方位 角为 ,定义:
z
z
I y A z 2 dA ;
I z A y 2 dA ;
而 I z I y A z 2 y 2 dA A 2 dA
0
4 2 1 d 1 cos 2 d d 0 2 42 64
由于对称:
Iz Iy
1 4 I I I 2 I 2 I d 极惯性矩: z y z y 32 对过形心的一对轴的惯性积
2 I zy zydA o 2 o cos sin dd 0 d
A
•
若将 dA 理解为垂直于纸面的力, ydA便是对z轴的力 矩, s z 则为对z轴的合力矩,故称为面积矩。 • 若形心坐标为 zc , yc ,静矩也可写成:
sz ydA A yc
A
s y zdA A zc
A
• 性质: • 1、同一截面对不同轴的静矩亦不同;静矩可以是正、 可以是负或零; • 2、单位:mm3 , cm3 ; • 3、当坐标轴原点过形心,zc yc 0, s z s y 0 ;
1 D 4 d 4 D 4 4 Iz Iy ( 1 ), 2 2 32 32 64 d 式中的 . D I
其他如表4.1.
*惯性半径(回转半径)的概念: • 如以r表示某一截面对某轴的惯性半径,定义
• 对组合图形:
zci Ai z i c Ai i yci Ai yc i Ai i
S y zci Ai;
i
s z yci Ai
i
Ai 第i个分图形的面积; zci、yci 第i个分图形的形心坐标;
• 例1,求四分之一圆截面对z,y轴的形心位置 • 解:取如图示的坐标系, y • 先求 s x , s y
R cos R sin R sin d
R cos sin d
2 o 3 2
1 2 3 R sin 3 o
3
4R zc A 3
sy
• 三、组合截面的静矩
• 例1:如图由两个矩形截面组合成的T形截面,y轴为对 称轴, A1 300 30mm2 , A2 270 50mm2 ,对z,y轴的 静矩。 300 z 解:因为是组合图形,又关于轴对称, o 30 故有:
zc
Sy
A
, yc
Sz
A
反之,若 s x s y 0 ,坐标轴原点必过截面形心。
• 二、形心位置的计算
• 形心位置:
zc
Sy
A
, yc
Sz
A
对面积连续分布的(非组合图形)图形:
sy A zdA zc A A y s z