材料力学截面的几何性质答案

合集下载

材料力学 截面的几何性质

材料力学 截面的几何性质


附录Ⅰ
§Ⅰ-1 §Ⅰ-2 §Ⅰ-3 §Ⅰ-4
截面的几何性质
截面的静矩和形心位置 惯性矩、惯性积和惯性半径 平行移轴公式 转轴公式 主惯性矩
静矩与形心
一、静矩的定义(与力矩类似)(也称面积矩或一次矩) 截面对z轴的静矩: y 截面对y轴的静矩:
Sz Sy
dS
A A
z

ydA
A
3
z 100
I
C
CI
a1 a2
I y I yI I yII 443 10 768 10
4
4
y
1211 104 mm 4
由于z轴是对称轴 ,故图形对两轴的惯性积为
140 103.3
CII
II
y
I yz 0
20
I z y 2 dA 2h y 2 bdy
3


组合截面形心
组合截面:如果截面的图形是由几个简单图形(如矩形、圆形 等)组成的,这种截面称为组合截面。 组合截面对X、Y轴静矩的计算:
S x Ai yci Ayc
i
n
S y Ai xci Axc
i
n
Ai——任一简单图形的面积; xci,yci——任一简单图形的形心坐标; n——全部简单图形的个数。 确定组合截面形心位置的公式:
C H/2
X
1 h 1 h yc 1 y1 ( y1 ) ( y1 ) 2 2 2 2
h 1 h S x Ayc 1 b( y 1 ) ( y 1 ) 2 2 2
b
b 2 2 (h 4y1 ) 8
例2、图形对 x 轴的静矩为

(材料力学)截面几何性质习题及参考答案

(材料力学)截面几何性质习题及参考答案

截面几何性质 作业专业班级 姓名 学号1. 判断题(1)任意平面图形至少有1对形心主惯性轴,等边三角形有3对形心主惯性轴。

( × ) (2)平面图形的几何性质中,静矩和惯性矩的值可正、可负、可为零。

( × ) (3)平面图形中,使静矩为零的轴必为对称轴。

( × ) 2. 选择题(1)若截面图形有对称轴,则该图形对其对称轴的( A )。

A. 静矩为零,惯性矩不为零B. 静矩和惯性矩均不为零C. 静矩和惯性矩均为零D. 静矩不为零,惯性矩为零(2)设图形具有三个以上(含三个)对称轴时,对某一形心轴的惯性矩I 1 ,对某一对正交形心轴的惯性积为I 2。

则当形心轴绕形心旋转时( A )。

A. I 1值不变,I 2恒等于零B. I 1 值不变,I 2不恒等于零C. I 1值变化,I 2恒等于零D. I 1值变化,I 2不恒等于零(3)任意图形的面积为A ,x C 轴通过形心C ,x 1轴和x C 轴平行,并相距a ,已知图形对x 1轴的惯性矩是I 1,则对x C 轴的惯性矩为( A )。

A. 21xC I I Aa =-B. 0xC I =C. 21xC I I Aa =+D. 1xC I I Aa =+C x 1(4)图示等底等高的矩形和平行四边形,对其形心轴y 的惯性矩I a 和I b 满足( A )。

A. I a = I bB. I a > I bC. I a < I bD. 不能确定(a )(b )(5)设矩形对其对称轴z 的惯性矩为I ,当其长宽比保持不变,面积增加1倍时,该矩形对其对称轴z 的惯性矩将变为( A )。

A. 4IB. 2IC. 8ID. 16I(6)图示任意形状图形,形心轴z 将图形分为两部分,则一定成立的是( A )。

A. S z 1 + S z 2 = 0B. I z 1 = I z 2C. A 1 = A 2D. S z 1 = S z 2(7)图形对通过某点的所有轴的惯性矩中,图形对主惯性轴的惯性矩一定( A )。

材料力学(金忠谋)第六版答案-附录

材料力学(金忠谋)第六版答案-附录

材料力学(金忠谋)第六版答案-附录附录I 截面图形的几何性质I-1 求下列截面图形对z 轴的静矩与形心的位置。

解:(a ))2)2((2)2(2h t h b t h ht t h bt s z ++=⋅++=hb h t h b h b t h t h b t A s y zc +++=+++==2)2()()2)2((22(b )322332219211)}2)4()43()41()43(32(])4()43[(2{4442DD D D D D D D D D s z =--⨯-+⨯⨯-=ππDD D D D DAs y z c 1367.0])2()43[(2)44(219211223=-⨯+⨯==π(c )]22)[(22)(2h t t b t h ht t t t b s z +⋅-=⨯+⨯⨯-=tb)(2)(2t b h h t t b A s y z c -++-==I-2 试求(1)图示工字形截面对形心轴 y 及 z 的惯性矩zI 与I y 。

(2)图示 T 字形截面对形心轴的惯矩zI 与I y 。

解(a)12)2)((12)2)((123333t h t b bh t h t b bh J z ---=---=12))2(2(12))(2(1222333t t h b t t t h tb J y -+=-+=(b) cmy c 643.9)520515(2)515(552522=⨯+⨯-⨯+⨯=(b433423231615121551252010186520)643.91025(12205515)5.2643.9(12515cm J cm J y z =⨯+⨯==⨯⨯--+⨯+⨯⋅-+⨯=I-3 求图示椭圆截面对长轴的惯矩、惯性半径与对形心的极惯矩。

解:θθcos ,sin ⋅=⋅=a z b yθθd b dy cos = ⎰⎰--⋅==∴b bbbz zdyy dA y J 222322223224cos sin 2cos cos sin 2ab d abd b a b J bb z πθθθθθθθππ==⋅=⎰⎰--)(4)(42422333b a ab b a ab J J J b ab ab AJ i y z p zz +=+=+====ππππI-4 试求图示的41的圆面积(半径a )对于z ,yyy 轴的惯性积zyI 。

材料力学 截面图形几何性质

材料力学 截面图形几何性质

(此为平行移轴公式 )
注意: •式中的a、b代表坐标值,有时可能取负值。
•等号右边各首项为相对于形心轴的量。
9
材料力学Ⅰ电子教案
2.组合截面的惯性矩和惯性积
根据惯性矩和惯性积的定义易得组合截面对于某 轴的惯性矩(或惯性积)等于其各组成部分对于同一 轴的惯性矩(或惯性积)之和:
n
Ix
i1
I
xi
n
Iy
1
材料力学Ⅰ电子教案
二、形心公式:
yc
Sz A
; zc
Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i 1
n
S y Ai zci; i 1
n
四、组合截面形心公式:
Ai yci
yc
i 1 n
;
Ai
i 1
例5-1 求图示T形截面形心位置。
n
Ai zci
(20010) (5 150) 2 (10 300) 0 20010 2 (10 300)
38.8 mm
由于对称知: xc=0
3
y y1 200
C O
10 150 yC x1
x
目录
材料力学Ⅰ电子教案
求图示半径为r的半圆形对其直径轴x的静矩及其形心坐标yC。
解:过圆心O作与x轴垂直的y轴,在距x任意高度y处取一个与x 轴平行的窄条,
y
d A 2 r2 y2 • d y
dA
dy
yC
所以
Sx
A
yd
A
r
0
y( 2
r2 y2 )d y 2 r3 3
Cr
y

第26讲第五章 材料力学(九)

第26讲第五章 材料力学(九)

第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。

对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。

【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。

截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。

截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。

若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。

例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。

对y轴惯性矩相同。

答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。

提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。

材料力学课后习题答案

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。

`解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;>220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段; 》(a)(c) ¥ (d)N 1F RF N 1110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c) '(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =,【F N 211#N 2F N 3(1) 用截面法求内力,取1-1、2-2截面;。

(2) 取1-1截面的右段;|110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;*220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。

解:(a) 、(b)《(c)F N 1F N 2FNF NFF N:(d)<8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

材料力学 3 截面的几何性质

材料力学 3 截面的几何性质

大小:正,负,0。
y
量纲:[长度]3
二、截面的形心 几何形心=等厚均质薄片重心 z 形心坐标公式:
yc
C
zc
yc zc
y dA A z dA
A
A
Sz A Sy A
O
A
y
S y A zc
S z A yc
结论: 若 S z 0 yc 0 z 轴通过形心。反之,亦成立。
转轴公式
sin 2 I yz cos2
I y1 I z1 I y I z
二、形心主轴和形心主惯性矩 1、主轴和主惯性矩:坐标旋转到= 0 时,
Ix y
0 0
Ix I y 2
sin20 I xy cos 20 0
tan 2 0
2 I xy Ix Iy
z1
I yzc y1 z1 dA
A
a
O
z
yc
I z A y 2dA A (b y1 )2 dA
2 A ( y1 2by1 b 2 )dA
y
zc 为形心轴, S zc Ayc 0
I zc 2bS zc b 2 A
I zc b 2 A
2


a
2677710 .52 cm 4
平 衡 项 惯 性 矩 6686481 . 857.8 单 个 形 心 惯 性 矩 779.53
组合截面可以大大提高截面惯性矩。
I y Iz 2 cos2 I yz sin 2 cos2 I yz sin 2
I y Iz 2
I y Iz 2
当=0时,
dI y1 d

工程力学2(材料力学)习题解答

工程力学2(材料力学)习题解答

《工程力学2习题解答》建筑1001班陈飞力学教研室编著1-2. 试求图示结构mm 和nn 两截面上的内力,并指出AB 和BC 两杆属何种基本变形。

解:(1)求约束反力:取杆AB 为研究对象∑∑∑=⨯-⨯==-+===0233 003 000BCABCAAN M N Y Y X X 解得:kN Y kN N A BC 1 2==(2)求m-m 截面内力:将杆AB 沿截面m-m 截开, 取左半部分kNm Y M kN Y Q A m-m A m m 11 1=⨯===-AB 杆发生弯曲变形。

(3)求n-n 截面内力:取杆BC 为研究对象,截开n-n 截面kN N N BC n n 2==-BC 杆发生拉伸变形1-3. 拉伸试件A 、B 两点的距离l 称为标距,在拉力作用下,用引伸仪量出两点距离的增量为Δl =5×10-2mm 。

若l 的原长为l =10cm ,试求A 、B 两点间的平均应变。

解:平均应变为42105100105Δ--⨯=⨯==l l m ε1-4. 图示三角形薄板因受外力而变形。

角点B 垂直向上的位移为0.03mm ,但AB和BC 仍保持为直线。

试求沿OB 的平均应变,并求AB 、BC 两边在B 点夹角的变化。

解:(1) 求OB 方向的平均线应变n4105.212003.0Δ120-⨯=====l l mmOA OB m ε (2)求AB 与BC 两边的角应变4105.2'22-⨯=-=OB AO arctg πγ2-1. 试求图示各杆1-1、2-2、3-3截面的轴力, 并作轴力图。

解: (a)(1)求约束反力kNR R X 500203040 0==-++-=∑(2)求截面1-1的轴力kNN NR X 500011==+-=∑(3)求截面2-2的轴力kNN NR X 10040 022==++-=∑(4)求截面3-3的轴力(a) (b)kNN NR X 2003040 033-==+++-=∑(5)画轴力图(b)(1)求截面1-1的轴力01=N(2)求截面2-2的轴力 PN4022==(3)求截面3-3的轴力PN P P NX 304 033==-+=∑(4)画轴力图2-2. 作用图示零件上的拉力P=38kN ,试问零件内最大拉应力发生于哪个横截面上?并求其值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~
15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。

解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩
所以
再次应用平行轴定理,得
返回
)
15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是,用
平行轴定理得截面对形心轴的惯性矩
再用平行轴定理,得截面对轴的惯性矩
/
返回
15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。

解:由于三圆直径相等,并两两相切。

它们的圆心构成一个边长为的等边三角形。

该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是
上面一个圆的圆心到轴的距离是。

利用平行轴定理,得组合截面对轴的惯性矩如下:
{
返回
15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。

解:(a)22a号工字钢对其对称轴的惯性矩是。

利用平行轴定理得组合截面对轴的惯性矩
(b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下:

返回
15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。

关于形心位置,可利用该题的结果。

解:形心轴位置及几何尺寸如图
所示。

惯性矩计算如下:
返回
15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所
示,试求截面对其水平形心轴和竖直形心轴的惯性矩
和。

解:先求形心主轴的位置


返回
15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少

解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。

根据惯性矩定义和平行轴定理,组合截面对
,轴的惯性矩分别是



等式两边同除以2,然后代入数据,得


所以,两槽钢相距。

相关文档
最新文档