圆锥曲线.pdf

合集下载

圆锥曲线专题:恒过定点问题的4种常见考法(原卷版)

圆锥曲线专题:恒过定点问题的4种常见考法(原卷版)

圆锥曲线专题:恒过定点问题的4种常见考法一、常用方法技巧1、参数无关法把直线或者曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时的参数的系数就要全部为零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点。

2、特殊到一般法根据动点或动直线、动曲线的特殊情况探索出定点,再证明该定点与变量无关。

3、关系法对满足一定条件上的两点连结所得直线定点或满足一定条件的曲线过定点问题,可设直线(或曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识求解。

二、手电筒模型解题步骤1、概念:只要任意一个限定AP 与BP 条件(如AP BP k k ⋅=定值,+AP BP k k =定值),直线AB 依然会过定点,因为三条直线形似手电筒,故称为手电筒模型。

2、解题步骤:第一步:由AB 直线y kx m =+,联立曲线方程得根与系数关系,∆求出参数范围;第二步:由AP 与BP 关系,得到一次函数()k f m =或()m f k =;第三步:将()k f m =或()m f k =代入y kx m =+,得到()y y k x x =-+定定.三、交点弦的中点所在直线恒过定点解题步骤第一步:设其中一条直线的斜率为1k ,求出直线方程;第二步:直线与曲线进行联立,出现韦达定理的形式,或者直接求出坐标,表示出这条弦的中点,并且类比出另外一条的中点坐标;第三步:由上述两部,根据点斜式写出两个中点所在直线的方程;第四步:化直线为点斜式,确定定点坐标。

四、圆锥曲线的切点弦方程1、过抛物线()220y px p =>外一点()00,M x y 作抛物线的切线,切点弦方程为()00yy p x x =+;2、过椭圆()222210x y a b a b+=>>外一点()00,M x y 作椭圆的切线,切点弦方程为00221x x y ya b +=;3、过双曲线()222210,0x y a b a b-=>>外一点()00,M x y 作双曲线的切线,切点弦方程为00221x x y ya b-=;五、几个重要的定点模型1、过椭圆()222210x y a b a b +=>>的左焦点(),0F c -作两条相互垂直的弦AB ,CD ,若弦AB ,CD 的中点分别为M ,N ,则直线MN 恒过定点222,0ac a b ⎛⎫- ⎪+⎝⎭.(双曲线与抛物线也有类似结论)2、动点()00,P x y 在直线0Ax By C ++=上,由P 引椭圆22221x y a b +=的两条切线,切点分别是M ,N ,则直线MN 恒过定点22,a A b B C C ⎛⎫-- ⎪⎝⎭.(双曲线与抛物线也有类似结论)3、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点20000222,y b x x y m ma ⎛⎫--- ⎪⎝⎭;(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之和为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点0002,2y y x p m m ⎛⎫-- ⎪⎝⎭4、(1)过椭圆()222210x y a b a b +=>>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交椭圆于A ,B 两点,则直线AB 必过定点()()2222002222,b ma x b ma y b ma b ma ⎛⎫++ ⎪- ⎪--⎝⎭(2)过抛物线()220y px p =>上的一定点()00,P x y 作两条斜率之积为m 的直线1l ,2l ,分别交抛物线于A ,B 两点,则直线AB 必过定点002,p x y m ⎛⎫-- ⎪⎝⎭(3、4两个结论对于圆与双曲线也成立,当22b a =时就是圆中的结论,用2b -替代2b 就可得到双曲线中的结论)题型一手电筒模型恒过定点问题【例1】已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.【变式1-1】已知直线2y =与双曲线C :()222210,0x ya b a b-=>>交于A ,B 两点,F 是C 的左焦点,且AF AB ⊥,2BF AF =.(1)求双曲线C 的方程;(2)若P ,Q 是双曲线C 上的两点,M 是C 的右顶点,且直线MP 与MQ 的斜率之积为23-,证明直线PQ 恒过定点,并求出该定点的坐标.【变式1-2】已知F 为抛物线22y px =(0)p >的焦点,过F 且倾斜角为45︒的直线交抛物线于A,B 两点,||8AB =.(1)求抛物线的方程:(2)已知()0,1P x -为抛物线上一点,M,N 为抛物线上异于P 的两点,且满足2PM PN k k ⋅=-,试探究直线MN 是否过一定点?若是,求出此定点;若不是,说明理由.【变式1-3】已知动点(,)P x y (0)x ≥到定点(1,0)的距离比它到y 轴的距离大1.(1)求动点P 的轨迹E 的方程;(2)设点(,0)Q m (m 为常数),过点Q 作斜率分别为12,k k 的两条直线1l 与2l ,1l 交曲线E 于,A B 两点,2l 交曲线E 于,C D 两点,点,M N 分别是线段,AB CD 的中点,若121k k +=,求证:直线MN 过定点.题型二切点弦恒过定点问题【例2】在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的右焦点与抛物线2y =的焦点重合,且椭圆的四个顶点围成的四边形面积为(1)求椭圆C 的标准方程;(2)已知点P 是直线420y x =-+上的动点,过点P 做椭圆C 的两条切线,切点分别为M ,N ,问直线MN 是否过定点?若是,求出该定点;若不是,请说明理由.【变式2-1】如图,已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)A ,离心率为2.(1)求椭圆C 的方程;(2)若过点A 作圆222:(1)(01)M x y r r ++=<<的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是否过某个定点若是,求出该定点;若不是,请说明理由.【变式2-2】抛物线2:2(0)C x py p =>的焦点F 是椭圆22134x y +=的一个焦点.(1)求C 的准线方程;(2)若P 是直线240x y --=上的一动点,过P 向C 作两条切线,切点为M ,N ,试探究直线MN 是否过定点?若是,请求出定点,若否,请说明理由.【变式2-3】在平面直角坐标系xOy 中,已知点(0,2)F ,点P 到点F 的距离比点P 到直线3y =-的距离小1,记P 的轨迹为C .(1)求曲线C 的方程;(2)在直线2y =-上任取一点M ,过M 作曲线C 的切线12l l 、,切点分别为A 、B ,求证直线AB 过定点.题型三相交弦中恒过定点问题2:2(0)C x py p =>上.(1)求抛物线C 的方程;(2)过点(0,)T p 作两条互相垂直的直线1l 和2l ,1l 交抛物线C 于A 、B 两点,2l 交抛物线C 于D ,E 两点,若线段AB 的中点为M ,线段DE 的中点为N ,证明:直线MN 过定点.【变式3-1】在平面直角坐标系xOy 中,已知动点P 到点()2,0F 的距离与它到直线32x =的P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 作两条互相垂直的直线1l ,2l .1l 交曲线C 于A ,B 两点,2l 交曲线C 于S ,T 两点,线段AB 的中点为M ,线段ST 的中点为N .证明:直线MN 过定点,并求出该定点坐标.【变式3-2】已知椭圆()2222:10x y E a b a b +=>>A ,右顶点为B ,上顶点为C ,ABC 的内切圆的半径为4-.(1)求椭圆E 的标准方程;(2)点M 为直线:1l x =上任意一点,直线AM ,BM 分别交椭圆E 于不同的两点P ,Q .求证:直线PQ 恒过定点,并求出定点坐标.【变式3-3】已知M ⎝,N ⎫⎪⎪⎝⎭是椭圆2222:1(0)x yE a b a b +=>>上的两点.(1)求椭圆E 的方程;(2)过椭圆E 的上顶点A 和右焦点F 的直线与椭圆E 交于另一个点B ,P 为直线5x =上的动点,直线AP ,BP 分别与椭圆E 交于C (异于点A ),D (异于点B )两点,证明:直线CD 经过点F .题型四动圆恒过定点问题【例4】已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.【变式4-1】已知椭圆C :22221x y a b +=(0a b >>)的离心率为22,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【变式4-2】设A ,B 为双曲线C :22221x y a b-=()0,0a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于P ,Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【变式4-3】已知抛物线()2:20C y px p =>与直线:20l x y +=交于M ,N 两点,且线段MN的中点为()8,p P y .(1)求抛物线C 的方程;(2)过点P 作直线m 交抛物线于点A ,B ,是否存在定点M ,使得以弦AB 为直径的圆恒过点M.若存在,请求出点M 坐标;若不存在,请说明理由.。

《圆锥曲线》版本考

《圆锥曲线》版本考

关键词
《 圆锥 曲线》 版本
N 9 : 12 0 2 O 1 A
求德 生
17 —4 1 2 1 ) 30 2 —3 6 3 14 ( 0 0 0 - 3 3 0
中 图分类 号 文献标 识码
文章编 号
笔 者 曾在海 淀 中 国书店 古籍部 见 到一册 清 末 的铅 印本 《 圆锥 曲线》( 1 , 名 页 的 图 )书 i 书 “ 侧 耶稣 降世 一千八 百 九十八 年
l e , 之 江大学 ( nco hii ol e 的前 身 。 身 为美 国长 老会 牧 师 的求 德 生 e )是 g Haghw C rtnC lg ) sa e 18 — 11 曾任 该校校 长 川 。这也许 是《 80 9 1年 圆锥 曲线 》 名“ 题 育英 义塾撰 ” 的原 因 。 国 图版 本二 印有 “ 智 书会 校 订 藏 版 ” 说 明 《 益 , 圆锥 曲线 》 益 智 书 会 资 助 出版 的书 是 籍 ,上 洋美华 书馆 ” “ 海美 华书馆 ” “ 是 上 的误 排 。
《 中国科学 院 自然科学史研究所 , 北京 lO 9 ) O 1O


《 圆锥 曲线》 书的底本 是 美 国数 学家路 密 司撰 Ee eto eme 一 l nsfGo — m
t n o i Sco s( 8 1年 ) r a dC nc e in 16 y t 中的 圆锥 曲线部 分 , 者是 求德 生和 刘维 师 。 目 译 前所 见《 圆锥 曲线》 的几 个版 本其 实是 同一 个译 本 。
经过 比对 , 3种 书 的正 文页数 、 这 内容 和排版 完全相 同。
此外 , 国图未见求德生和刘维师合译书名为《 圆锥曲线说》 的书。而《 中国算学书 目 汇编》 著录有《 圆锥 曲线说》 丽种 : 其一 为杭州方克猷所著 , 其二 为艾约瑟和李善 兰所译 ( 3 ,1 ) [ ]44页 。

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。

(完整word版)圆锥曲线知识要点及结论个人总结

(完整word版)圆锥曲线知识要点及结论个人总结

《圆锥曲线》知识要点及重要结论一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆。

若212F F a =,点P 的轨迹是线段21F F 。

若2120F F a <<,点P 不存在.2 标准方程 )0(12222>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a b x a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上。

若椭圆的标准方程为)0(12222>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a b x a y ,则a y a b x b ≤≤-≤≤-,。

二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在.2 标准方程 )0,0(12222>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -。

)0,0(12222>>=-b a b y a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心。

双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上.若双曲线的标准方程为)0,0(12222>>=-b a by a x ,则R y a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a bx a y ,则R x a y a y ∈≥-≤,或。

第16讲 圆锥曲线等角定理(解析几何)(解析版)

第16讲 圆锥曲线等角定理(解析几何)(解析版)

第16讲 圆锥曲线等角定理知识与方法圆锥曲线等角定理及其证明1.椭圆的等角定理:长轴上任意一点的一条弦端点与对应点过椭圆x 2a 2+y 2b 2=1(a >b >0)N (t ,0)G(a 2t ,0)的连线所成角被焦点所在直线平分,即.∠OGA =∠OGB 【证明】只需证明,即.k GA =−k GB k GA +k GB =0即证:y Ax A −x G +y Bx B −x G =0,即证y A (x B −x G )+y B (x A −x G )=0,其中x G =a 2t.又因为:x A =my A +t ,x B =my B +t ,故只需证明:my B +t−x Gy B+my A +t−x Gy A=0,①即证:2m +(t−x G )(1y A+1y B)=0联立,得:{x =my +tx 2a2+y 2b2=1(m 2a 2+1b 2)y 2+2mt a 2y +t 2a2−1=0由韦达定理,得:y A +y B =−2mt a2m2a2+1b2,y A y B =t 2a 2−1m2a2+1b 2代入①式:等式左边=2m +(t−a2t)(y A +y B y A y B)=2m +(t−a2t)(−2mt a 2t2a 2−1)=2m +(t−a 2t )(−2mtt 2−a 2)=2m−2m =0故命题得证.2.双曲线的等角定理:实轴上任意一点的一条弦端点与对应点过双曲线x 2a 2−y 2b2=1(a >0,b >0)N (t ,0)G(a 2t ,0)的连线所成角被焦点所在直线平分,即.∠OGA =∠OGB 该定理的证明方式和椭圆的类似,可以参照上面的解法进行证明.3.拋物线的等角定理:过抛物线对称轴上任意一点的一条弦端点与对应点y 2=2px (p >0)N (a ,0)A 、B G(−a 的连线所成角被对称轴平分.,0)【证明】只需证明,即.即证:,k GA =−k GB k GA +k GB =0y Ax A −x G+y BxB −x G=0即证:①y A (x B −x G )+y B (x A −x G )=0其中.x G =−a 设所在直线方程为:,则有:,代入(1)中可得:AB x =my +a x A =my A +a ,x B =my B +a ,化简,得: ②my B +a−x Gy B+my A +a−x Gy A=02m +2a(1y A+1y B)=0联立,得:,即{x =my +ay 2=2px y 2=2p (my +a )y 2−2pmy−2pa =0由韦达定理,得:代入②式,y A +y B =2pm ,y A y B =−2pa .等式左边,=2m +2a (y A +y B y A y B)=2m +2a(2pm −2pa)=0故命题得证.典型例题类型1:椭圆等角定理的应用【例1】设椭圆的右焦点为,过的直线与交两点,点的坐标为C :x 22+y 2=1F F l C A ,B M .(2,0)(1)当与轴垂直时,求直线的方程;l x AM (2)设为坐标原点,证明:.O ∠OMA =∠OMB 【答案】(1)或(2)见解析.y =−22x +2y =22x−2;【解析】(1)由已知得的方程为.F (1,0),l x =1由已知可得,点的坐标为或.A (1,22)(1,−22)所以的方程为或.AM y =−22x +2y =22x−2(2)当与轴重合时,.l x ∠OMA =∠OMB =0∘当与轴垂直时,为的垂直平分线,所以.l x OM AB ∠OMA =∠OMB 当与轴不重合也不垂直时,设的方程为,l x l y =k (x−1)(k ≠0),A (x 1,y 1),B (x 2,y 2)则,直线的斜率之和为.x 1<2,x 2<2MA ,MB k MA +k MB =y 1x 1−2+y2x 2−2由,得y 1=kx 1−k ,y 2=kx 2−k k MA +k MB =2kx 1x 2−3k (x 1+x 2)+4k(x 1−2)(x 2−2)将代入得.y =k (x−1)x 22+y 2=1(2k 2+1)x 2−4k 2x +2k 2−2=0所以.x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1则2kx 1x 2−3k (x 1+x 2)+4k =4k 3−4k−12k 3+8k 3+4k2k 2+1=0从而,故的倾斜角互补,所以.k MA +k MB =0MA ,MB ∠OMA =∠OMB 综上,.∠OMA =∠OMB【例2】如图,两条相交线段的四个端点都在椭圆上,其中直线AB 、PQ x 24+y 23=1AB 的方程为,直线的方程为.x =m PQ y =12x +n(1)若,求的值;n =0,∠BAP =∠BAQ m (2)探究:是否存在常数,当变化时,恒有?m n ∠BAP =∠BAQ 【答案】(1);(2)见解析.m =±1【解析】依题意,当时,由,解得,(1)n =0{x 24+y 23=1y =12xP (−3,−32),Q (3,32)因为,所以,∠BAP =∠BAQ k AP =k AQ 设,则,化简得,A (m ,y )y +32m +3+y−32m−3=02my =3又由,联立方程组,解得或.m 24+y 23=1{2my =3m 24+y 23=1m =±1m =±3因为平分,所以(不合题意),所以.AB ∠PAQ m =±3m =±1(2)设,P (x 1,y 1),Q (x 2,y 2)由,整理得,{x 24+y 23=1y =12x +n4y 2−6ny +3n 2−3=0其中,Δ=12(4−n 2),y 1+y 2=3n2,y 1y 2=3(n 2−1)4若存在常数,当变化时,恒有,m n ∠BAP =∠BAQ 则由(1)可知只可能是,m =±1①当时,取等价于,m =1A (1,32),∠BAP =∠BAQ y +32m +1+y−32m−1=0即,(2y 1−3)(2y 2−2n−1)+(2y 2−3)(2y 1−2n−1)=0即即,此式子恒成立,4y 1y 2+3(2n−1)=2(n +2)(y 1+y 2)3(n 2−1)+3(2n +1)=3n (n +2)所以存在常数,当变化时,恒有;m =1n ∠BAP =∠BAQ ②当时,取,由椭圆的对称性,同理可知结论也成立,m =−1A (−1,−32)综上可得,存在常数,当变化时,恒有.m =±1n ∠BAP =∠BAQ 【例3】已知点,直线过点且与椭圆P (t ,0)(t ≠0)AB E(a 2t ,0)x 2a 2+y 2b 2=1(a >b >0)(或双曲线交于不同的两点,求证:直线与x 2a 2−y 2b 2=1(a >0,b >0))A ,B PA ,PB x 轴所成的较小的角相等.【答案】见解析.【解析】下面仅以椭圆x 2a 2+y 2b 2=1(a >b >0)为例(如图)来证明,双曲线的情形可仿此证明.【证明】设点和点的坐标分别为和,A B (x 1,y 1)(x 2,y 2)∵直线AB 过点E (a 2t ,0),∴设直线AB 的方程为y =k (x−a 2t ),代入椭圆方程可得:(b 2+a 2k 2)x 2−2a 4k 2t x +a 6k 2t2−a 2b 2=0∴x 1+x 2=2a 4k2tb 2+a 2k 2,x 1x 2=a 6k 2t 2−a 2b 2b 2+a 2k 2∵k PA +k PB =y 1x 1−t +y 2x 2−t =y 1(x 2−t )+y 2(x 1−t )(x 1−t )(x 2−t )=k (x 1−a 2t )(x 2−t )+k (x 2−a 2t )(x 1−t )(x 1−t )(x 2−t )=k [2x 1x 2−(t +a 2t)(x 1+x 2)+2a 2](x 1−t )(x 2−t )=k [2(a 6k 2t 2−a 2b 2)b 2+a 2k 2−(t +a 2t )2a 4k 2t(x 1−t )(x 2−t )=0直线的斜率互为相反数,倾斜角互补,∴PA ,PB 直线与轴所成的较小的角相等.∴PA ,PB x 类型2:拋物线等角定理的应用【例4】已知倾斜角为的直线过抛物线的焦点,且直线45∘l C :y 2=2px (p >0)F l交拋物线于两点.若点,则C A 、B M (−p2,0)tan ∠AMB =()A. B.2C.D.22226【答案】C【解析】过作轴,准线准线A AH ⊥x AA '⊥L ',BB '⊥L '.设,∠AMF =α,∠BMF =β,∠AFH =θ由于,sin θ=AHAF =AHAA '=tan α所以.tan α=sin θ=sin 45∘=22同理,tan β=sin θ=22从而.tan ∠AMB=tan (α+β)=tan α+tan β1−tan α⋅tan β=22所以.tan ∠AMB=22【例5】已知是拋物线的焦点,其准线与轴交于点,过点的直线F y2=4x x P P l与拋物线交于两点,若线段上有一点,满足,则A,B AB M(x,y)|AM|⋅|PB|=|BM|⋅|PA|M 的轨迹方程是________.【答案】且)x=1(−2<y<2≠0【解析】解法1:设,所以A(x1,y1),B(x2,y2),M(x,y)y−y1y2−y1=y1y2⇒(y1+y2)y=2y1y2⋯⋯(1)由直线和拋物线联立,得AB:x=my−1y2=4x或y2−4my+4=0⇒Δ=16m2−16>0⇒m<−1m>1⇒{y1+y2=4my1y2=4⋯(2)由(1)和得(2)4my=8⇒my=2代入直线,得AB:x=my−1x=1,y=2m∈(−2,0)∪(0,2)故点的轨迹方程是且).M x=1(−2<y<2y≠0解法2:延长,与拋物线交于点,设, BF C∠APx=α,∠CPx=β,∠BFx=θ点在轴上的射影为在准线上的射影分别为,B x H ,A ,B A 1,B 1则,tan α=BHHP =BHBB 1=BHBF =sin θ同理,所以于是关于轴对称,tan β=sin θα=β.A ,C x 进而得,故.△AFP≅△∠CFP ∠AFP =∠CFP 由条件得:,|AM |⋅|PB |=|BM |⋅|PA ||AM ||BM |=|PA ||PB |又因为,所以,由角平分线定理得.|PA ||PB |=|AA 1||BB 1|=|AF ||BF ||AM ||BM |=|AF ||BF |∠AFM =∠BFM 因为,所以,∠AFB +∠CFA =180∘2∠AFM +2∠AFP =180∘故,即,即轴,∠AFM +∠AFP =90∘∠MFP =90∘MF ⊥x 于是在直线上(不在轴),且在拋物线开口之内.M x =1x 由,得的轨迹方程为,且.{y 2=4x x =1⇒y =±2M x =1(−2<y <2y ≠0)【例6】已知是拋物线上的两点,是焦点,直线的倾斜角互补,记A ,B y 2=4x F AF ,BF AF ,的斜率分别为,则________.AB k 1,k 21k 22−1k21=【答案】1.【解析】设,由,得A (x 1,y 1),B (x 2,y 2)k AF +k AF =0y 1x 1−1=y 2x 2−1即,得y 1y214−1=y 2y224−1y 1y 2=4而,直线的方程为,k AB =y 1−y 2x 1−x 2=4y 1+y 2AB y−y 1=4y 1+y 2(x−x 1)即,将代入,得,y =4y 1+y 2x+y 1y 2y1+y 2y 1y 2=4y =4y 1+y 2(x +1)可得直线过定点,即准线与轴的交点.AB K(−1,0)x =−1x 设点在准线上的投影为,在轴上的投影为,A A 1x H记,则∠AKx =α,∠AFx =θtan α=AH KH =AH AA 1=AHAF =sin θ于是.1k 22−1k 21=1tan 2 α−1tan 2 θ=1sin 2 θ−1tan 2 θ=1sin 2 θ−cos 2 θsin 2 θ=sin 2 θsin 2 θ=1【例7】设椭圆的右焦点为,过的直线与交于两点,点的坐标为C :x 22+y 2=1F F l C A ,B M .(2,0)(1)当与轴垂直时,求直线的方程;l x AM (2)设为坐标原点,证明:.O ∠OMA =∠OMB 【答案】(1)或(2)见解析.y =−22x +2y =22x−2;【解析】(1)由已知得的方程为.F (1,0),l x =1由已知可得,点的坐标为或.A (1,22)(1,−22)所以的方程为或.AM y =−22x +2y =22x−2(2)解法1:设直线的方程为:,l my =x−1A (x 1,y 1),B (x 2,y 2),k AM =y 1−0x 1−2,k BM =y 2−0x 2−2联立方程组得:{my =x−1x 22+y 2=1消元整理得:(1)(m 2+2)y 2+2my−1=0因为点为椭圆的右焦点,所以方程(1)有两个实数根分别为.F y 1,y 2由韦达定理可得:y 1+y 2=−2m2+m 2,y 1y 2=−12+m 2所以.k AM +k BM =y 1−0x 1−2+y 2−0x 2−2=y 1my 1−1+y 2my 2−1=2my 1y 2−(y 1+y 2)(my 1−1)(my 2−1)=−2m 2+m 2+2m 2+m 2(my 1−1)(my 2−1)=0解法2:椭圆第二定义过点分别作椭圆右准线的垂线垂足分别为(如图所示)A ,B A 1,B 1由椭圆的第二定义可得:,e =AF AA 1=BFBB 1所以有:①,又因为轴,AFBF =AA 1BB 1AA 1//x //BB 1所以②AFBF =A 1M B 1M 由①②得,即有且,AA 1BB 1=A 1MB 1M AA 1A 1M =BB 1B 1M ∠AA 1M =∠BB 1M 所以,即可得,△AA 1M≅△BB 1M ∠AMA 1=∠BMB 1故.∠OMA =∠OMB 【例8】在直角坐标系中,曲线与直线交于,两点.xOy C :y =x 24l :y =kx +a (a >0)M N (1)当时,分别求在点和处的切线方程;k =0C M N (2)轴上是否存在点,使得当变动时,总有?说明理由.y P k ∠OPM =∠OPN 【解析】(1)联立,不妨取,{y =ay =x 24M (2a ,a ),N(−2a ,a )由曲线可得:,C :y =x 24y '=x2曲线在点处的切线斜率为,∴C M 2a 2=a 其切线方程为:,即为.y−a =a (x−2a )a x−y−a =0同理可得曲线在点处的切线方程为:.C N a x +y +a =0(2)存在符合条件的点,下面给出证明:(0,−a )设满足,P (0,b )∠OPM =∠OPN 联立,得,{y =kx +a y =x 24x 2−4kx−4a =0设,直线的斜率分别为.则M (x 1,y 1),N (x 2,y 2)PM ,PN k 1,k 2x 1+x 2=4k ,x 1x 2=−4a所以k 1+k 2=y 1−b x 1+y 2−b x 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a当时,,直线的倾斜角互补,.b =−a k 1+k 2=0PM ,PN ∴∠OPM =∠OPN 即点符合条件.P(0,−a )强化训练1.设抛物线的焦点为,过的直线与抛物线交于两点,C :y 2=4x F F l A ,B M 为抛物线的准线与轴的交点,若,则________.x tan ∠AMB =22|AB |=【答案】【解析】,sin θ=AH AF =AHMH =tan α同理于是sin θ=tan β,tan α=tan β,∴α=β由tan 2α=22⇒2tan α1−tan 2 α=22⇒tan α=22∴sin θ=22,∴AB =2psin 2 θ=82.已知点,直线过点,且与抛物线交于不同的两点P (t ,0)(t ≠0)AB E(−t ,0)y 2=2px (p >0),求证:直线与轴所成的较小的角相等.A ,B PA ,PB x【答案】见解析.【解析】设点和点的坐标分别为和,直线过点设直线A B (x 1,y 1)(x 2,y 2)∵AB E(−t ,0),∴的方程为AB x =my−t代入抛物线的方程得:y 2−2pmy +2pt =0,∴y 1+y 2=2pm ,y 1y 2=2pt ∵k PA +k PB =y 1x 1−t +y 2x 2−t=y 1(x 2−t )+y 2(x 1−t )(x 1−t )(x 2−t )=y 1(y 222p −t )+y 2(y 212p −t)(x 1−t )(x 2−t )=(y 1+y 2)(y 1y 22p−t)(x 1−t )(x 2−t )=0直线的斜率互为相反数,倾斜角互补,∴PA ,PB 直线与轴所成的较小的角相等.∴PA ,PB x 已知抛物线的交点为,准线与轴相交于点,过的直线与交于3.C :x 2=4y F P F C A 、B两点,若,则|PA |=2|PB ||AB |=A.5B.C. D.925322【答案】B【解析】设,由圆锥曲线中的等角定理可知,轴是的平分线A (x 1,y 1),B (x 2,y 2)y ∠APB 由角平分线定理可知,即,故|AF ||BF |=2y 1+1y2+1=2y 1=2y 2+1设直线方程为,与抛物线方程联立得,AB x =my +1my 2+(2m−4)y +1=0故,解方程组得y 1+y 2=4−2m m2,y 1y 2=1m2{y 1=2y 2+1y 1+y 2=4−2mm 2y 1y 2=1m2{y 1=2y 2=12m =1故.|AB |=y 1+y 2+2=924.已知抛物线的准线与轴相交于点,过点且斜率为y 2=4x x P P k (k >0)的直线与拋物线交于两点,为拋物线的焦点,若,则的长度为A ,B F |FB |=2|FA |AB ()A.B.2C.D.3217217【答案】C 【解析】由及抛物线定义知,为的中点,设|FB |=2|FA |A PB A(y 24,y ),B (y 22+1,2y)代入抛物线方程,解得4y2=4(y22+1)y=±2不妨设,所以,A(12,2)|AB|=|PA|=(12+1)2+(2−0)2=172故选C.。

圆锥曲线焦半径公式及其应用(学生版)

圆锥曲线焦半径公式及其应用(学生版)

圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF ,=2PF ,记忆方式:2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF ,=2PF ,②当点P 在左支上时,=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF ,=2PF ,②当点P 在下支上时,=1PF ,=2PF ,记忆方式:(3)若弦AB 过左焦点,则=AB ;若弦AB 过右焦点,则=AB 3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF (2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF (3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF (4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;(2)设过椭圆)0(12222>>=+b a bx a y 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF ;=BF ;=AB ,弦AB 在双曲线一支上时,焦点弦最短为(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF ;=BF ;=AB ,弦AB 交双曲线两支上时,焦点弦最短为3.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF ;=BF ;=AB (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF ;=BF ;=AB 例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e ;=e (2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θsin e ;=e 例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为。

神奇的圆锥曲线(62页)问题探究_PDF压缩

神奇的圆锥曲线(62页)问题探究_PDF压缩


问题探究 2 已知定点 A(1, 0) ,定直线 l1 : x 3 ,动点 N 在直线 l1 上,过点 N 且与 l1 垂直的直 线 l2 上有一动点 P,满足
PA PN ,请讨论点 P 的轨迹类型。
10
神奇的圆锥曲线动态结构 168
3.切线焦径,准线作法
- 11-
实验成果
动态课件
- 5-
5
神奇的圆锥曲线动态结构 168
35.定点中点,轨迹同型 八、向量内积,定值问题 36.焦弦张角,内积定值 37.存在定点,内积仍定 九、其它重要性质 38.光线反射,路径过焦 39.切线中割,切弦平行 40.直周之角,斜过定点 41.正交半径,斜切定圆 42.直径端点,斜积定值 43.垂弦端点,交轨对偶 44.准线动点,斜率等差 45.焦点切线,距离等比 46.共轭点对,距离等积 47.正交中点,连线定点 48.顶点切圆,切线交准 49.平行焦径,交点轨迹 50.内接内圆,切线永保 51.切线正交,顶点轨迹 52.斜率定值,弦过定点 53.直线动点,切弦定点 54.与圆四交,叉连互补
PA QB PB 0, QP ( PA PB ) 0 ,求动点 Q 的轨迹方程。 PB
11
神奇的圆锥曲线动态结构 168
4.焦点切线,射影是圆
- 12-
实验成果
动态课件
焦点在椭圆切线上的射影 轨迹是以长轴为直径的圆
12
神奇的圆锥曲线动态结构 168
5.焦半径圆,切于大圆 实验成果
- 13-
动态课件
以焦半径为直径的圆必与 长轴为直径的圆(此圆(简 称“大圆” )与椭圆内切, ) 相切 以焦半径为直径的圆必与 实轴为直径的圆(此圆(此 圆(简称“小圆” )与双曲 线外切)相切 。 以焦半径为直径的圆必与 切于抛物线顶点处的直线 (此圆无穷大(实为顶点处 的切线)与曲线外切)相切 问题探究 5

(完整word版)高中数学圆锥曲线结论(最完美版本)

(完整word版)高中数学圆锥曲线结论(最完美版本)

1 .点P处的切线PT平分△PF1F2在点P 处的外角.2 . PT平分△PF1F2在点P处的外角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相离.4 .以焦点半径PF i为直径的圆必与以长轴为直径的圆内切.2 25 .假设P o(X o, y o)在椭圆与yY 1上,那么过P0 a b的椭圆的切线方程是警缪1. a b2 26 .假设P0(X o, y o)在椭圆占4 1外,那么过a bP0作椭圆的两条切线切点为P1、P2, 那么切点弦P1P2的直线方程是x o x y o y-2~ ~2~1.a b2 27.椭圆\ 4 1 (a>b>0)的左右焦点a b分别为F1, F2,点P为椭圆上任意一点F1PF2 ,那么椭圆的焦点角形的面积为S F PF b2 tan-. 1 222 28 .椭圆=yr 1 (a>b>0)的焦半径公a b式:IMF I | a ex0,|MF2 | a e%(F1( c,0),F2(C,0) M(x0,y.)).9 .设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N 两点,那么MF XNF.10 .过椭圆一个焦点F的直线与椭圆交于两点P、Q,A I、A2为椭圆长轴上的顶点,A I P和A2Q交于点M, A2P和A I Q交于点N,那么MFXNF.2 211. AB是椭圆与当1的不平行于对称轴a b的弦,M(x°,y°)为AB的中点,那么b2k OM k AB _2,a即K AB整.a V.双曲线1 .点P处的切线PT平分△PF1F2在点P处的内角.2 . PT平分△PF1F2在点P处的内角, 那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相交.4 .以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)2 25 .假设P o(%,y.)在双曲线与3 1 (a>a b0,b>0〕上,那么过B的双曲线的切为AB 的中点,那么K OM K AB 线方程是粤.当1.a b2 26.假设R〔X°,y.〕在双曲线与匕ab 1 (a>0,b>0〕外,那么过Po作双曲线的两条切线切点为P「P2,那么切点弦P1P2的直线方程是X0X y0 y 1.即K ABb2X.-20a y.212.右P Q〔X.,y.〕在双曲线—2ab2X.-2 )a y.1 (a>0,b>0〕内,那么被Po所平分的中点弦的方程是2 2X Q X y°y X0 y2 27.双曲线 : 〕a b 右焦点分别为线上任意一点1 〔a>0,b>o〕的左F 2,点P为双曲F1PF2 ,那么双曲线2 . 2 2aba213.假设P0(x0,y0)在双曲线—ab2 yb7 1(a>的焦点角形的面积为S2 2 F1PF2b2cot—.20,b>0〕内,那么过Po的弦中点的轨2 2迹方程是3线誓岑.a2b2a2b28 .双曲线: I 1 〔a>0,b>o〕的焦a b半径公式:〔F1〔 c,0〕, F2〔c,0〕当M〔X0,y°〕在右支上时,|MF1| ex0 a ,| MF2 | ex0 a.当M〔X0, y°〕在左支上时,|MF1| eX0 a,|MF2| eX0 a9 .设过双曲线焦点F作直线与双曲线椭圆与双曲线的对偶性质-椭1.相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别2.交相应于焦点F的双曲线准线于M、N 两点,那么MFXNF.10.过双曲线一个焦点F的直线与双曲3.线交于两点P、Q, A「A2为双曲线2 2椭圆三-yy 1 〔a>b>o〕的两个顶 a b 点为A〔 a,0〕,A2〔a,0〕,与y轴平行的直线交椭圆于P r P2时A1P1与A2P22 2交点的轨迹方程是3多1. a b2 2过椭圆与与1 〔a> 0, b>0〕上任 a b 一点A〔X0,y.〕任意作两条倾斜角互补的直线交椭圆于B,C两点,那么直线BC有定向且k Bc骆〔常数〕.a y.2 2假设P为椭圆33 1 〔a>b>0〕上 a b实轴上的顶点,A1P和A2Q交于点异于长轴端点的任一点,F1, F 2是焦M, A2P和A1Q交于点N,那么MF点, PFE PF2F1±NF.tan — cot —.2 11. AB是双曲线三a2纭 1 (a> 0,b> 0) b 4. 设椭圆得a24 1 (a>b>0)的两个b2的不平行于对称轴的弦,M 〔X., y°〕焦点为F I、F2,P 〔异于长轴端点〕为椭圆上任意一点,在△ PF1F2中, 记F1PF2 ,PF1F2 , F i F2P ,那么有点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,贝E|MN |210.椭圆与ae.22yb21 ( a> b>0)sin c --- ----- e.sin sin a ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点25.假设椭圆与a 2 y_b21 (a> b>0)的左、右焦点分别为F i、F2,左准线为L,2 .2P(x°,0),那么a211.设P点是椭圆三aX2 ,2a baa> b>0)那么当0<e<点1时,可在椭圆上求一点P,使得PF i是P到对应准线距离d与PF2的比例中项.2 26. P为椭圆二与1 (a>b>0)上任a b 上异于长轴端点的任一点,F i、F2 为其焦点记F1PF2 ,那么八2b21) 1P削0、一点,F i,F2为二焦点,A为椭圆内一定点,那么2) S PF1F2 b2tan-.1 2 2212.设A、B是椭圆与a 1 ( a> b2a |AF2 11PA | | PF i | 2a |AF1 |,当且仅当A,F2,P三点共线时,等号成立>0)的长轴两端点,P是椭圆上的一点, PAB ,PBA , BPA , c、e分别是椭圆的半焦距离心率,那么有2 27.椭圆区舁1与直线a bAx By C 0有公共点的充要条件是A2a2B2b2(Ax0 By0 C)2.2 28.椭圆一4 1 (a>b>0), O a b为坐标原点,P、Q为椭圆上两动点,且OP OQ .(1)|PA|tan tanS PAB2 . .2ab |cos |2a2bb213.椭圆9. 1)2)3)2 2c cos1 e2.(3)2.(2)2a2xacot2yb21 ( a>b>0)的右准线l与X轴相交于点E ,过椭圆1 1 1 1 .| OP |2|OQ |2a2b2;|OP2+|OQ|2的最大值为2 2S OPQ的最小值是告红a b右焦点F的直线与椭圆相交于A、B2 24a2b2 .~~2 ,a b2冬i (a>b>0)的右焦b两点,点C在右准线l上,且BC x轴,那么直线AC经过线段EF的中点.14 .过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过椭圆焦半径的端点作椭圆的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17 .椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18 .椭圆焦三角形中,半焦距必为内、外点到椭圆中央的比例中项.椭圆与双曲线的对偶性质一双曲线2 21 .双曲线二4 1 (a>0,b>0) a b的两个顶点为A( a,0) , A2(a,0), 与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹2 2方程是x2 4 1.a b2 22 .过双曲线与4 1 (a>0,b>o)a b上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,那么直线BC有定向且k Bc 辂(常数).a V.23 .假设P为双曲线与a>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点,PF1F2 , PF2F1,那么c-a tan—cot—(或c a 2 2c a x----- tan—cot —7.c a 2 22 24.设双曲线与与1 (a>0,b>0) a b的两个焦点为F「F2,P (异于长轴端点)为双曲线上任意一点,在△PF1F2 中,记F1PF2 ,PF1F2 , \F2P ,那么有sin c--------------------- --- e.(sin sin ) a2 25 .假设双曲线-2 -V2- 1 (a>0,b>0) a b的左、右焦点分别为F「F2,左准线为L,那么当1<ew V2 1时,可在双曲线上求一点巳使得PF1是P到对应准线距离d与PF2的比例中项. 2 26 . P为双曲线与4 1 (a>0,b> a b2£ 1( a> 0,b0)上任一点,F I,F2为二焦点,A 为双曲线内一定点,那么2 ,SPF1F2b COt二.22 212.设A、B是双曲线与与a b 1 (aIAF2I 2a |PA| |PF i|,当且仅当>0,b>0)的长轴两端点,P是双曲线上的一点,PABA,F2,P三点共线且P和A, F2在y PBA , BPA , C、e 分别是轴同侧时,等号成立双曲线的半焦距离心率,那么有2 7.双曲线x2 a与直线Ax2y2 1 (a> 0,b> 0) b By C 0有公共点的充要条件是A2a2B2b2C2.2 28.双曲线tI 1 (b>a >a b0), O为坐标原点,P、Q为双曲线上两动点,且OP OQ .1)2)3)2 . .2ab | cos ||PA|「2-N | a c cos |2tan tan 1 e .SPAB2, 22a b ,2一 2 cotb a 213.双曲线占a2j 1 (a> 0,b>(1)| OP |2|OQ I2(2) |OP2+|OQ|2的最小值为2,2(3) S OPQ的最小值是-2巴b2a2 2 4a b . ~22 ;b a2 29.过双曲线与匕1 (a>0,b>0)a b的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,那么|PF | e .|MN | 22 210.双曲线 \ 4 1 (a>0,b>a b0) ,A、B是双曲线上的两点, 线段AB的垂直平分线与x轴相2 .2交于点P(x°,0),那么x.a~^或 a2 ,2a b x-- .a2 211.设P点是双曲线与与1 (a>a2b20,b> 0)上异于实轴端点的任一点,F1、F2为其焦点记F1PF2 ,那么⑴|PF1||PF2|产一.⑵1 cos0)的右准线l与x轴相交于点E , 过双曲线右焦点F的直线与双曲线相交于A、B两点,点C在右准线l上,且BCx轴,那么直线AC经过线段EF的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过双曲线焦半径的端点作双曲线的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).〔注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点〕.17 .双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18 .双曲线焦三角形中,半焦距必为内、外点到双曲线中央的比例中项.圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种根底知识、采用多种数学手段来处理问题.熟记各种定义、根本公式、法那么固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧.一.紧扣定义,灵活解题灵活运用定义,方法往往直接又明了.例1.点A (3, 2), F (2, 0),双曲线2X2匕1,P为双曲线上一点.31求|PA| 1|PF|的最小值.2解析:如下图,双曲线离心率为2, F为右焦点,由第1二定彳t知1|PF|即点P到准线距离.1 5|PA| |PF| |PA| |PE| AM -2 2二.引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决.例2.求共焦点F、共准线l的椭圆短轴端点的轨迹方程.解:取如下图的坐标系,设点F到准线l的距离为p (定值),椭圆中央坐标为M (t, 0) (t为参数) ,叫.2 .b pc pt再设椭圆短轴端点坐标为P (x, y),那么X c ty b ..pt消去t,得轨迹方程y2 px三 .数形结合,直观显示将“数〞与“形〞两者结合起来,充分发挥“数〞的严密性和“形〞的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化.熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题.例3.x,y R,且满足方程x2 y2 3(y 0),又m --3 ,求m 范围.解析:m —-的几何意义为,曲线x 3x2 y2 3(y 0)上的点与点(—3, — 3)连线的斜率,如下图四.应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几〞题中的一些图形性质就和“平几〞知识相关联,要抓住关键,适时引用,问题就会迎刃而解.例4.圆(x 3)2 y2 4和直线y mx的交点为P、Q,那么|OP||OQ|的值为.解:OMP ~ OQN|OP||OQ| |OM||ON| 5五.应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具.例5.椭圆:工y- 1 ,直线l :24 16y12 81, P是l上一点,射线OP交椭圆于六.应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功 倍之效.所以灵活运用曲线系是解析几何中重要 的解题方法和技巧之一.例6.求经过两圆x 2 y 2 6x 4 0和 22x y 6y 28 0的父点,且圆心在直线x y 4 0上的圆的方程.点R,点Q 在OP 上且满足|OQ||OP| |OR|2 ,当 点P 在l 上移动时,求点Q 的轨迹方程.解:设所求圆的方程为:22_22_x 2y 26x 4 (x 2y 26y 28) 0 (1 )x 2 (1)y 2 6x 6 y (284) 0分析:考生见到此题根本上用的都是解析 几何法,给解题带来了很大的难度,而如果用向 量共线的条件便可简便地解出. 解:如图,OQ, OR, OP 共线,设 OR OQ , OP OQ , OQ (x, y),贝U 那么圆心为(」_ , _J_),在直线11x y 4 0 上解得 7故所求的方程为x 2 y 2 x 7y 32 0OR ( x, y) , OP ( x, y) 2七.巧用点差,简捷易行在圆锥曲线中求线段中点轨迹方程,往往采用 点差法,此法比其它方法更简捷一些.例7.过点A (2, 1)的直线与双曲线2x 2 — 1相交于两点P 1、P 2,求线段P 1P 2中点2的轨迹方程.解:设 P ,(x1,Y I ) , P 2(x 2, y 2),那么2X I 2 X22 Y I2 2Y 2 2|OQ||OP| |OR| <2> —<1> 得(X 2 X I )(X I X 2)1 2(Y 2 Y I )(Y I2Y 2)2 22 |OQ|2 2|OQ|22点R 在椭圆上,P 点在直线l 上 2 222———匕1,三△ 12416 12 8 2 2即士 L 二y241612 8化简整理得点Q 的轨迹方程为: 22 _(x 1) (y 1) 2 … -—广1(直线y — x 上万 5 5 323局部) 即 Y 2 Y I2( X I X 2) X 2 X IY I Y 2设P 1P 2的中点为M(X O , y 0),那么kP 1P 2Y 2 Y Ix 2 X 12xY O又,而P I 、A 、M 、P 2共线k P 1P2k AM,即^X O 2Y O的轨迹方程是2x 2 y 2 4x y 0P 1P 2中点M解析几何题怎么解高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解做题),共计30分左右,考查的 知识点约为20个左右.其命题一般紧扣课本,突出重点,全面考查.选择题和填空题考查直线,圆, 圆锥曲线,参数方程和极坐标系中的根底知识.解做题重点考查圆锥曲线中的重要知识点,通过知识 的重组与链接,使知识形成网络,着重考查直线与圆车t 曲线的位置关系,求解有时还要用到平几的基 本知识,这点值得考生在复课时强化.例1点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形 AA B B ,使AA 垂直且等于AT,使BB 垂直且等于BT , A B 交半圆于P 、Q 两点,建立如图所 示的直角坐标系.⑴写出直线A B 的方程; (2)计算出点P 、Q 的坐标;(3)证实:由点P 发出的光线,经AB 反射后,反射光线 通过点Q.饼斛:通过I 卖图,看出A , B 点的坐标. 一…' ' .'一 ,.…(1 )显然A 1,1 t , B 1,1 t ,于是直线A B 的方程为ytx 1 ;222(2)由方程组 x y 1,解出 P(0,1)、Q(1/,」^); y tx 1, 1 t 1 t由直线PT 的斜率和直线QT 的斜率互为相反数知,由点 P 发出的光线经点T 反射,反射光线通 过点Q.需要注意的是,Q 点的坐标本质上是三角中的万能公式,有趣吗?22例2直线l 与椭圆\ J 1(a b 0)有且仅有一个交点Q,且与x 轴、y 轴分别交于R 、S, a b 求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.讲解:从直线l 所处的位置,设出直线l 的方程,由,直线l 不过椭圆的四个顶点,所以设直线l 的方程为y kx m(k 0). 代入椭圆方程 b 2x 2 a 2y 2 a 2b 2,得 b 2x 2 a 2(k 2x 2 2kmx m 2)a 2b 2.化简后,得关于x 的一■兀二次方程 (a 2k 2b 2)x 2 2ka 2mxa 2m 2 a 2b 20.于是其判别式(2ka 2m)2 4(a 2k 2 b 2)(a 2m 2 a 2b 2) 4a 2b 2(a 2k 2 b 2 m 2).由,得^ 二0 .即a 2k 2 b 2 m 2.①在直线方程y kx m 中,分别令y=0, x=0,求得R ( —,0),S(0,m). k(3) k PTk QT2t1t(it 2昌m I, y x—, k — 令顶点P 的坐标为(x, y), 由,得 k解得 xym.m y.2, 2代入①式并整理,得 a 2 b 2 1,即为所求顶点P 的轨迹方程.x 2 3 y 22. 2方程土上1形似椭圆的标准方程,你能画出它的图形吗?22x y例3双曲线x 2 4 1的离心率e .,过A (a,0),B(0, b)的直线到原点的距离是 —.a 2b 2 32(1)求双曲线的方程;的值.设C(x i ,y i ),D(x 2,y 2),CD 的中点是 E(x o ,y o ),那么2(2)考虑直线l 的斜率的存在性,可分两种情况:解出 e i)当k 存在时,设l 的方程为y k(x c)于是椭圆方程可转化为x 2 2y 2 2c 2 0 ................................. ②(2)直线y kx5(k 0)交双曲线于不同的点 C, D 且C, D 都在以B 为圆心的圆上,求k讲解::( 1) £ a2卡原点到直线AB:二 1的距离dab ■..a 2 1, ab 2■、.ab c、3~2~故所求双曲线方程为x 2 2V y 1.(2)把y kx 5代入x 23y 23中消去y,整理得(12 23k 2)x 230kx 78x .x 1x 22 15 k U y 0kx 05; : । 2 , kBE1 3ky 01x 0x 0 ky 0 k0,即15 k 3k 25 k---------- - k 0,又 k 1 3k 20, k故所求k= ± a.为了求出 k 的值,需要通过消元,想法设法建构k 的方程.例4椭圆 C 的中央在原点,焦点F I 、F 2在x 轴上,点P 为椭圆上的一个动点, 的最大值为90° ,直线l 过左焦点F I 与椭圆交于A 、B 两点,4ABF 2的面积最大值为 且/ 12.F 1PF 2(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解: (D 设IPF I I「I ,|PF 2| "F I F 2|2c ,对PF I F 2,由余弦定理,得cos F 1PF 21 22r 1 r 2 4c2rj 2(.L)22r 1r 2 4c 2 2rj 24a 4c 1------------- 1 1 r 1 r 2 2 2(七壬卜面给出此题的另一解法,请读者比拟二者的优劣: 设过左焦点的直线方程为:x my c (这样设直线方程的好处是什么?还请读者进一步反思反思 2 2椭圆的方程为:x ^ \ 1,A(x 1,y 1),B(x 2,y 2) a b 由e 字得:a 2 2c 2,b 2 c 2,于是椭圆方程可化为: 把①代入②并整理得:(m 2 2)y 2 2mcy c 2 于是y 〞y 2是上述方程的两根. AB 边上的高h 一c1 m 2当且仅当m=0取等号,即S max 收02. 由题意知v2c 2 12,于是b 2 c 2 66,a 2 12V2 .故当△ ABF 2面积最大时椭圆的方程为: 上 工12. 262将①代入②,消去y 得 x 2 2k 2(x c)2 2c 20,整理为x 的一元二次方程,得._2、22_2.2、 一(1 2k )x 4ck x 2c (k 1) 0.那么x i 、x 2是上述方程的两根.且 | x 2 x i | 2 .. 2c1 k AB 边上的高 h | FR | sin BF 1 F 21 2c |k|,2,1 k2kk 2| x 2 x i |2 2c(1 k 2);~2,1 2k厂也可这样求解:2c 1cc/1 k 2、 |k | c S -2 2c( 2) |—| 22c212k1 k 212产区| M y 2|2.2c 2.rviki 1 2k 2k 2k 4k 24k 42'2"1 1 42k k,2c 2.c | k | | x ix 2 |ii)当k 不存在时,把直线x c 代入椭圆方程得 y£c ,|AB|由①②知S 的最大值为V2c 2由题意得2c 2 = 12所以c 2 6 2 b 212 2故当△ ABF 2面积最大时椭圆的方程为: 上12. 2 2V 1.6 2x 2 2y 2 2c 2 0 .................. (2|AB| \(x 1、2 z、2x ) (y1 m2 | y 2 y 1|1 m2 4m2 2, 2,2c 4c (m 2)2m 2-22 2c(1 m 2)从而 S l|AB|h 二2 2c(1m2)22 m 2 22c221 m22 2c 21m2c(m 2)22 2c 2■ m1 1 122m 212c 2. 1.2 2例5直线y x 1与椭圆之与1〔a b 0〕相交于A、B两点,且线段AB的中点在直 a b 线l :x 2y 0上.〔1〕求此椭圆的离心率;〔2 〕假设椭圆的右焦点关于直线l的对称点的在圆x2y24上,求此椭圆的方程.y 讲解:〔1〕设A、B两点的坐标分别为A〔x1,y〕 BM, y?〕.那么由x2-2 a2 2、 2 2 2 2(a b )x 2a x a a,- 4.2如果| AB | ——,求直线MQ的万程;〔2〕求动弦AB的3中点P的轨迹方程.、… r 4、2讲解:〔1〕由1A Bi可,可得|MP| J MA |2 (LA%2J12(迪)2 1,由射影定理,得2 . 3 3|MB |2|MP | |MQ |,得|MQ | 3,在RtAMOQ 中,|OQ | <| MQ |2 |MO |2、32 2 2 M5 ,故a 盘或a <5 ,所以直线AB方程是2x J5y 2运 0或2x 岛2匹 0; x 1, y2行2_ 1 b2根据韦达定理,得x1 x2与,,y2函 a bX2)2b2a2b2「•线段AB的中点坐标为〔2 .2a b~2 -2 , -2 ~2 a b a b2由得二Ja2b22b-2 a 厂0, a2 2b2 2(a2 c2) 2c2,故椭圆的离心率为〔2〕由〔1〕知 b c,从而椭圆的右焦点坐标为F〔b,0〕,设F〔b,0〕关于直线l:x 2y 0的对称点为(x°, y°),那么也x0 b 2 f 0,解得X. 3 b且y°2 b5 5由得4,3 2(b)52 2(-b)2 4, b24,故所求的椭圆方程为—1 .5 8 4.M:x2(y 2〕2 1,Q是x轴上的动点,QA, QB分别切.M于A, B两点, (DC............ I _ z — I 1............................... ~~z 2 y_2(2)连接MB, MQ,设P(x,y),Q(a,0),由点M, P, Q 在一直线上,得一 -一,(*) a x由射影定理得| MB |2 |MP | | MQ |,即 &一(y 2)2 商—4 1,(**)7 c 1把(*)及(**)洎去a,并注意到y 2,可得x2(y -)2—(y 2).4 16适时应用平面几何知识,这是快速解答此题的要害所在,还请读者反思其中的微妙a—例- 如图,在Rt^ABC 中,/CBA=90° , AB=2 , AC=旧.2DO=2 ,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设-DM ,试确定DNDO LAB 于.点,OA=OB ,实数讲解: 的取值范围.(1)建立平面直角坐标系,如下图 : | PA |+| PB |=| CA |+|CB | V=得 22 ( 22)22V2「•动点P的轨迹是椭圆;、区b 1,c 1;曲线E的方程是(2)设直线L的方程为y kx 2,代入曲线E的方程x i 2y2 2,得(2k22(8k)2 4(2k 1)8k x2x〔x22 ,2k2 162 .2k 1i) L与y轴重合时, ii) L与y轴不重合时, x2x1 0,.(x〔x2)2x1 x2xx2x2x i1)x2 8kx 0设M1 ( 〞乂), N(x2, y),0,| DM |rDNu由①得DMDNxD X MX D X Nx1x2 x1 0, .,.0< < 1 ,1 2-.(x x2)2x1 x264k226(2k2 1)3213(2 -7)k那抛物线有两个不同的交点,因此l 与l 不重合,l 不是CD 的垂直平分线.此题是课此题的深化,你能够找到它的原形吗?知识在记忆中积累,水平在联想中提升 .课本是 高测试题的生长点,复课切忌忘掉课本!1,A(x 1,y 1),B(x 2,y 2)由 e / 得 a 2 2c 2,b21 .,・•・ 6 3(2-2) 8.■ ■ 432V~ 3(2 -r) k16 ・二 4 16 31,10 32, 1.的取值范围是10 3值得读者注意的是,直线 L 与y 轴重合的情况易于遗漏,应当引起警惕.例8直线l 过抛物线y 22 Px(p 0)的焦点,且与抛物线相交于 A (x 1, y 1)和B(x 2, y 2)两点.(1)求证:4x 1x 2p 2; (2)求证:对于抛物线的任意给定的一条弦 CD,直线l 不是CD 的垂直平分线.讲解:(1)易求得抛物线的焦点F (£°). 2,2 …・右l ,x 轴,那么l 的方程为x P 显然x 1x 2 —.右l 不垂直于x2,八〞 4 轴,可设y k(x P),代入抛物线方程整理得 2__ _ 2x 2P(1 ,)x — k 4 0,那么x 1x 2—.综上可知 4X I X 24.2. 2(2)设C(J c) D(L d)且c d ,那么CD 的垂直平分线l 的万程为y Jd 2p' ' 2p' 2c d——(x 2P2 2〞) 4P假设l 过F,那么0,2, 2一3(R c d )整理得 (c d)(2p 2 c 2 d 2) 2p 2 4p2p 2 c 2 d 2 0 ,d 0.这时l 的方程为y=0,从而l 与抛物线y 2 Px 只相交于原点.而l 与。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考理科数学试题分类汇编:9圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y =A,B 两点,O为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD =++ B. C.D.【答案】B2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y −=的顶点到其渐近线的距离等于 ( )A .25B .45 CD【答案】C 3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x =B .22145x y −= C .22125x y −=D.2212x =【答案】B4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b −=(0,0a b >>),则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ−=与222222:1sin sin tan y x C θθθ−=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx −=的渐近线的距离是 ( )A .12 BC .1 D【答案】B7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D 8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b −=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p = ( )A .1B .32C .2D .3【答案】C 9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1−−,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M −,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =u u u r u u u rg ,则k =( )A .12BCD .2【答案】D11.(2013年高考北京卷(理))若双曲线22221x y a b−=则其渐近线方程为 ( )A .y =±2xB .y=C .12y x =±D.y x = 【答案】B 12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y −=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )ABCD【答案】D13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)−,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D 14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为 ( )A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅u u u u r u u u r u u u r,其中λ为常数,则动点M的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线 【答案】C 16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y −+−=,圆()()222:349C x y −+−=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A .4B 1−C .6−D【答案】A 二、填空题 17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=−y x 的两条渐近线的方程为_____________.【答案】x y 43±= 18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y −=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________ 【答案】619.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b−=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30o ,则C 的离心率为___. 【答案】320.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =则Γ的两个焦点之间的距离为________. 21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知直线y a=交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ _____. 【答案】),1[+∞22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.【答案】⎥⎦⎤⎢⎣⎡−21,223.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a b Γ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________125.(2013年高考陕西卷(理))双曲线22116x y m −=的离心率为54, 则m 等于___9_____. 【答案】9 26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______.【答案】5727.(2013年上海市春季高考数学试卷(含答案))抛物线28y x =的准线方程是_______________【答案】2x =− 28.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为_______. 【答案】1−或1029.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设F 为抛物线x y C 4:2=的焦点,过点)0,1(−P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.【答案】1± 三、解答题 30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F −,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥u u u r u u u r ,求直线l 的方程. [解](1) (2)【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a b a b =⎧⎨−=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=.(2)容易求得椭圆C 的方程为2212x y +=.当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =−.由22(1)12y k x x y =−⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +−+−=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k −+===+=+++u u u r u u u r ,,,,, 因为11F P FQ ⊥u u u r u u u r ,所以110F P FQ ⋅=u u u r u u u r,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++−− 2221212(1)(1)()1k x x k x x k =+−−+++2271021k k −==+, 解得217k =,即k =故直线l的方程为10x +−=或10x −−=.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F −,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:122a PF PF =+==所以,a =.又由已知,1c =, 所以椭圆C的离心率c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1−两点,此时Q点坐标为0,2⎛ ⎝ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+−=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +−=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=−⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=−=++ 代入①中并化简,得2218103x k =− ③ 因为点Q 在直线2y kx =+上,所以2y k x−=,代入③中并化简,得()22102318y x −−=.由③及232k >,可知2302x <<,即x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝U .又0,2⎛⎝满足()22102318y x −−=,故x ⎛∈ ⎝. 由题意,(),Q x y 在椭圆C 内部,所以11y −≤≤, 又由()22102183y x −=+有()2992,54y ⎡⎫−∈⎪⎢⎣⎭且11y −≤≤,则1,22y ⎛∈− ⎝. 所以点Q 的轨迹方程是()22102318y x −−=,其中,x ⎛∈ ⎝,1,22y ⎛∈− ⎝ 32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =−,将x c =−代入椭圆方程22221x y a b +=得2b ya =± 由题意知221b a =,即22a b = 又ce a ==32所以2a =,1b = 所以椭圆方程为2214x y +=(Ⅱ)由题意可知:11||||PF PM PF PM ⋅u u u v u u u u v u u uv u u u u v =22||||PF PM PF PM ⋅u u u u v u u u u v u u u u v u u u u v ,11||PF PM PF ⋅u u u v u u u u v u u u v =22||PF PM PF ⋅u u u u v u u u u v u u u u v ,设00(,)P x y 其中204x ≠,将向量坐标代入并化简得:m(23000416)312x x x −=−,因为204x ≠, 所以034m x =,而0(2,2)x ∈−,所以33(,)22m ∈− (3)由题意可知,l 为椭圆的在p 点处的切线,由导数法可求得,切线方程为:0014x x y y +=,所以004x k y =−,而0012,33y y k k x x ==+−,代入1211kk kk +中得 00120033114()8x x kk kk x x +−+=−+=−为定值.33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y −=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【答案】:(1)C 1的左焦点为(F ,过F的直线x =与C 1交于(,与C 2交于(1))±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =; (2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒−=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒−=⎨−=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)显然过圆2212x y +=内一点的直线l 若与曲线C 1有交点,则斜率必存在; 根据对称性,不妨设直线l 斜率存在且与曲线C 2交于点(,1)(0)t t t +≥,则:(1)()(1)0l y t k x t kx y t kt =+=−⇒−++−=直线l 与圆2212x y +=内部有交点,<化简得,221(1)(1)2t tk k +−<+............① 若直线l 与曲线C 1有交点,则2222211()2(1)(1)10212y kx kt t k x k t kt x t kt x y =−++⎧⎪⇒−++−++−+=⎨−=⎪⎩ 22222214(1)4()[(1)1]0(1)2(1)2k t kt k t kt t kt k ∆=+−−−+−+≥⇒+−≥−化简得,22(1)2(1)t kt k +−≥−.....②由①②得,222212(1)(1)(1)12k t tk k k −≤+−<+⇒< 但此时,因为2210,[1(1)]1,(1)12t t k k ≥+−≥+<,即①式不成立;当212k =时,①式也不成立综上,直线l 若与圆2212x y +=内有交点,则不可能同时与曲线C 1和C 2有交点, 即圆2212x y +=内的点都不是“C 1-C 2型点” . 34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)Q i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000−−=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=−⎩x x kx x4∆∆=Q OCM OCN S S ∴124=x x又120⋅<Q x x ,∴124=−x x 分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线的方程为3+102=±y x ,即32200−+=x y 或3+2200−=x y 35.(2013年高考湖南卷(理))过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD 为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P <u u u u r u u u r g ;(II)若点M 到直线l 的距离的最小值为,求抛物线E 的方程. 【答案】解:(Ⅰ),设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++−+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k FM p p k y p k x x x p x x p k x x −=⇒+==+=⇒=−=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x −=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM22121221212121212)11(1)1(,122,,0,0pp k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>>Θ所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =−+−的方程分别为、, 的方程为:,直线l r y y x x 22234234)()(=−+−0-)(2)(2222123421223421212341234=+−+−+−+−r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++−−+−−+−+−⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212++−+++−+−+−+−⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++−−+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+−+−⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为.36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(−P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P −,所以设直线1:110l y kx kx y =−⇒−−=,直线21:10l y x x ky k k=−−⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =−⇒−−=的距离为d =,所以直线1l 被圆224x y +=(第21题图)所截的弦222234241k AB dk+=−=+;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以2222222816481||(1)4(4)4D P k k k x x DP k k k k ++=−∴=+=+++,所以 2222222211234818434843||||224443131ABDk k k k S AB DP k k k k∆+++⨯+==⨯⨯==+++++2222232323216131313431321343434343k k k k k ==≤=+++++++, 当22213510432243k k k k +=⇒=⇒=±+时等号成立,此时直线110:12l y x =±− 37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率22e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a+=−的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 【答案】解:(Ⅰ)13858851,12,122222222=+=⇒+−==−>x x a c a a c a a ,椭圆方程为:Θ.(Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x P F m Q y x P c F c F −=−=−(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>−y x a a .⎩⎨⎧=++=−⊥=+=0)()(,//).,(),,(112211my c x c ycx c m Q F P F QF P F m c Q F y c x P F 得:由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+−==−=−+=−⇒=+−⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x −=∴∈∈±=⇒=+−++−⇒1)1,0(),1,0(.)1(1121222222222Θ 所以动点P 过定直线01=−+y x .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y −+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++−=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,(左顶点除外),其方程为221(2)43x y x +=≠−.(Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R −≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y −+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=.当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =+代入221(2)43x y x +=≠−并整理得27880x x +−=,解得1,2x=12||x x −=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=. 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,过点F 且与x 轴垂直的直线被椭圆(Ⅰ) 求椭圆的方程; (Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r , 求k 的值.【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.【答案】解:(1)由3(1,)2P 在椭圆上得,221914a b+= ① 依题设知2a c =,则223b c = ② ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =− ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +−+−=, 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k −+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x −−−====−−−−. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==−−. 所以1212121212123331122()1111212y y y y k k x x x x x x −−+=+=+−+−−−−−− 1212122322()1x x k x x x x +−=−⋅−++ ⑤ ④代入⑤得22122222823432214(3)8214343k k k k k k k k k k −++=−⋅=−−−+++, 又312k k =−,所以1232k k k +=.故存在常数2λ=符合题意.方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =−−, 令4x =,求得003(4,)1y M x −, 从而直线PM 的斜率为0030212(1)y x k x −+=−,联立0022(1)1143y y x x x y ⎧=−⎪−⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x −−−,则直线PA 的斜率为:00102252(1)y x k x −+=−,直线PB 的斜率为:020232(1)y k x −=−,所以00000123000225232122(1)2(1)1y x y y x k k k x x x −+−−++=+==−−−,故存在常数2λ=符合题意.42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C的顶点为原点,其焦点()()0,0F c c >到直线l :20x y −−=的距离为.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,结合0c >,解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x −=−,即211122x x y x y =−+,即11220x x y y −−=同理可得切线PB 的方程为22220x x y y −−=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y −−=,2002220x x y y −−= 所以()()1122,,,x y x y 为方程00220x x y y −−=的两组解. 所以直线AB 的方程为00220x x y y −−=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y−−=⎧⎨=⎩,消去x 整理得()22200020y y x y y +−+=由一元二次方程根与系数的关系可得212002y y x y +=−,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+−+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+−+=++=++ ⎪⎝⎭所以当012y =−时, AF BF ⋅取得最小值,且最小值为92.43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b +=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值. 【答案】44.(2013年高考湖北卷(理))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.【答案】解:(I)12S S λ=()m n m n λ⇒+=−,1111m n m n λλλ++∴==−−解得:1λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n +=,直线l :ky x =22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,B y =又Q BDM ∆和ABN ∆的的高相等12B D B AA B A BS BD y y y y S AB y y y y −+∴===−− 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ−=+,即:()()222222222211a n k a n kλλλλ−+=++,解得()()2222232114a k n λλλλ−−+=第21题图∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .45.(2013年高考北京卷(理))已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【答案】解:(I)椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m +=,即m =所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=. (II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++−=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=−+,121222214y y x x mk m k++=⋅+=+. 所以AC 的中点为M(2414km k −+,214mk +).因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k−.因为1()14k k⋅−≠−,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点. 【答案】解:(Ⅰ)A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+−⇒((Ⅱ)点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+−=+⇒+−=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y −+=−⇒−−−=−1,088)(8)()(122112112==⇒=++⇒−=+−+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==−>,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )012x =−,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为【答案】48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b−=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的两个交点间的距离为6.(I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证明:22AF AB BF 、、成等比数列.【答案】49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1)点 A P 、满足2AP FA =−u u u r u u u r.当点A 在抛物线C 上运动时,求动点P 的轨迹方程; (2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =−−u u u r,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =−u u u r,, 由2AP FA =−u u u r u u u r得( )2(1 )A A A A x x y y x y −−=−−,,.即2(1)2A A A Ax x x y y y −=−−⎧⎨−=−⎩ 解得2A A x x y y =−⎧⎨=−⎩代入24y x =,得到动点P 的轨迹方程为284y x =−.(2)设点Q 的坐标为( 0)t ,.点Q 关于直线2y x =的对称点为( )Q x y ',,则122yx t y x t ⎧=−⎪⎪−⎨⎪=+⎪⎩ 解得3545x t y t ⎧=−⎪⎪⎨⎪=⎪⎩若Q '在C 上,将Q '的坐标代入24y x =,得24150t t +=,即0t =或154t =−. 所以存在满足题意的点Q ,其坐标为(0 0),和15( 0)4−,.。

相关文档
最新文档