成安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

文安县二中2018-2019学年高三上学期11月月考数学试卷含答案

文安县二中2018-2019学年高三上学期11月月考数学试卷含答案

3 k 1 x 2 3kx 1 , 2
20.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了 100 名 观众进行调查,其中女性有 55 名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表: 9 10 11 12 13 14 场数 人数 10 18 22 25 20 5 将收看该节目场次不低于 13 场的观众称为“歌迷”,已知“歌迷”中有 10 名女性. (Ⅰ)根据已知条件完成下面的 2×2 列联表,并据此资料我们能否有 95%的把握认为“歌迷”与性别有关? 非歌迷 男 女 合计 (Ⅱ)将收看该节目所有场次(14 场)的观众称为“超级歌迷”,已知“超级歌迷”中有 2 名女性,若从“超级歌 迷”中任意选取 2 人,求至少有 1 名女性观众的概率. 歌迷 合计
文安县二中 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知椭圆 (0<b<3) ,左右焦点分别为 F1,F2,过 F1 的直线交椭圆于 A,B 两点,若|AF2|+|BF2| ) C. D. )
的最大值为 8,则 b 的值是( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ A. B.
第 2 页,共 16 页
①直线 l 的倾斜角为 α; ②存在定点 A,使得对任意 l∈L 都有点 A 到直线 l 的距离为定值; ③存在定圆 C,使得对任意 l∈L 都有直线 l 与圆 C 相交; ④任意 l1∈L,必存在唯一 l2∈L,使得 l1∥l2; ⑤任意 l1∈L,必存在唯一 l2∈L,使得 l1⊥l2. 15.已知 =1﹣bi,其中 a,b 是实数,i 是虚数单位,则|a﹣bi|= .

成武县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

成武县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

成武县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .22. 已知函数f (x )的图象如图,则它的一个可能的解析式为()A .y=2B .y=log 3(x+1)C .y=4﹣D .y=3.+(a ﹣4)0有意义,则a 的取值范围是()A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠44. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π5. 下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 676. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1A A .B .C .D .16cm26cm7. 二进制数化为十进制数的结果为( )((210101A .B .C .D .152133418. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则()T T =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .20152201532015232015229. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为()A .30°B .45°C .60°D .90°10.已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±311.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .5612.若命题“p ∧q ”为假,且“¬q ”为假,则( )A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假二、填空题13.设全集______.14.命题“若1x ≥,则2421x x -+≥-”的否命题为.15.命题p :∀x ∈R ,函数的否定为 .16.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .17.设函数f (x )=,则f (f (﹣2))的值为 .18.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .三、解答题19.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4.(1)写出直线l 的普通方程与曲线C 的直角坐标系方程;(2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值. 20.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.22.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

文安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

文安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

文安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设x ,y ∈R ,且满足,则x+y=()A .1B .2C .3D .42. 已知圆方程为,过点与圆相切的直线方程为()C 222x y +=(1,1)P -C A .B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=3. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )4. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;其中正确命题的序号是()A .①②③④B .①②③C .②④D .①③5. 已知集合,,则( ){| lg 0}A x x =≤1={|3}2B x x ≤≤A B =I A .B .C .D .(0,3](1,2](1,3]1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.6. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .7. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( )A .S 10B .S 9C .S 8D .S 78. 若关于的不等式的解集为,则参数的取值范围为( )x 07|2||1|>-+-++m x x R m A .B .C .D .),4(+∞),4[+∞)4,(-∞]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.9. 已知数列{}满足().若数列{}的最大项和最小项分别为n a nn n a 2728-+=*∈N n n a M 和,则( )m =+m M A .B .C .D .211227322593243510.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)11.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.12.有下列关于三角函数的命题P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x ﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( )A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 2二、填空题13.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =14.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =15.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .16.命题p :∀x ∈R ,函数的否定为 .17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .三、解答题19.已知函数f (x )=2|x ﹣2|+ax (x ∈R ).(1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围. 20.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .21.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.B 1122.已知圆C的圆心在射线3x﹣y=0(x≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ)求圆C的方程;(Ⅱ)点A(1,1),B(﹣2,0),点P在圆C上运动,求|PA|2+|PB|2的最大值.23.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.24.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.文安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2,∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0,即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增∴x ﹣2=2﹣y ,即x+y=4,故选:D .【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质. 2. 【答案】A 【解析】试题分析:圆心,由(0,0),C r =1(1),10y k x kx y k -=+∴-++=,所以切线方程为,故选A.,1d r k =∴=20x y -+=考点:直线与圆的位置关系.3. 【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k .由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1,所以f (x )=lnx+e ,f ′(x )=,x >0.∴f (x )﹣f ′(x )=lnx ﹣+e ,令g (x )=lnx ﹣+﹣e=lnx ﹣,x ∈(0,+∞)可判断:g (x )=lnx ﹣,x ∈(0,+∞)上单调递增,g (1)=﹣1,g (e )=1﹣>0,∴x 0∈(1,e ),g (x 0)=0,∴x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是(1,e )故选:D .【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题. 4. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确;在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误.故选:B . 5. 【答案】D【解析】由已知得,故,故选D .{}=01A x x <£A B I 1[,1]26. 【答案】D【解析】解:∵|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=6,|AF 2|+|BF 2|的最大值为8,∴|AB|的最小值为4,当AB ⊥x 轴时,|AB|取得最小值为4,∴=4,解得b 2=6,b=.故选:D .【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题. 7. 【答案】C【解析】解:∵S 16<0,S 17>0,∴=8(a 8+a 9)<0,=17a 9>0,∴a 8<0,a 9>0,∴公差d >0.∴S n 中最小的是S 8.故选:C .【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题. 8. 【答案】A9. 【答案】D 【解析】试题分析:数列,, n n n a 2728-+=112528++-+=∴n n n a 11252722n n n nn n a a ++--∴-=-,当时,,即;当时,,()11252272922n n n n n ++----+==41≤≤n n n a a >+112345a a a a a >>>>5≥n n n a a <+1即.因此数列先增后减,为最大项,,,最...765>>>a a a {}n a 32259,55==∴a n 8,→∞→n a n 2111=a ∴小项为,的值为.故选D.211M m +∴3243532259211=+考点:数列的函数特性.10.【答案】B【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确;∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.11.【答案】【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A 所以BD ⊥平面PAC(II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O 为坐标原点,分别以OB ,OC 为x 轴、y 轴,以过O 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系O ﹣xyz ,则P (0,﹣,2),A (0,﹣,0),B (1,0,0),C (0,,0)所以=(1,,﹣2),设PB 与AC 所成的角为θ,则cos θ=|(III )由(II )知,设,则设平面PBC 的法向量=(x ,y ,z )则=0,所以令,平面PBC 的法向量所以,同理平面PDC 的法向量,因为平面PBC ⊥平面PDC ,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力 12.【答案】 D【解析】解:对于P 1,∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x=2sinxcosx==>0,则P 1为真命题;对于P 2,函数y=sin (x ﹣)=sin (2π+x ﹣)=sin (x+)=cosx ,则P 2为真命题;对于P 3,由于cosx ∈[﹣1,1], ∉[﹣1,1],则P 3为假命题;对于P 4,函数y=|cosx|(x ∈R ),f (x+π)=|cos (x+π)|=|﹣cosx|=|cosx|=f (x ),则f (x )的最小正周期为π,则P 4为假命题.故选D .【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题. 二、填空题13.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.14.【答案】1231n --g【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 15.【答案】 4 .【解析】解:∵双曲线的渐近线方程为 y=x ,又已知一条渐近线方程为y=x ,∴ =2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题的关键. 16.【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .【解析】解:全称命题的否定是特称命题,即为∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3,故答案为:∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3,17.【答案】 .【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.18.【答案】 4 .【解析】解:∵sinA,sinB,sinC依次成等比数列,∴sin2B=sinAsinC,由正弦定理可得:b2=ac,∵c=2a,可得:b=a,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC=acsinB==4.故答案为:4.三、解答题19.【答案】【解析】解:(1)当a=1时,f(x)=2|x﹣2|+x=…(2分)所以,f(x)在(﹣∞,2)递减,在[2,+∞)递增,故最小值为f(2)=2;…(4分)(2)f(x)=,…(6分)要使函数f(x)有最小值,需,∴﹣2≤a ≤2,…(8分)故a 的取值范围为[﹣2,2]. …(9分)(3)∵sinx ∈[﹣1,1],∴f (sinx )=(a ﹣2)sinx+4,“h (x )=f (sinx )﹣2=(a ﹣2)sinx+2存在零点”等价于“方程(a ﹣2)sinx+2=0有解”,亦即有解,∴,…(11分)解得a ≤0或a ≥4,…(13分)∴a 的取值范围为(﹣∞,0]∪[4,+∞)…(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键. 20.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2322=+=,∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 32=BE GE ;……6分(2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH .∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D ,∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH ,又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分21.【答案】【解析】解:(1)∵P 为等腰直角三角形PBC 的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC 中,由余弦定理得:PA 2=AC 2+PC 2﹣2AC •PC •cos =5,整理得:PA=;(2)在△PBC 中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sinθ,PC=sin(﹣θ),∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.22.【答案】【解析】解:(Ⅰ)设圆C的方程为(x﹣a)2+(y﹣b)2=r2(r>0)…圆心在射线3x﹣y=0(x≥0)上,所以3a﹣b=0…①.…圆与直线x=4相切,所以|a﹣4|=r…②…圆被直线3x+4y+10=0截得的弦长为,所以…③…将①②代入③,可得(3a+2)2+12=(a﹣4)2,化简得2a2+5a=0,解得a=0或(舍去)…所以b=0,r=4,于是,圆C的方程为x2+y2=16.…(Ⅱ)假设点P的坐标为(x0,y0),则有.…=38+2(x0﹣y0).下求x0﹣y0的最大值.…解法1:设t=x0﹣y0,即x0﹣y0﹣t=0.该直线与圆必有交点,所以,解得,等号当且仅当直线x0﹣y0﹣t=0与圆x2+y2=16相切时成立.于是t的最大值为,所以|PA|2+|PB|2的最大值为.…解法2:由可设x0=4sinα,y0=4cosα,于是,所以当时,x0﹣y0取到最大值,所以|PA|2+|PB|2的最大值为.…【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,垂径定理,勾股定理,点到直线的距离公式,以及正弦函数的定义域与值域,是一道综合性较强的题.23.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…24.【答案】【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.。

成安县第二中学2018-2019学年上学期高三数学10月月考试题

成安县第二中学2018-2019学年上学期高三数学10月月考试题

成安县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A .12+B .12+23πC .12+24πD .12+π2. 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,63sin(2)(π+=x x f 4π)(x g 则的解析式为( ))(x g A . B .343sin(2)(--=πx x g 3)43sin(2)(++=πx x g C .D .3)123sin(2)(+-=πx x g 3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.3. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )A .0B .1C .2D .34. 如图框内的输出结果是()A .2401B .2500C .2601D .27045. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .3006. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .37. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .8. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件9. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}10.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x =C.ln y x =D.y x=11.下列关系式中,正确的是()A .∅∈{0}B .0⊆{0}C .0∈{0}D .∅={0}12.已知集合,,则( ){2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B = A .B .C .D .{2,1,1}--{1,1,2}-{1,1}-{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.二、填空题13.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .16.【盐城中学2018届高三上第一次阶段性考试】已知函数有两个极值点,则实数的()()ln f x x x ax =-a 取值范围是.三、解答题17.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.18.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;A(Ⅱ) 若,,求.2a =ABC ∆c b ,19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围. 20.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 21.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点.(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.22.【南师附中2017届高三模拟一】已知是正实数,设函数.,a b ()()ln ,ln f x x x g x a x b ==-+(1)设 ,求 的单调区间;()()()h x f x g x =-()h x (2)若存在,使且成立,求的取值范围.0x 03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦()()00f x g x ≤b a成安县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目. 2. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图)(x f 4π)4(π+x f 象,再将的图象向上平移3个单位得到函数的图象,因此4(π+x f 3)4(++πx f =)(x g 3)4(++πx f .3)43sin(2364(31sin[2++=+++=πππx x 3. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2.故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题.4. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题. 5. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.6.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.7.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。

成安县第三中学2018-2019学年高三上学期11月月考数学试卷含答案

成安县第三中学2018-2019学年高三上学期11月月考数学试卷含答案

第 1 页,共 14 页成安县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )A.﹣2B.2C.﹣98D.98 

2. 设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等

于( )A.B.C.24D.483. 已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为( )

A.(0,4)B.[0,4)C.(0,5]D.[0,5]

4. 已知,,则“”是“”的( )[,]

||||coscos||||

A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.5. 已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线2x+y﹣3=0垂直,则双曲线的离心率是( )

A.B.C.4D.

 6. 已知a为常数,则使得成立的一个充分而不必要条件是( )

A.a>0B.a<0C.a>eD.a<e

7. 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )

A.﹣2<t<﹣B.﹣2<t≤﹣C.﹣2≤t≤﹣D.﹣2≤t<

8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )

A.{, }B.{,, }C.{V|≤V≤}D.{V|0<V≤}

9. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )

A.1B.C.2D.4

班级_______________ 座号______ 姓名_______________ 分数_________________________________________________________________________________________________________

上高县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

上高县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

【解析】解:∵ • =cosα﹣sinα= ∴1﹣sin2α= ,得 sin2α= , ∵α 为锐角,cosα﹣sinα= ∴cos2α= ∵α 为锐角,sin(α+ =
⇒α∈(0, ,
),从而 cos2α 取正值,
)>0,
∴sin(α+
)=
=
=
= 故答案为: 15.【答案】 26 【解析】 .
=2,满足渐近线方程为 y=± x,但双曲线 C 的方程为
二、填空题
13.【答案】 64 .
【解析】解:由图可知甲的得分共有 9 个,中位数为 28 ∴甲的中位数为 28
第 8 页,共 36 ∴乙的中位数为 36 则甲乙两人比赛得分的中位数之和是 64 故答案为:64. 【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意. 14.【答案】: . ,
第 5 页,共 14 页
上高县第二中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B 【解析】解:①x=0 时,y=0,1,2,∴x﹣y=0,﹣1,﹣2; ②x=1 时,y=0,1,2,∴x﹣y=1,0,﹣1; ③x=2 时,y=0,1,2,∴x﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共 5 个元素. 故选:B. 2. 【答案】A 【解析】解:f(1)=3,当不等式 f(x)>f(1)即:f(x)>3 如果 x<0 则 x+6>3 可得 x>﹣3,可得﹣3<x<0. 0≤x<1 如果 x≥0 有 x2﹣4x+6>3 可得 x>3 或 故选 A. 3. 【答案】 C 【解析】解:模拟执行程序,可得,当 a≥b 时,则输出 a(b+1),反之,则输出 b(a+1), ∵2tan ∴(2tan ∵lne=1,( ∴lne⊗( =2,lg )⊗lg )﹣1=5, )﹣1×(lne+1)=5×(1+1)=10, =﹣1, =(2tan )×(lg +1)=2×(﹣1+1)=0,

阿成区第二中学2018-2019学年高三上学期11月月考数学试卷含答案

阿成区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处3. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*1332()n n a a n N +=-∈()A .和B .和C .和D .和21a 22a 22a 23a 23a 24a 24a 25a 4. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个5.“”是“一元二次方程x 2+x+m=0有实数解”的()A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件6. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣97. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}8. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)9. 已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A .B .C .3D .510.已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)11.在△ABC 中,,则这个三角形一定是()A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形12.已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .二、填空题13.在(2x+)6的二项式中,常数项等于 (结果用数值表示).14.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .15.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 . 16.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= . 17.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)18.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×u u u r u u u r【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.三、解答题19.已知函数y=3﹣4cos(2x+),x∈[﹣,],求该函数的最大值,最小值及相应的x值.20.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.21.实数m取什么数值时,复数z=m+1+(m﹣1)i分别是:(1)实数?(2)虚数?(3)纯虚数?22.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.23.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤-24.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h (x )图象上时,公式变为,请参考该公式求出函数ω(s ,t)=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值. 阿成区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.2.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.3.【答案】C【解析】考点:等差数列的通项公式.4.【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D.【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.5.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系. 6.【答案】D【解析】解:由题意,=(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.7.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.8.【答案】A【解析】解:因为f(x)为偶函数,所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,即(2x﹣1)2<x2,解得<x<1,所以x的取值范围是(,1),故选:A.9.【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.10.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.11.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.12.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目. 二、填空题13.【答案】 240 【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.14.【答案】 2 .【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.15.【答案】 y2=4x或y2=16x .【解析】解:因为抛物线C方程为y2=3px(p>0)所以焦点F坐标为(,0),可得|OF|=因为以MF为直径的圆过点(0,2),所以设A(0,2),可得AF⊥AMRt△AOF中,|AF|=,所以sin∠OAF==因为根据抛物线的定义,得直线AO切以MF为直径的圆于A点,所以∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,因为|MF|=5,|AF|=,所以=,整理得4+=,解之可得p=或p=因此,抛物线C的方程为y2=4x或y2=16x.故答案为:y2=4x或y2=16x.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.16.【答案】 4 .【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).17.【答案】②③【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;(,)A B ϕ==11,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.18.【答案】8三、解答题19.【答案】【解析】解:函数y=3﹣4cos (2x+),由于x ∈[﹣,],所以:当x=0时,函数y min =﹣1当x=﹣π时,函数y max=7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域.属于基础题型.20.【答案】【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)即x(x﹣1)≤0;…(4分)解得0≤x≤1,∴原不等式的解集为{x|0≤x≤1};…(6分)(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,∴(a﹣b)2x≥(a﹣b)2x2,(10分)又∵a≠b,∴(a﹣b)2>0,∴x≥x2;即x(x﹣1)≤0,…(12分)解得0≤x≤1;∴不等式的解集为{x|0≤x≤1}.…(14分)【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.21.【答案】【解析】解:(1)当m﹣1=0,即m=1时,复数z是实数;(2)当m﹣1≠0,即m≠1时,复数z是虚数;(3)当m+1=0,且m﹣1≠0时,即m=﹣1时,复数z 是纯虚数.【点评】本题考查复数的概念,属于基础题.22.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A (3,0,0),,,B (3,3,0),C (0,3,0),所以,.设平面BEF 的法向量为=(x ,y ,z ),则,即.令,则=.因为AC ⊥平面BDE ,所以为平面BDE 的法向量,.所以cos.因为二面角为锐角,所以二面角F ﹣BE ﹣D 的余弦值为.…(8分)(Ⅲ)点M 是线段BD 上一个动点,设M (t ,t ,0).则.因为AM ∥平面BEF ,所以=0,即4(t ﹣3)+2t=0,解得t=2.此时,点M 坐标为(2,2,0),即当时,AM ∥平面BEF .…(12分)23.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x ex x e x +='=++()0f x ∴'≥在上为增函数.()()21xf x x ea ∴=+-(),-∞+∞,,1a >Q ()010f a ∴=-<又,()1fa a =-=-,即,0,1>∴>Q 0f>由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f⋅<在上仅有一个零点。

文成县二中2018-2019学年高三上学期11月月考数学试卷含答案

文成县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a 的值为( )A .或﹣B .或3C .或5D .3或52. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A .B .C .D .3. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A .i ≤21B .i ≤11C .i ≥21D .i ≥114. 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长M )1,0(M y x 22x M ||PQ 等于( )||PQ A .2 B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.5. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( )A .等腰直角B .等腰或直角C .等腰D .直角6. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}7. 已知,则方程的根的个数是( )22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩[()]2f f x = A .3个B .4个C .5个D .6个8. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A .B .C .D .π1492+π1482+π2492+π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.9. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)10.下列命题中正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”11.“”是“”的( )24x ππ-<≤tan 1x ≤A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.12.如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是()A .B .C .D .二、填空题13.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1);②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 . 14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.15.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .16.已知函数的定义域R ,直线和是曲线的对称轴,且,则)(x f 1=x 2=x )(x f y =1)0(=f.=+)10()4(f f 17.= .18.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .三、解答题19.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由. 20.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 21.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值;(Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.22.(本小题满分13分)在四棱锥中,底面是梯形,,,,,P ABCD -ABCD //AB DC 2ABD π∠=AD =22AB DC ==为的中点.F PA (Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若的体积.PA PB PD ===P BDF -ABCDPF23.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.24.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.文成县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:圆x 2+y 2+2x ﹣4y+7=0,可化为(x+)2+(y ﹣2)2=8.∵•=4,∴2•2cos ∠ACB=4∴cos ∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C . 2. 【答案】A【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A .【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a ,b ,c 即可,属于基础题型. 3. 【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环∴当i ≥11,应满足条件,退出循环填入“i ≥11”.故选D . 4. 【答案】A【解析】过作垂直于轴于,设,则,在中,,为M MN x N ),(00y x M )0,(0x N MNQ Rt ∆0||y MN =MQ 圆的半径,为的一半,因此NQ PQ 2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点在抛物线上,∴,∴,∴.M 0202y x =2200||4(21)4PQ x y =-+=2||=PQ5. 【答案】B 【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B 答案:B6. 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(C U B )∩A ,又A={1,2,3,4,5},B={x ∈R|x ≥3},∵C U B={x|x <3},∴(C U B )∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B .【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属于基础题. 7. 【答案】C【解析】由,设f (A )=2,则f (x )=A,则,则A=4或A=,作出f (x )的图像,由[()]2f f x =2log 2x =14数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。

安国市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

安国市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是()A .(0,)B .(0,]C .(,]D .[,1)3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π4. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为()A .117⎡⎤⎢⎥⎣⎦, B .117⎡⎤-⎢⎥⎣⎦,C.1([1)7-∞-+∞U ,,D .[1)+∞,5. 下列函数中,既是偶函数又在单调递增的函数是( )(0,)+∞A . B .C .D .3y x =21y x =-+||1y x =+2xy -=6. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是()A .(﹣∞,﹣2)B .D .上是减函数,那么b+c ()A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣7. 函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .138. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()9. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则()A .f (2)>e 2f (0),fB .f (2)<e 2f (0),f班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f10.设为虚数单位,则( )A .B .C .D .11.已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( )A .(0,4)B .[0,4)C .(0,5]D .[0,5]12.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人二、填空题13.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.14.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .15.设集合 ,满足{}{}22|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.A B =∅I {}|52A B x x =-<≤U a =16.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 17.已知数列的前项和为,且满足,(其中,则 .}{n a n n S 11a =-12n n a S +=*)n ∈N n S =18.= .三、解答题19.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?20.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S 1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的1(1)n n a b n =+n S {}n b n n S t <*n ∈N t 取值范围.21.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.22.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,S 2=4,且a 2,a 5,a 14成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)从数列{a n }中依次取出第2项,第4项,第8项,…,第2n 项,…,按原来顺序组成一个新数列{b n },记该数列的前n 项和为T n ,求T n 的表达式. 23.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD ,PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角:(Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.24.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.安国市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.2.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+﹣2×××cos∠F1PF2,由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),即<4c2<,∴<<1,即<e2<1,∴<e<1;当P与两焦点F1,F2共线时,可得a+c=2(a﹣c),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.3.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.4.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.5. 【答案】C 【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不3y x =21y x =-+()0,+∞合题意;函数为非奇非偶函数。

濉溪县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案


e.
23.已知椭圆 E 的长轴的一个端点是抛物线 y2=4 (1)求椭圆 E 的标准方程;
x 的焦点,离心率是

(2)已知动直线 y=k(x+1)与椭圆 E 相交于 A、B 两点,且在 x 轴上存在点 M,使得 关,试求点 M 的坐标.
与 k 的取值无
第 5 页,共 17 页
24.直三棱柱 ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F 分别是 CC1、BC 的中点,AE⊥ A1B1,D 为棱 A1B1 上的点. (1)证明:DF⊥AE; (2) 是否存在一点 D, 使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 若不存在,说明理由. ?若存在, 说明点 D 的位置,
22.【2017-2018 学年度第一学期如皋市高三年级第一次联考】设函数 f x alnx (1)当 a 2 时,求函数 f x 在点 1, f 1 处的切线方程; (2)讨论函数 f x 的单调性;
xa


1 1 . x
1 a 1 (3)当 0 a 时,求证:对任意 x , + ,都有 1 2 x 2
设外接圆的半径为 R,则由正弦定理可得 2R=
第 7 页,共 17 页
∴R= , ∴外接圆的面积 S=πR2= 故选:A. .
【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面 积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题. 3. 【答案】D 【解析】解:y′=( ∴k=y′|x=1=﹣2. l:y+1=﹣2(x﹣1),则 y=﹣2x+1. 故选:D 4. 【答案】C 【解析】解:由 ln(3a﹣1)<0 得 <a< , 则用计算机在区间(0,1)上产生随机数 a,不等式 ln(3a﹣1)<0 成立的概率是 P= , 故选:C. 5. 【答案】 B 【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0), ∴F'(x)=f'(x)﹣f′(x0) ∴F'(x0)=0, 又由 a<x0<b,得出 当 a<x<x0 时,f'(x)<f′(x0),F'(x)<0, 当 x0<x<b 时,f'(x)<f′(x0),F'(x)>0, ∴x=x0 是 F(x)的极小值点 故选 B. )′= ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页,共 12 页 成安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案 一、选择题

1. 方程2111xy表示的曲线是( ) A.一个圆 B. 两个半圆 C.两个圆 D.半圆

2. 由直线与曲线所围成的封闭图形的面积为( ) A B1

C D 3. 设为虚数单位,则( )

A. B. C. D. 4. 若动点),(),(2211yxByxA、分别在直线: 011yx和2l:01yx上移动,则AB中点M所在直线方程为( )

A.06yx B.06yx C.06yx D.06yx 5. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于( )

A.{3,4} B.{1,2,5,6} C.{1,2,3,4,5,6} D.∅ 6. 已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是( ) A.﹣1 B.0 C.1 D.2 7. 若直线y=kx﹣k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( ) A.12 B.10 C.8 D.6

8. 函数f(x)=()

x2﹣9的单调递减区间为( )

A.(﹣∞,0) B.(0,+∞) C.(﹣9,+∞) D.(﹣∞,﹣9)

9. 已知点A(﹣2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是( ) A.5 B.3 C.2 D. 10.若某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是( )cm3

班级_______________ 座号______ 姓名_______________ 分数_______________ __________________________________________________________________________________________

_________ 第 2 页,共 12 页 A.π B.2π C.3π D.4π

11.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( ) A. B. C. D.

12.设Sn为等比数列{an}的前n项和,若a1=1,公比q=2,Sk+2﹣Sk=48,则k等于( ) A.7 B.6 C.5 D.4 二、填空题

13.设幂函数fxkx的图象经过点4,2,则k= ▲ . 14.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°

得到向量所对应

的复数为 .

15.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围

是 .

16.自圆C:22(3)(4)4xy外一点(,)Pxy引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则PQ的最小值为( )

A.1310 B.3 C.4 D.2110 【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 17.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于 . 18.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是 .

三、解答题 19.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获

胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于

体力原因,第7场获胜的概率为. (Ⅰ)求甲队分别以4:2,4:3获胜的概率; 第 3 页,共 12 页

(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望. 20.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计

图如下:

(Ⅰ)估计该校男生的人数; (Ⅱ)估计该校学生身高在170~185cm之间的概率; (Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.

21.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为

31,

该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需

多长时间? 第 4 页,共 12 页

22.已知函数3()1xfxx

,2,5x.

(1)判断()fx的单调性并且证明; (2)求()fx在区间2,5上的最大值和最小值.

23.已知函数. (1)求f(x)的周期和及其图象的对称中心; (2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.

24.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点. (1)求BD长; (2)当CE⊥OD时,求证:AO=AD. 第 5 页,共 12 页 第 6 页,共 12 页

成安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题 1. 【答案】A 【解析】

试题分析:由方程2111xy,两边平方得2221(11)xy,即22(1)(1)1xy,所

以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 2. 【答案】D

【解析】由定积分知识可得,故选D。 3. 【答案】C 【解析】【知识点】复数乘除和乘方 【试题解析】 故答案为:C 4. 【答案】D 【解析】

考点:直线方程 5. 【答案】B 【解析】解:∵A={1,2,3,4},B={3,4,5,6}, ∴A∩B={3,4}, ∵全集I={1,2,3,4,5,6}, ∴∁I(A∩B)={1,2,5,6},

故选B. 【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

6. 【答案】D 【解析】解:命题p:∃x∈R,cosx≥a,则a≤1. 下列a的取值能使“¬p”是真命题的是a=2. 故选;D. 第 7 页,共 12 页

7. 【答案】C 【解析】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y2

=4x的焦点坐标,

设A(x1,y1) B(x2,y2)

抛物y2

=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,

∴|AB|=|AF|+|BF|=x1+x2+2=8, 故选:C. 【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

8. 【答案】B 【解析】解:原函数是由t=x2与y=()t﹣9复合而成, ∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数; 又y=()t﹣9其定义域上为减函数,

∴f(x)=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数, ∴函数ff(x)=()x2﹣9的单调递减区间是(0,+∞). 故选:B. 【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.

9. 【答案】D 【解析】解:不等式组表示的平面区域如图, 结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离, 即|AM|min=.

故选:D.

【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 10.【答案】B

相关文档
最新文档