PLL 锁相环的ADS 仿真

合集下载

锁相环Simulink仿真模型

锁相环Simulink仿真模型

锁相环学习总结通过这段的学习,我对锁相环的一些基本概念、结构构成、工作原理、主要参数以及simulink 搭建仿真模型有了较清晰的把握与理解,同时,在仿真中也出现了一些实际问题,下面我将对这段学习中对锁相环的认识和理解、设计思路以及中间所遇到的问题作一下总结:1. 概述锁相环(PLL )是实现两个信号相位同步的自动控制系统,组成锁相环的基本部件有检相器(PD )、环路滤波器(LF )、压控振荡器(VCO ),其结构图如下所示:2.锁相是相位锁定的简称,表示两个信号之间相位同步。

若两正弦信号如下所示:相位同步是指两个信号频率相等,相差为一固定值。

当i ω=o ω,两个信号之间的相位差 为一固定值,不 随时间变化而变化,称两信号相位同步。

o i t t θθθθ-=-)()('当i ω≠o ω,两个信号的相位差 ,不论iθ 是否等于o θ,只要时间有变化,那么相位差就会随时间变化而变化,称此时两信号不同步。

若这两个信号分别为锁相环的输入和输出,则此时环路出于失锁状态。

当环路工作时,且输入与输出信号频差在捕获带范围之内,通过环路的反馈控制,输出信号的瞬时角频率)(t v ω便由o ω向i ω方向变化,总会有一个时刻使得i ω=o ω,相位差等于0或一个非常小的常数,那么此时称为相位锁定,环路处于锁定状态。

若达到锁定状态后,输入信号频率变化,通过环路控制,输出信号也继续变化 并向输入信号频率靠近,相位差保持在一个固定的常数之内,则称环路此时为跟踪状态。

锁定状态可以认为是静态的相位同步,而跟踪状态则为动态的相位同步。

环路从失锁进入到锁定状态称为捕获状态。

其他几个环路工作时的重要概念:快捕带:能使环路快捕入锁的最大频差称为环路的快捕带,记为L ω∆,两倍的快捕带为快捕范围。

捕获带:能使环路进入锁定的最大固有频差,用P ω∆表示,两倍的捕获带为捕获范围。

同步带:环路在所定条件下,可缓慢增加固有频差,直到环路失锁,把能够维持环路锁定的最大固有频差成为同步带,用H ω∆,2H ω∆为同步范围。

matlab pll锁相环原理

matlab pll锁相环原理

标题:MATLAB中的PLL锁相环原理一、介绍PLL锁相环的概念PLL(Phase-Locked Loop)锁相环是一种常用的控制系统,广泛应用于通信系统、数字信号处理和电力系统等领域。

它通过比较输入信号与本地参考信号的相位差,实现对输入信号的精确跟踪和同步。

在MATLAB中,我们可以通过编写代码来模拟PLL锁相环,并深入理解其工作原理。

二、PLL锁相环的基本结构PLL锁相环由相位比较器、低通滤波器、VCO(Voltage-Controlled Oscillator)和分频器等组成。

它的基本结构如下:1. 相位比较器:用于比较输入信号和本地参考信号的相位差,并产生控制电压。

2. 低通滤波器:将相位比较器输出的控制电压进行滤波,去除高频噪声,得到稳定的调节电压。

3. VCO:根据低通滤波器输出的调节电压,调节其输出频率,实现对输入信号的跟踪。

4. 分频器:将VCO输出的信号进行分频,得到本地参考信号,用于与输入信号进行比较。

三、PLL锁相环的工作原理PLL锁相环的工作过程可以分为锁定和跟踪两个阶段。

1. 锁定阶段:在初始时刻,输入信号的频率与VCO的输出频率不同步。

相位比较器会检测到二者之间存在相位差,产生相应的控制电压,通过低通滤波器传递给VCO。

VCO根据控制电压,调节其输出频率,使其逐渐与输入信号频率同步,最终达到锁定状态。

2. 跟踪阶段:一旦锁定完成,PLL锁相环会持续监测输入信号的频率变化,并调节VCO的输出频率,确保其始终与输入信号同步。

低通滤波器起到平稳调节的作用,使得VCO的输出频率能够迅速跟随输入信号的变化。

四、MATLAB中的PLL锁相环模拟在MATLAB中,我们可以利用Simulink工具箱来建立PLL锁相环的模型,并进行仿真分析。

我们需要使用Simulink中的基本模块,如正弦波源、相位比较器、低通滤波器、VCO和分频器等,按照PLL锁相环的基本结构进行搭建。

1. 步骤一:建立模型我们在Simulink中建立PLL锁相环的模型,将各个基本模块按照PLL 锁相环的基本结构进行连接,确保输入信号能够经过相位比较器、低通滤波器和VCO等模块,最终输出同步的信号。

锁相环中无源环路滤波器的设计与仿真

锁相环中无源环路滤波器的设计与仿真
收 稿 日期 :2 1 0 0—0 —1 4 9 基金项 目:湖北省教学研究项 目(0 9 6 ) 20 14 资助 作者简介 : 刘丽平 (9 4 )女 , 1 8 一 , 硕士生 ; 杨维明 , 通信作者 , 副教授 , — i y E ma :wmw @s acr l y i .o n n
第 3 卷第 4 3 期
21 0 1年 1 2月
湖北 大学 学 报 ( 自然科 学 版 )
J u n l fHu e nv ri ( t rl ce c ) o r a b i iest Nau a ., 01 c 2 1
第 4 期
刘丽平等 : 锁相环 中无 源环路滤波器的设 计与仿真
一 l0 ● t . ^兰p巴∞ .● f≯一 口 ●。● n l, ∞ p o .
45 9
为周期 的 , 其输 出 的误差 电压 就在 某一 : 内摆 动. 范围 在这 种 误 差 电压 控 制下 , 控 振荡 器 的频 率 也就 在 压 相 应 的范 围 内变 化 ; 压控 振 荡器 的频 若 率能够 变 化到 与输入 信号 频率 相等 , 便有 可能在 这个 频率 上稳 定 下来 , 达到稳 定 之后 , 输入 信号 和压 控振 荡器 输 出信号 之 间的频差 为零 , 位差不 再 随时 间变 化 , 相 误差 控 制 电压为 一 固定 值 , 时环路 就进 入“ 这 锁定 ” 状态 . 鉴 相器 的输 出由直 流分量 和 高频分 量组 成 , 而压控 振 荡器 的控制 电压 在稳态 时必 须保 持恒 定 , 以 所 环路 滤波 器 的功能 是除 去鉴 相器输 出比较频 率 中 的寄生 成 分 . 1所示 的 P L仿 真 电路 中 , 路滤 波 图 L 环
摘要
锁相环 ( L ) P L 的基本频率特性主要是由环路滤波 器决定 的. 了节省锁相环 的设计仿 真时 间, 为 提

锁相环环路滤波器噪声特性分析与仿真

锁相环环路滤波器噪声特性分析与仿真

锁相环环路滤波器噪声特性分析与仿真金玉琳;余世刚;周毅;保玲【摘要】为估计环路滤波器对锁相频率合成器输出相位噪声的贡献,建立了一种常用的有源差分环路滤波器噪声模型,并推导出滤波器中各噪声源贡献的噪声的理论公式.针对一实际滤波器贡献的相位噪声进行理论计算,考虑了滤波器中运放的非理想特性后,对滤波器中各个噪声源贡献的相位噪声进行了仿真.通过理论结果和仿真结果对比,得出理论公式对实际环路滤波器噪声进行了很好的估计.最后给出环路滤波器设计时在噪声性能方面的考虑.%It is necessary to accurate phase noise prediction of synthesizer for loop filter's contribution, a noise model for loop filter that is used for differential output phase detector is built, and theoretical formula of the output phase noise contribution from each noise source in loop filter is derived. Theoretical value of phase noise is calculated aimed at the contribution from a actual loop filter, and the phase noise is simulated after considered the actual character of op-amp. Comparing the theoretical value and simulated value, the noise of the actual loop filter can be estimated by theoretical formula, and some considerations of loop filter design about the noise performance are provided.【期刊名称】《现代电子技术》【年(卷),期】2011(034)021【总页数】4页(P193-195,198)【关键词】频率合成器;锁相环;有源环路滤波器;相位噪声【作者】金玉琳;余世刚;周毅;保玲【作者单位】兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000【正文语种】中文【中图分类】TN713-34锁相频率合成器其潜在的出色性能、相对简单性和低成本而被普遍使用[1]。

锁相环设计与MATLAB仿真

锁相环设计与MATLAB仿真

锁相环设计与MATLAB仿真锁相环(Phase-Locked Loop,PLL)是一种电路设计技术,用于提取输入信号中的相位信息,并在输出信号中保持输入信号与输出信号的相位差稳定。

PLL广泛应用于通信系统、时钟生成器、频率合成器等领域。

锁相环主要由相位检测器(Phase Detector,PD)、环路滤波器(Loop Filter,LF)、振荡器(Voltage-Controlled Oscillator,VCO)和分频器(Divider)组成。

相位检测器用于比较输入信号和VCO输出信号的相位差,并产生一个低频的误差信号。

传统的相位检测器包括异或门相位检测器(XOR PD)和倍频器相位检测器(Multiplier PD)。

异或门相位检测器适用于窄带相位差测量,倍频器相位检测器适用于宽带相位差测量。

MATLAB提供了用于建模和仿真PLL的工具箱,可以方便地进行相位检测器的设计和性能分析。

环路滤波器用于滤波相位误差信号,根据滤波器的设计方法不同,可以实现不同的环路特性。

传统的环路滤波器包括积分环路滤波器和比例积分环路滤波器。

积分环路滤波器对误差信号进行积分,使得环路系统具有很高的稳定性和抗干扰能力,但响应时间较长。

比例积分环路滤波器在积分环路滤波器的基础上引入比例增益,可以更快地响应相位误差的变化。

振荡器(VCO)根据环路滤波器输出的控制电压来生成输出信号,并提供给分频器进行频率除法操作。

振荡器通常采用压控振荡器(VCO)或电流模式逻辑(Current Mode Logic,CML)结构,可以根据应用需求选择合适的振荡器设计。

分频器用于将振荡器输出的高频信号按照设定的分频比例进行分频,生成与输入信号相位对齐的输出信号。

分频器采用计数器和锁存器设计,计数器用于记录输入信号的周期数,锁存器将计数器的值锁定在一个周期,输出给相位检测器进行相位比较。

锁相环的设计和仿真可以通过MATLAB工具箱进行。

首先,设计相位检测器的传输函数和特性,选择适当的相位检测器类型和设计参数。

锁相环与MATLAB仿真讲解

锁相环与MATLAB仿真讲解

目录中文摘要 (3)英文摘要 (4)前言 (6)第一章绪论 (7)1.1 锁相环的发展及国内外研究现状 (7)1.2 本文的主要内容组织 (9)第二章锁相环的基本理论 (10)2.1锁相环的工作原理 (11)2.1.1鉴相器 (11)2.1.2 低通滤波器 (13)2.1.3 压控振荡器 (15)2.2锁相环的工作状态 (15)2.3锁相环的非线性工作性能分析 (17)2.3.1跟踪性能 (18)2.3.2捕获性能 (18)2.3.3失锁状态 (19)2.4锁相环的稳定性 (20)2.5信号流程图 (21)2.6锁相环的优良特性 (21)2.7锁相环的应用 (22)2.7.1锁相环在调制和解调中的应用 (22)2.7.2锁相环在频率合成器中的应用 (23)2.8本章小结 (23)第三章锁相环的噪声分析 (24)3.1锁相环的输入噪声 (24)3.2压控振荡器的噪声 (24)3.3相位噪声的抑制 (26)3.4本章小结 (27)第四章二阶锁相环仿真及结果 (28)4.1仿真介绍 (28)4.2程序代码 (28)4.3仿真结果 (34)4.4本章小结 (36)结论 (38)致谢 (39)参考文献 (40)毕业设计小结 (41)摘要锁相环电路是使一个特殊系统跟踪另外一个系统,更确切的说是一种输出信号在频率和相位上能够与输入参考信号同步的电路,它是模拟及数模混合电路中的一个基本的而且是非常重要的模块。

由于锁相环具有捕获、跟踪和窄带滤波的作用,因此被应用在通信、微处理器、以及卫星等许多领域。

锁相环是通信电路里时钟电路的一个重要模块。

本文详细介绍了锁相环设计中所涉及的各项指标计。

论文首先对锁相环的发展历史和研究现状做了介绍,然后从其基本工作原理出发,以传统锁相环的结构为基础,得到了锁相环的数学模型,对锁相环的跟踪性能、捕获性能、稳定性以及噪声性能等各种性能进行了分析,对锁相环的各项指标参数进行了详细推导,得出了锁相环数学分析的结论。

锁相环PLL原理与应用

锁相环PLL原理与应用

Uφ(t) f2’
uc VCO
Ud(t)
对锁相环的另一种描述
uo Uo’(t)
反馈过程简单描述: ωo(t)↑→频差↓→ PD的直流分量↓→ LPF的直流分量↓→ ωo(t) ↓→频差↑→ PD的直流分量↑→ LPF的直流分量↑→ ωo(t)↑→循环往复 频差=0 → PD的直流分量=常数→ LPF的直流分量=常数→
用低通滤波器LPF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压
u c A d sio n ( t ) t { o ( t ) [ [ ]i( t ) t i( t )]}
此时的ωi(t)为输入信号的瞬时振荡角频率, ωo(t)为输出信号的瞬时振荡角频率;φi (t)和φo(t)分别 为输入信号和输出信号的瞬时位相。瞬时频率(单位时间变化的弧度)和瞬时相位的关系为:
对一个二阶系统而言,就存在ωn、ξ。在同样的LPF条件下,VCO灵敏度越高, ξ越小(很快锁定)。
锁相环仿真前对一些基本仿真原件的认识
——VCO0
FM、VCO 信号相乘
一种由数字电路组成的鉴相器。 检测到输入信号过零时开启计数器;检测到参考信号过零时锁定计数器。其间计数器内的 计数值就是相位差的某种表达。该计数值经过A/D后就成为相位差某种表达模拟量。
RS触发器
ui PD
ud LPF
UI(t) f1
ui
ud
uc
uo
PD
LPF
VCO
鉴相器PD:是一个完成相位比较的单元,用来比较输入信号和基准信号的之间的相位。它的输出 电压正比于两个输入信号之相位差。
低通滤波器LPF:是一个有源频及其他的高频噪声),起平滑滤波的作用。通常由电阻、电容或电感等组成,有时也包含运 算放大器。

三相锁相环及仿真

三相锁相环及仿真

三相锁相环及仿真Newly compiled on November 23, 20202三相电压软件锁相环仿真实现锁相环有很多种方法,目前在电力电子装置实际应用中常用的锁相环技术是过零比较方式,就是通过硬件电路检测电网电压的过零点来获得相位差的信号,然后用硬件或者软件实现锁相。

这种方案原理和结构都很简单,也易于工程上的实现。

但是一个工频周期内电网电压只能检测到两个过零点,这限制了锁相环的锁相速度;而且,当电网侧电压中有含有的谐波或这三相不平衡时,这种方法就不能准确的确定基波正序的过零点了,进而而影响了锁相的精度[38]。

为了避免过零点检测方法带来的问题,本文采用三相软件锁相环(SPLL)[39]方法。

电压合成矢量u s与d、q轴电压分量u sd、u sq的关系图如图所示,对于三相电网,电压合成矢量u s的幅值是不变的,则q轴电压分量u sq反映了d轴电压分量u sd与电网电压合成矢量u s的相位关系。

从图中可以看出,当u sq<0时,说明d轴超前u s,应该减小同步信号的频率;u sq>0时,说明d 轴滞后u s,此时应该增大同步信号频率;u sq=0时,说明d轴与u s同相。

可见,可以通过控制电网电压q轴分量u sq=0恒成立,使电网电压合成矢量u s定向于d轴电压分量u sd,实现两者同相位,因此可以得到一个对电压矢量u s进行锁相的方法。

采集得到的压三相对称正弦相电压的瞬时值可以表示为:a m1b m1c m1cos2cos()32cos()3u Uu Uu Uθθπθπ⎧⎪=⎪⎪=-⎨⎪⎪=+⎪⎩(2-36)式中,θ1=ω1t,为输入相位角,ω1为电网角频率;U m为电网电压幅值。

三相对称电压变换到两相静止坐标系α、β轴电压分量u sα、u sβ,两相静止αβ坐标系再经两相旋转坐标系变换后得到的d、q轴电压分量u sd、u sq可以表示为:sd m1sq m1cos()sin()u Uu Uθθθθ=-⎧⎪⎨=-⎪⎩(2-36) 式中,θ=ωt,三相电压SPLL的输出相位角,ω输出角频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MSN:wxch2000@
电子民工
QQ:47086388
⑷频率范围: 锁相环系统输出频率的范围,该指标由 VCO 频率范围和锁相环芯片 内的分频器共同决定;
⑸换频时间: 锁相环系统输出信号从一个频率切换到另一个频率时,其输出从突变 到重新进入稳定状态所用的时间,该指标由系统阻尼系数和环路带宽 决定;
的中间值; 5. 仿真所需的仿真器、优化器、优化目标及公式编辑器。 我们先来看第 1 部分:
图 11 鉴相增益、滤波器器件值、VCO 压控增益和分频值等各模块的参数都被设置成变量,统一 放在第 2 部分的变量设置区内进行设置。信号源不需要设置。
第 3 和第 4 部分情况与第 1 部分类似,我们不需要做任何改动。 第 2 部分是环路参数配置区,我们需要根据实际的系统参数和设计目标做一些改动。改 动后如下图所示:
变,迫使fout变化到对应的频率,以保证fbak与fref相等。也就是说,我们可以通过改变fref使fout 变化到我们希望的频率,同时fout还能够自动跟踪fref的变化,这个特点使PLL能够用作频率合 成器和调制/解调器。
2.锁相环性能参数
锁相环系统有以下几个较为重要的技术指标:
⑴频率准确度: 实际输出频率fout与标称输出频率fo之差,一般由分频数N与参考源fref 决定;
ω/(rad/s) 幅值裕度
ωg
ω/(rad/s)
-90
相位裕度γ -180
图 3 锁相环开环传递函数的伯德图 图中,ωc为环路增益降为 0dB时的频率,即通常所说的环路带宽。幅值裕度和相位裕 度是描述系统稳定程度的两个关键参数,定义如下:
幅值裕度 = −L[Gk (ωg )]
(3)
相位裕度=γ = 180 + ϕ(ωc )
(4) N是环路的分频比,即θb=θo/N(fbak=fout/N); 因此锁相环的开环传递函数为:
Gk (s)
=
θb θi
=
Kd
i
Z(s) i
Kv s
i
1 = Kd Kv Z(s) N Ns
闭环传递函数为:
(1)
Φ(s) = G(s) = NKd KvZ (s) 1 + Gk (s) Ns + Kd Kv Z (s)
目前生产 PLL 芯片的知名厂商有:模拟器件公司(ADI)、美国国家半导体公司(NS)、 德州仪器(TI)等。他们的代表型号分别有 ADF4111(ADI)、LMX2346(NS)、TRF3750 (TI)。
1.基本工作原理
锁相环包括四个基本模块:压控振荡器(VCO)、鉴相器(PD)、分频器(Div)和环路 滤波器(LPF),如下图
图 1 锁相环基本框图
压控振荡器(VCO): 产生射频信号。其输出频率受到控制电压的影响,大多数 VCO 的输
出频率随控制电压升高而升高,即具有正斜率;
分频器(Div):
对 VCO 的输出频率进行分频,使频率降下来以便于处理;
鉴相器(PD):
对输入的参考频率(相位)fref和分频后的fbak进行比较,根据频率(相 位)之差产生对应的输出电压;
频率合成器
图6 查看环路频率响应
图7
博客:
MSN:wxch2000@
电子民工
QQ:47086388
ADF4111 的鉴相器基于电荷泵结构
图8
采用无源 3 阶环路滤波器,此时系统 为 4 阶系统
图9 选择完毕后,点击 OK 进行确认,系统会根据这些选项自动为我们生成如下的仿真原理图模 板:
(C1
+
C2
)s2
(1
+
R2C1C2 C1 + C2
s)
(5) (6)
博客:
MSN:wxch2000@
电子民工
QQ:47086388
Z(s)
Icp
uc
R2 C1
C2
图 4 2 阶无源环路滤波器
令 T1
=
R2C1C2 C1 + C2
典型的锁相环开环传递函数伯德图为:
(2)
博客:
MSN:wxch2000@
电子民工

L(Gk)/(dB) 20logK 0
-20dB/dec -40dB/dec -20dB/dec
ωc
f (Gk)/(°) 0
QQ:47086388
电子民工
QQ:47086388
PLL 锁相环的 ADS 仿真
博客:
MSN:wxch2000@
电子民工
QQ:47086388
说明
这是本人的一点学习总结,希望对初学锁相环/合成器的学弟学妹 们有用。锁相环技术是基于反馈理论的,因此学习锁相环/合成器最 好先学习《自动控制》。
噪底为-150 dBc/Hz; ⑹ 系统频率间隔: 200kHz; 由于 ADF4111 是整数分频芯片,因此鉴相频率应选为系统频率间隔,即 200kHz,则参
博客:
MSN:wxch2000@
电子民工
QQ:47086388
考分频器的分频比应设置为 50,射频分频器的分频比应设置为 4500±50;芯片的电荷泵电 流我们选取典型值 5mA。
⑵频率稳定度: 在一定时间间隔内,频率的相对变化程度(f-fo)/fo,单位一般为ppm
⑶频率精度:
(10-6)或ppb(10-9),该指标一般由参考源fref决定; 相邻两个输出频率的最小间隔,对于整数分频,其频率精度等于fref; 对于小数分频,其频率精度可为任意小;
博客:
(4)
其中,L(Gk)=20logGk 。 工程中,系统的幅值裕度一般会设计为>6dB,即系统开环增益再变大 2 倍也不会到达
不稳定状态。而相位裕度一般要求为 30°~60°,通常取 45°。若相位裕度加大,系统响应 的过渡过程会变长。
3.环路滤波器的计算
在实际的工程应用中,分频器、鉴相器与电荷泵这三部分都已经被封装于锁相环 IC 里, 工程师所需要做的基本上只是根据系统要求计算出合适的环路滤波器并调试。
θi +
θe
-
θb
鉴相器 PD
Kd
低通滤波器 LPF
压控振荡器 VCO
uc
θo
Z(s)
Kv/s
分频器
Div
1/N
图 2 电荷泵锁相环的系统框图
其中(1)
Kd是鉴相器与电荷泵的鉴相增益, Kd
=
I cp 2π
,Icp为电荷泵的充放电电流;
(2) Z(s)是环路滤波器的传输函数;
(3) Kv是VCO的压控增益,单位是弧度/伏;因为VCO是一个积分环节,所以它的 传输函数分母中含有一个积分算子s;
博客:
低通滤波器(LPF): 对鉴相器输出的电压进行滤波,为 VCO 提供干净的控制电压,同时
为系统提供一定的稳定裕量,该低通滤波器也称为环路滤波器。
PLL是一个频率/相位的自动控制系统:假如fout偏离期望的频率,则fbak会与fref产生一定 的频差,此时鉴相器会根据该频差输出对应的控制电压去迫使fout回到期望的频率;当fref变 化时,鉴相器的两个输入频率会产生一定的频差,接着鉴相器输出电压会随频差的大小而改
本人只是应用工程师,不是做理论的,理论知识比较欠缺,所以 有不对的地方请大家指正~~
最后希望大家尊重知识,请不要用于商业用途。
2009 年 2 月 上海
博客:
MSN:wxch2000@
电子民工
QQ:47086388
锁相环基础
在通信系统中产生可变的本振信号(LO)的方法有以下几种:倍频/混频、直接数字频 率合成(DDS)和锁相环技术(PLL)。其中倍频/混频方法杂散较大,谐波难以抑制;DDS 器件工作频率较低且功耗较大,而 PLL 技术相对来说具有应用方便灵活与频率范围宽等优 点,是现阶段主流的频率合成技术。
图 5 ADF4111 功能框图 以下是 ADF4111 的一些性能参数,详见数据手册: ⑴ RFINA为射频信号输入口,其信号来自VCO,该端口能接受的输入频率范围是 80
MHz ~1200MHz,3V供电时输入信号的幅度范围-15dBm~0 dBm; ⑵ REFIN为参考信号输入口,其信号来自参考源(如TCXO),该端口能接受的输入频
率范围是 5 MHz ~104 MHz,输入幅度要求至少为-5 dBm; ⑶ 鉴相器能接受的最大的输入频率为 55 MHz,因此需要确保分频后fref和fbak不超过该
值;
⑷ 电荷泵电流Icp可通过写寄存器控制,一共有 8 档,其范围由外部电阻Rset决定; ⑸
下面以一实际案例来讲解如何利用 ADS 计算合适的环路滤波器并估算其锁定时间和相 位噪声。
设一窄带项目采用 PLL 芯片为 ADF4111,各个系统模块的参数如下: ⑴ VCO 输出频率: 900MHz±10MHz; ⑵ VCO 压控增益: 12MHz/V; ⑶ VCO 相位噪声: -30dBc/Hz@10Hz,-80dBc/Hz@1kHz,-120dBc/Hz@100kHz,噪
底为-140 dBc/Hz; ⑷ 参考源频率: 10MHz; ⑸ 参考源相位噪声:-90dBc/Hz@10Hz,-130dBc/Hz@1kHz,-145dBc/Hz@100kHz,
⑹频谱纯度: 该指标由输出信号的相位噪声和杂散来衡量,带内相位噪声主要由参 考源、鉴相器和电荷泵决定,带外相位噪声主要由 VCO 决定。
我们使用的锁相环芯片的鉴相器输出通常是基于电荷泵结构的,因此下面均以电荷泵锁 相环为例进行讲解。对于基于电荷泵结构的锁相环,其锁定或接近锁定时可近似等效为一个 线性的反馈系统,其系统框图如下:
, T2
=
R2C2 ,把上式的
s
换成
jω,则有
Gk ( jω) = −
相关文档
最新文档