九年级数学基础知识复习测试卷

合集下载

初三数学知识点练习题

初三数学知识点练习题

初三数学知识点练习题
1. 简答题:
a) 什么是平行线?
b) 什么是垂直线?
c) 什么是相似三角形?
d) 什么是直角三角形?
2. 选择题:
a) 若两根直线之间夹角为30°,则它们之间的关系是:
A) 平行线
B) 垂直线
C) 相交线
D) 互相垂直
b) 下列哪组数字不是同一个数的倍数?
A) 3、6、9
B) 12、16、20
C) 5、15、25
D) 8、18、28
c) 已知两个数的最小公倍数是36,其中一个数是9,则另一个数是:
A) 4
B) 6
C) 12
D) 18
3. 计算题:
a) 请计算 3/4 + 2/5 的结果。

b) 若正方形的边长为8cm,则其面积为多少平方厘米?
c) 一个矩形的长是15cm,宽是8cm,请计算其周长和面积。

d) 若三角形的底边长为6cm,高为4cm,请计算其面积。

4. 应用题:
a) 爸爸今年35岁,比我大26岁。

请问我几岁?
b) 一个长方形的长是12cm,宽是8cm。

将这个长方形切割为8个
相等的小正方形,请问每个小正方形的边长是多少?
以上是初三数学知识点的练习题,希望能够帮助你巩固学习成果。

如果还有其他问题,请随时提问。

九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)

九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。

《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)

《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)

专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。

2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:直角三角形1(附答案)1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的三角形有()A.3对B.4对C.5对D.7对3.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°4.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG ⊥EF.正确结论有()A.1个B.2个C.3个D.4个5.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是()A.3cm B.6cm C.10cm D.12cm6.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为()A.8B.4C.12D.67.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化8.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°9.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.6410.如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1B.5C.25D.14411.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.12.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=4,则PC的长为.16.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.17.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为.18.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.19.三角形的三边长为a、b、c,且满足等式(a+b)2﹣c2=2ab,则此三角形是三角形(直角、锐角、钝角).20.若8,a,17是一组勾股数,则a=.21.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.22.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.23.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.26.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.27.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.28.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.29.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.30.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.31.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?32.如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,(1)试说明:△FBD≌△ACD;(2)延长BF交AC于E,且BE⊥AC,试说明:;(3)在(2)的条件下,若H是BC边的中点,连接DH与BE相交于点G.试探索CE,GE,BG之间的数量关系,并说明理由.参考答案1.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.故选:A.2.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB;∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD;∴BE=CD,∴AD=AE,∵AO=AO,∴△AOD≌△AOE;∵∠DOC=∠EOB,∴△COD≌△BOE;∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF,△COF≌△BOF.∵∠ABO=∠ACO,AB=AC,∠AOB=∠AOC,∴△AOB≌△AOC,共7对,故选:D.3.解:∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∴∠ABC=40°,∵∠ACB=90°,∴∠A=90°﹣∠ABC=90°﹣40°=50°,∵CD∥AB,∴∠ACD=∠A=50°,故选:D.4.解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.5.解:∵直角三角形中30°角所对的直角边为4cm,∴斜边长为12cm.故选:D.6.解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4∴BC=BD+DC=8+4=12,故选:C.7.解:∵AO⊥BO,点P是AB的中点,∴OP=AB,∴在滑动的过程中OP的长度不变.故选:C.8.解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.9.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.解:由勾股定理得:AC2+BC2=AB2,∵S1=S2+S3,∴S3=S1﹣S2=13﹣12=1.故选:A.11.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.12.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.13.解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC.14.解:当AP⊥ON时,∠APO=90°,则∠A=50°,当P A⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.15.解:过P作PE⊥OB,交OB与点E,如图所示:∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD=4,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,∴PC=2PE=8.故答案为:8.16.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.17.解:∵≥0,≥0,∴=0,=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为=;(2)边长为4的边是直角边,则第三边即斜边的长为=5,故答案为5或.18.解:由图可知,(b﹣a)2=5,4×ab=42﹣5=37,∴2ab=37,(a+b)2=(b﹣a)2+4ab=5+2×37=79.故答案为79.19.解:∵(a+b)2﹣c2=2ab,∴a2+2ab+b2﹣c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.故答案为直角.20.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.21.解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形,BP=CP,BC最大.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故答案为:422.解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.23.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD﹣CD=BF﹣EF.即BC=BE.24.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.25.解:∵∠C=90°,∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,∴∠ABD=∠A,∴AD=BD=20,∴CD=BD=10,∴BC===10.26.证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,∵N是BD的中点,∴MN⊥BD(等腰三角形三线合一).27.(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:S△ABC=×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②∵点E是边AC的中点,CD⊥AB,∴DE=AC=5,当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E作EF⊥AB于F,如图3所示:∵ED=EA,∴DF=AF=AD=3,在Rt△AEF中,EF=4;∵BM=t,BF=7,∴FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.28.解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积和,即.两者列成等式化简即可得:a2+b2=c2;29.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,∴S△ABC=BC•AD=×21×8=84.因此△ABC的面积为84.故答案为84.30.解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.31.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.32.解:(1)∵DB=DC,∠BDF=∠ADC=90°又∵DA=DF,∴△BFD≌△ACD;(2)∵△BFD≌△ACD,∴BF=AC,又∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,又∵BE=BE,∴△ABE≌△CBE,∴CE=AE=AC,∴CE=AC=BF;(3)CE,GE,BG之间的数量关系为:CE2+GE2=BG2,连接CG.∵BD=CD,H是BC边的中点,∴DH是BC的中垂线,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.。

2021年九年级数学中考一轮复习知识点基础达标测评:图形的相似2(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:图形的相似2(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:图形的相似2(附答案)1.已知甲、乙两地图的比例尺分别为1:5000和1:20 000,如果甲图上A、B两地的距离与乙图上C、D两地的距离恰好一样长,那么A、B两地的实际距离与C、D两地的实际距离之比为()A.5:2B.2:5C.1:4D.4:12.如果一个等腰三角形的顶角为36°,那么可求其底边与腰之比等于,我们把这样的等腰三角形称为黄金三角形.如图,在△ABC中,AB=AC=1,∠A=36°,△ABC 看作第一个黄金三角形;作∠ABC的平分线BD,交AC于点D,△BCD看作第二个黄金三角形;作∠BCD的平分线CE,交BD于点E,△CDE看作第三个黄金三角形;……以此类推,第2020个黄金三角形的腰长是()A.()2018B.()2019C.()2018D.()20193.如图,l1∥l2∥l3∥l4∥l5,且l1,l2,l3,l4,l5中相邻两条直线之间的距离都为1,△ABC 的顶点A,B,C分别在l1,l3,l5上,AB交l2于点D,BC交l4于点E,AC交l2于点F,若△DEF的面积是1,则△ABC的面积是()A.3.5B.4C.4.5D.54.若△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,下列结论正确的是()A.△ABC与△A1B1C1的对应角不相等B.△ABC与△A1B1C1不一定相似C.△ABC与△A1B1C1的相似比为1:2D.△ABC与△A1B1C1的相似比为2:15.如图,▱ABCD∽▱EFGH,AB∥EF,记四边形ABFE、四边形BCGF、四边形CDHG、四边形DAEH的面积分别S1,S2,S3,S4,若已知▱ABCD和▱EFGH的面积,则不用测量就可知的区域的面积为()A.S1﹣S2B.S1+S3C.S4﹣S2D.S3+S46.已知两个相似三角形的面积之比为4:9,则这两个相似三角形的对应边之比是()A.16:81B.4:9C.9:4D.2:37.已知∠P AQ=36°,点B为射线AQ上一固定点,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交射线AP于点D,连接BD;③以B为圆心,BA长为半径画弧,交射线AP于点C.根据以上作图过程及所作图形,下列结论中错误的是()A.∠CDB=72°B.△ADB∽△ABC C.CD:AD=2:1D.∠ABC=3∠ACB 8.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB 与CD相交于点P,则tan∠APD的值为()A.2B.C.3D.9.阳光通过窗口照到室内,在地上留下2.7m宽的亮区(如图),已知亮区一边到窗下的墙角的距离CE=8.7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.4m C.6m D.1m10.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB缩小为原来的,则点A的对应点A′的坐标是()A.(2,)B.(1,2)C.(4,8)或(﹣4,﹣8)D.(1,2)或(﹣1,﹣2)11.如图,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,则下列结论:①CD2=AD•BD;②AC2+BD2=BC2+AD2;③;④若F为BE中点,则AD=3BD,其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△BDE∽△DPE;②=;③DP2=PH•PB;④tan∠DBE=2﹣.其中正确的是()A.①②③④B.①②④C.②③④D.①③④13.已知==,且3x+4z﹣2y=40,则x的值为.14.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=.15.点C是线段AB的黄金分割点,且AB=4,则BC的长为.16.如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB =2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=度.18.如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.19.若△ABC∽△DEF,请写出2 个不同类型的正确的结论、.20.如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=3,AC=2,AB=m,在线段AB 上找一点E,使△BDE与△ACE相似,若这样的点E有且只有两个,则m的值是.21.如图,在矩形ABCD中,∠ACB=30°,过点D作DE⊥AC于点E,延长DE交BC于点F,连接AF,若AF=,线段DE的长为.22.如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,DE在阳光下的投影长为6米,则DE的长为米.23.解答下列各题:(1)解方程:(x+2)(x+3)=2x+16(2)已知a、b、c均为非零的实数,且满足==,求的值24.(1)已知a=4,c=9,若b是a,c的比例中项,求b的值.(2)已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长.并思考两题有何区别.25.二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.例如:化简:.解:将分子、分写同乘以得==.类比应用:(1)化简:=.(2)化简:++…+.拓展延伸:宽与长的比是的矩形叫黄金矩形,如图①,已知黄金矩形ABCD的宽AB=1.(1)黄金矩形ABCD的长BC=;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE,则点D到线段AE的距离为.26.如图,在△ABC中,点D在边AB上,点F、E在边AC上,且DF∥BE,.求:的值.27.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,求△DEF的面积.28.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.29.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.30.如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE.31.如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.32.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?参考答案1.解:把图上距离看作单位1,设A、B和C、D两地的实际距离分别为x和y,则:1:5000=1:x,解得x=5000,1:20000=1:y,解得y=20000,∴x:y=5000:20000=1:4.故选:C.2.解:∵AB=AC=1,∠A=36°,△ABC是第一个黄金三角形,∴底边与腰之比等于,即=,∴BC=AB=,同理:△BCD是第二个黄金三角形,△CDE是第三个黄金三角形,则CD=BC=()2,即第一个黄金三角形的腰长为1=()0,第二个黄金三角形的腰长为第一个黄金三角形的腰长为()1,第三个黄金三角形的腰长为()2,…,∴第2020个黄金三角形的腰长是()2020﹣1,即()2019,故选:B.3.解:如图,∵每相邻两条直线之间的距离为1,△DEF的面积为2,∴×DF×2=1,∴DF=1,∵DF∥BG,∴==,∴BG=2,∴S△ABC=S△ABG+S△BCG=×2×2+×2×2=4,故选:B.4.解:因为△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,那么△A1B1C1的各边为△ABC的2倍,即△ABC与△A1B1C1的相似比为1:2.故选:C.5.解:作CK⊥AB于K,GN⊥EF于N,FM⊥AB于M,HJ⊥CD于J,∵四边形ABCD和四边形EFGH都是平行四边形,AB∥EF,∴CK=FM+GN+HJ,四边形AEFB和四边形CDHG都是梯形,∵▱ABCD∽▱EFGH,∴==,设===a,∵AB=CD,EF=HG,∴EF=HG=aAB,GN=aCK,S1=(EF+AB)MF=(a+1)AB•MF,S3=(GH+CD)HJ=(a+1)AB•HJ,S平行四边形ABCD﹣S平行四边形EFGH=AB•CK﹣EF•GN=(AB•CK﹣a•AB•a•CK)=(1﹣a2)AB•CK,S1+S3=(a+1)AB•MF+(a+1)AB•HJ=(a+1)AB(MF+HJ)=(a+1)AB (CK﹣GN)=(a+1)AB(1﹣a)CK=(1﹣a2)AB•CK,∴S1+S3=S平行四边形ABCD﹣S平行四边形EFGH;故选:B.6.解:∵相似三角形的面积的比等于相似比的平方.∴两个相似三角形的面积之比为4:9时,这两个相似三角形的对应边之比是2:3.故选:D.7.解:由作图可知,MN垂直平分AB,AB=BC,∵MN垂直平分AB,∴DA=DB,∴∠A=∠DBA,∵∠P AQ=36°,∴∠CDB=∠A+∠DBA=72°,故A正确;∵AB=BC,∴∠A=∠ACB,又∵∠A=∠A,∴△ADB∽△ABC,故B正确;∵∠A=∠ACB=36°,∴∠ABC=180°﹣∠A﹣∠ACB=108°,∴∠ABC=3∠ACB,故D正确;∵∠ABD=36°,∠ABC=108°,∴∠CBD=∠ABC﹣∠ABD=72°,∴∠CBD=∠CDB=72°,∴CD=BC,∵∠A=∠ACB=36°,∴AB=BC,∴CD=AB,∵AD+DB>AB,AD=DB,∴2AD>AB,∴2AD>CD,故C错误.故选:C.8.解:如图:连接BE,,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.9.解:∵AE∥BD,∴,CD=CE﹣ED=8.7﹣2.7=6,∴CB===4m,∴BC=4m.故选:B.10.解:以O为位似中心,把△OAB缩小为原来的,则点A的对应点A′的坐标为(2×,4×)或[2×(﹣),4×(﹣)],即(1,2)或(﹣1,﹣2),故选:D.11.解:①、∵∠ACB=90°,CD⊥AB,∴△ACD∽CBD,∴=,即CD2=AD•DB,故①正确;②∵AC2﹣AD2=BC2﹣BD2=CD2,∴AC2+BD2=BC2+AD2故②正确;③作EM⊥AB,则BD+EH=BM,∵BE平分∠ABC,△BCE≌△BEM,∴BC=BM=BD+EH,∴,故③正确;④若F为BE中点,则CF=EF=BF,∴∠BCD=∠CBF=∠DBF=30°,∠A=30°,∴AB=2BC=4BD,∴AD=3BD,故④正确.故选:D.12.解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴∠CPD=∠CDP=75°,∴∠PDE=15°,∵∠PBD=∠PBC﹣∠HBC=60°﹣45°=15°,∴∠EBD=∠EDP,∵∠DEP=∠DEB,∴△BDE∽△DPE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴CM=PN=PB•sin60°=4×=2,PM=PC•sin30°=2,∵DE∥PM,∴∠EDP=∠DPM,∴∠DBE=∠DPM,∴tan∠DBE=tan∠DPM===2﹣,故④正确;故选:D.13.解:设===k(k≠0),则x=2k,y=3k,z=5k,∵3x+4z﹣2y=40,∴6k+20k﹣6k=40,解得k=2,∴x=2k=4.故答案为:4.14.解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.15.解:当点C是线段AB的黄金分割点,BC>AC时,BC=AB=×4=2﹣2;当点C是线段AB的黄金分割点,AC<BC时,AC=AB=2﹣2,则BC=AB﹣AC=4﹣(2﹣2)=6﹣2;故答案为:2﹣2或6﹣2.16.解:如图,过点D作DF∥AE,则==,∵=,∴DF=2EC,∴DO=2OC,∴DO=DC,∴S△ADO=S△ADC,S△BDO=S△BDC,∴S△ABO=S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=4,此时△ABO的面积最大为:×4=.故答案为:.17.解:如图所示,∵∠ABC=70°,BD平分∠ABC,∴∠ABD=∠DBC,又∵对角线BD是它的相似对角线,∴△ABD∽△DBC,∴∠A=∠BDC,∠ADB=∠C,∴∠A+∠C=∠ADC,又∵∠A+∠C+∠ADC=360°﹣70°=290°,∴∠ADC=145°,故答案为:145.18.解:由折叠的性质可知,AB=AF=1,∵矩形EFDC与矩形ABCD相似,∴=,即=,整理得,AD2﹣AD﹣1=0,AD=,由题意得,AD=,故答案为:.19.解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.20.解:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴==,∴AE=BE①,当∠ACE=∠BED时,△ACE∽△BED,∴=,即AE×BE=AC×BD=2×3=6②,由①②得:BE2=6,解得:BE=3,∴AE=2,∴AB=AE+BE=5,即m=5;当AE=2时,BE=3,两个三角形相似;当AE=3时,BE=2,两个三角形全等,符合题目要求;设AE=x,则BE=m﹣x,∴x:3=2:(m﹣x),整理得:x2﹣mx+6=0,方程有唯一解时,△=m2﹣24=0,解得:m=±2(负值舍去),∴m=2;当m=2时,AE:BE=2:3时,两个三角形相似;AE=BE=时,两个三角形相似;同样是两个点可以满足要求;综上所述,△BDE与△ACE相似,若这样的点E有且只有两个,则m的值是5或2;故答案为:5或2.21.解:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠B=∠BCD=90°,AB=CD,AD=BC,AD∥BC,∴∠DAC=∠ACB=30°,∴AD=CD,∠DCE=60°,∵DF⊥AC,∴EF=CF,∠CDF=30°,∴CD=CF,设CF=x,则AB=CD=x,BC=AD=CD=3x,∴BF=BC﹣CF=3x﹣x=2x,在Rt△ABF中,由勾股定理得:(x)2+(2x)2=()2,解得:x=,∴CF=,EF=,AD=3,∵AD∥BC,∴△ADE∽△CFE,∴=,即=,∴DE=;故答案为:.22.解:如图所示,连接AC,过点D作DF∥AC交地面于点F,∵同一时刻物高与物高的比等于影长与影长的比,∴=即=∴DE=.则DE的长为米.故答案为.23.解:(1)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5;(2)若a+b+c≠0,由等比定理有====1,所以a+b﹣c=c,a﹣b+c=b,﹣a+b+c=a,于是有==8.若a+b+c=0,则a+b=﹣c,b+c=﹣a,c+a=﹣b,于是有==﹣1.24.解:(1)∵b是a,c的比例中项,∴a:b=b:c,∴b2=ac;b=±,∵a=4,c=9,∴b=±=±6,即b=±6;(2)∵MN是线段,∴MN>0;∵线段MN是AB,CD的比例中项,∴AB:MN=MN:CD,∴MN 2=AB•CD,∴MN=±;∵AB=4cm,CD=5cm,∴MN=±=±2;MN不可能为负值,则MN=2,通过解答(1)、(2)发现,c、MN同时作为比例中项出现,c可以取负值,而MN不可以取负值.25.解:类比应用:(1)根据题意可得:化简:==2+;故答案为:2+;(2)根据题意可得:原式=﹣1+﹣+…+﹣=3﹣1=2;拓展延伸:(1)∵宽与长的比是的矩形叫黄金矩形,若黄金矩形ABCD的宽AB=1.则黄金矩形ABCD的长BC为:1:==;故答案为:;(2)矩形DCEF是黄金矩形,理由如下:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可知:AD=BC=1:==;∴FD=EC=AD﹣AF=﹣1=,∴=÷1=;所以矩形DCEF是黄金矩形;(3)如图,连接AE,DE,过点D作DG⊥AE于点G,∵AB=EF=1,AD=,∴AE==,在△AED中,S△AED=×AD×EF=AE×DG,即AD×EF=AE×DG,则×1=×DG,解得DG=.所以点D到线段AE的距离为.故答案为:.26.解:∵DF∥BE,∴,∵,∴,∴DE∥BC,∴,∵,∴,∴.27.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵,,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴,同理,∴DF=9,EF=12,∴△DEF的面积为:.. 28.解:∵矩形ABCD∽矩形ECDF,∴=,即=,∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴=.29.(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中,∴△ADC≌△ABC(SAS),∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∵∠ADC=2∠HAG,∴∠DGC=2∠HAG,∵∠DGC=∠HAG+∠AHG,∴∠HAG=∠AHG,∴HG=AG,∵∠GDC=∠DAC=∠F AG,∠DGC=∠AGF,∴△DGC∽△AGF,∴△AGF∽△ADC,∴==,即=.30.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,∵∠AED=∠C,∴△ABC∽△ADE.31.解:(1)作AD⊥BC于D,交EH于O,如图所示:∵在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,∴BC==25(cm),∵BC×AD=AB×AC,∴AD===12(cm);即BC边上的高为12cm;(2)设正方形EFGH的边长为xcm,∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.∴=,即=,解得:x=,即正方形EFGH的边长为cm.32.解:(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:=,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵=,∴AB==8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米。

九年级(上)数学基础知识测试卷

九年级(上)数学基础知识测试卷

九年级(上)数学基础知识测试卷1.一元二次方程,若,则方程必有一根为。

2.如图2,是的直径,是上的两点,已知∠°,,则∠的度数是。

3.如图3,已知直径与弦的延长线交于点,且,CD⌒AC⌒DB⌒,则∠。

4.如图4,是的直径,点在上,∠°,动点在弦上,则∠的范围是。

5.如图5,是的直径,弦,是AC⌒上一点,,延长线交于,已知∠°,则∠CEF= 。

6.在中,∠°,∠°,,以为圆心,以为半径作,若线段与有公共点,则半径的取值范围是。

7.如图7,与分别切于点,,且,是的切线,交、与、两点,则的周长为。

8.若是一元二次方程的解,则。

9.已知一元二次方程的两根为的两边长,则的面积为。

10.多项式的最小值为。

11.关于的一元二次方程,已知根的判别式,则方程的解为。

12.关于的方程有实数根,则的取值范围是。

13.关于的方程的解为。

14.已知,则。

15.已知关于的方程的两根比关于的方程的两根分别大5,则。

16.关于的方程的两根为,,则的最小值为。

17.中,∠°,∠°,点在边上,,如图17,把绕点逆时针旋转(°)度后,若点恰好落在初始的边上,则= 。

18.如图18,边长为1的正方形绕点逆时针旋转45°后得到正方形,边与相交于,则四边形的周长为。

19.若所在平面内有一点,到上的点的最大距离为,最小距离为,则此圆的半径为。

20.如图20,直径和弦交于,,,∠°,则。

21.如图21,铁路和公路相交于点,∠°,公路上点处距离点米,如果火车行驶时,周围200半径内会受到噪声影响,那么火车在铁路上,沿方向以72千米/时的速度行驶时,处受噪音影响的时间为。

22.如图22,线段是内不是直径的一条弦,点是优弧上的一点(不与、重合),设∠,∠,则。

(用含的式子表示出来)23.如图23,,∠∠,∠°,则∠。

24.内接于,是的直径,∠的平分线交于于点,若,则。

锐角三角函数(全章复习与巩固)(巩固篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

锐角三角函数(全章复习与巩固)(巩固篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

专题28.16 锐角三角函数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.已知6cos 33α=α是锐角,则α=( ) A .75︒B .60︒C .45︒D .302.如图,若点 A 的坐标为(1,2),则tan∠1=( )A .2B .12C .3D 33.在∠ABC 中,90C ∠=︒,若1tan 2A =,则sinB =( ) A 5B 3C 25D 234.如图,直线y =34x ﹣3与x 轴,y 轴分别交于A ,B 两点,则sin ∠OAB 的值为( )A .35 B .35C .45D .﹣455.如图是一段索道的示意图.若100AB =米,BAC α∠=,则缆车从A 点到B 点上升的高度BC 的长为( )A .1000sin α米B .1000sin α米 C .1000cos α米 D .1000cos α米 6.矩形ABCD 中AB =10,BC =8,E 为AD 边上一点,沿CE 将∠CDE 对折,使点D正好落在AB 边上,tan∠AFE 等于( )A .43B .34C .52D .257.ABC 中,231sin A cos B 022⎛⎫-= ⎪⎝⎭,则ABC 是( ) A .等腰但不等边三角形 B .等边三角形 C .直角三角形D .等腰直角三角形8.如图,在Rt ∠ABC 中,∠C =90°,AB =2CB =4.以点B 为圆心、适当长为半径作弧,分别交BC ,BA 于点D ,E ,再分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧在∠ABC 内部交于点F ,作射线BF ;分别以点A ,C 为圆心、大于12AC 的长为半径作弧,两弧交于G ,H 两点,作直线GH 交BF 于点J ,交AB 于点K ,则∠JKB 的面积是( )A .2B .1C .23D 39.如图,在ABCD 中,4,10,60AB AD B ==∠=︒.作AE AB ⊥交BC 边于点E ,连接DE ,则sin EDC ∠的值为( )A 21B .12C 7D 21 10.已知△ABC 中,∠C =90°,tan A =12 ,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB的值为( )A .12B 5C 25D .2二、填空题11.计算:012(1)2tan 60-︒--=________.1221是方程2(3tan )20x x θ-的一个根,θ是三角形的一个内角,那么cos θ的值为________.13.如图,在∠ABC 中,∠ACB =90°,点D 在AB 的延长线上,连接CD ,若AB =2BD ,tan∠BCD =12,则AC BC 的值为 _____.14.如图,B 为地面上一点,测得B 到树底部C 的距离为10m ,在B 处放置1m 高的测角仪BD ,测得树顶A 的仰角为60︒,则树高AC 为___________m (结果保留根号).15.如图,矩形ABCD 的边长1,3AB AD ==ABCD 以B 为中心,按顺时针方向旋转到A BC D '''的位置(点A '落在对角线BD 上),则△BDD '的形状为________.16.如图,将一个矩形纸片OABC 放置在平面直角坐标系中,点O (0,0),点B (32).D 是边BC 上一点(不与点B 重合),过点D 作DE ∠OB 交OC 于点E .将该纸片沿DE 折叠,得点C 的对应点C′.当点C′落在OB 上时,点C′的坐标为________.17.在Rt∠ABC 中∠C =90°,AC =4,BC =3.如图∠,四边形DEFG 为Rt∠ABC 的内接正方形,则正方形DEFG 的边长为________;如图∠,若Rt∠ABC 内有并排的n 个全等的正方形,它们组成的矩形内接于Rt ∠ABC ,则正方形的边长为________.18.如图,11122233,,,AB A A B A A B A ⋅⋅⋅△△△是等边三角形,直线32y =+经过它们的顶点123,,,,A A A A ⋅⋅⋅,点123,,,B B B ⋅⋅⋅在x 轴上,则点2022A 的横坐标是____________.三、解答题 19.计算: (1)()1245201412-︒-;(2)()310.125π4tan 602-︒⎛⎫⨯-+-+ ⎪⎝⎭;(3)()()()12014cos 60128tan 30121-︒÷-+︒-+;20.已知:如图,在Rt ABC 中,90,30∠=︒∠=︒C A .()1 作AB 的垂直平分线DE 交AB 于点D ;交AC 于点E (要求:尺规作图,保留作图痕迹,不必写作法);()2 连接BE ,若1BC =,求BCE 的周长.21.已知:如图在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.求: (1)线段DC 的长;(2)tan EDC ∠的值.22.如图,在平面直角坐标系xOy 中,函数y =x +b 的图像与函数ky x=(x >0)的图像相交于点B (1,6),并与x 轴交于点A .点C 是线段AB 上一点,∠OAC 与∠OAB 的面积比为2:3(1) 求k 和b 的值;(2) 若将∠OAC 绕点O 顺时针旋转,使点C 的对应点C ′落在x 轴正半轴上,得到∠OA ′C ′,判断点A ′是否在函数ky x=(x >0)的图像上,并说明理由.23.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30(点A ,B ,C ,D 在同一平面内).(1) 求C ,D 两点的高度差;(2) 求居民楼的高度AB .(结果精确到1m 3 1.7≈)24.无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P 处,测得楼CD 楼顶D 处的俯角为45︒,测得楼AB 楼顶A 处的俯角为60︒.已知楼AB 和楼CD 之间的距离BC 为100米,楼AB 的高度为10米,从楼AB 的A 处测得楼CD 的D 处的仰角为30(点A 、B 、C 、D 、P 在同一平面内).(1) 填空:APD ∠=___________度,ADC ∠=___________度; (2) 求楼CD 的高度(结果保留根号); (3) 求此时无人机距离地面BC 的高度.参考答案1.D【分析】由6cos 33α=3cos α=然后再根据特殊角的三角函数值求角度即可. 解:∠6cos 33α=∠3cos α=∠α=30. 故选D .【点拨】本题主要考查了利用特殊角的三角函数值求角度、一元一次方程等知识点,将cos α整体当做未知数成为解答本题的关键.2.A【分析】过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标,得到OB =1,AB =2,根据正切的定义计算选择即可.解:过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标(1,2), ∠OB =1,AB =2, ∠ tan ∠1=221AB OB ==,故选A .【点拨】本题考查了坐标的意义,正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.3.C【分析】根据三角函数的定义,知tan 12BC A AC ==,设BC =x ,AC =2x ,根据勾股定理可求得AB ,再根据三角函数的定义就可以求出sin B 的值.解:在∠ABC 中,90C ∠=︒, ∠tan 12BC A AC ==, ∠设BC =x ,AC =2x ,()222225AB BC AC x x x ∴=++=,25sin 5AC B AB x=∴=,故选:C .【点拨】本题考查了锐角三角函数的定义及运用:在直角三角形中,一个锐角的正弦值为对边比斜边,余弦值为邻边比斜边,正切值为对边比邻边.4.B【分析】分别令x =0,y =0,由直线解析式可求解A 、B 的坐标,即可得OB 、OA 的长,再利用勾股定理可求解AB 的长,再根据正弦的定义可求解.解:直线y =34x ﹣3,令x =0,则y =0﹣3=﹣3,令y =0,34x ﹣3=0,解得x =4,∴A (4,0),B (0,﹣3), ∴OB =3,0A =4,∴AB 2222435++OA OB , ∴sin ∠OAB =35OB AB =, 故选:B .【点拨】本题主要考查一次函数图象与坐标轴的交点,勾股定理,锐角三角函数的定义,求解A 、B 两点坐标是解题的关键.5.A【分析】在Rt ABC 中,90ACB ∠=︒,斜边AB 是已知边,BAC ∠是已知角,而要求的是BAC ∠的对边BC 的长,所以选择BAC ∠的正弦,即可求出结果.解:如图,在Rt ABC 中,90ACB ∠=︒,BAC α∠=, ∠sin BCABα=, ∠sin BC AB α=⋅, ∠1000AB =米, ∠1000sin BC α=米. 故选:A .【点拨】此题考查了解直角三角形的应用,解题的关键是正确掌握锐角三角函数的定义,选择适当的锐角三角函数模型.6.B【分析】依据折叠的性质以及矩形的性质,易得∠AFE =∠BCF ;在Rt∠BFC 中,有BC =8,CF =10,由勾股定理易得BF 的长.根据三角函数的定义,易得tan∠BCF 的值,依据∠AFE =∠BCF ,可得tan∠AFE 的值.解:∠四边形ABCD 是矩形, ∠CD =AB =10,∠B =∠D =90°, ∠∠BCF +∠BFC =90°,根据折叠的性质得:∠EFC =∠D =90°,CF =CD =10, ∠∠AFE +∠BFC =90°, ∠∠AFE =∠BCF ,在Rt∠BFC 中,BC =8,CF =CD =10,由勾股定理得:BF 22CF CB -22108-6, 则tan∠BCF =BF BC =6384=, ∠tan∠AFE =tan∠BCF =34,故B 正确.故选:B .【点拨】本题主要考查了矩形的折叠问题,求三角函数值,勾股定理,余角的性质,根据折叠和勾股定理求出6BF =,是解题的关键.7.B【分析】由绝对值和完全平方的非负性可得:31sin 0,cos 022A B,再根据特殊角的锐角函数值可知60A B ∠=∠=︒ ,即可求解.解:3sin A 02-≥,21cos B 02⎛⎫-≥ ⎪⎝⎭,231sin A cos B 022⎛⎫-= ⎪⎝⎭,23sin 021cos 02A B ⎧=⎪⎪∴⎨⎪⎛⎫-= ⎪⎪⎝⎭⎩, 则可得:3sin 1cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,解得:6060A B ∠=︒⎧⎨∠=︒⎩ , 在ABC 中,18060C A B ∠=︒-∠-∠=︒ ,ABC ∴ 为等边三角形.故选:B .【点拨】本题考查了非负数的性质,绝对值和完全平方的非负性,由三角函数值求锐角的度数,三角形内角和以及等边三角形的判定;掌握非负数的性质,绝对值和完全平方的非负性是解题的关键.8.D【分析】如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W .解直角三角形求出BJ ,KH ,可得结论.解:如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W ,∠∠C =90°,AB =2BC ,∠2BC A AB==sin , ∠∠A =30°,∠ABC =60°,由作图可知,BJ 平分∠ABC ,KJ 垂直平分线段AC ,∠∠KBJ =∠CBJ =12∠ABC =30°,AW =WC ,∠WK ∠BC ,∠AK =KB =2,∠KJB =∠CBJ =30°,∠HK =12KB =1,BH 33∠∠KBJ =∠KJB =30°,∠KB =KJ ,∠KH ∠BJ ,∠HB =HJ 3∠S △KBJ =1233 故选:D .【点拨】本题考查作图-复杂作图、角平分线的定义、线段的垂直平分线的性质、解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9.A【分析】过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,根据三角函数以及勾股定理求出,,,,,,BE AE AF EF FD ED EC 的长度,然后根据三角形面积公式得出CG 的长度,结果可得.解:过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,AE AB ⊥,90BAE ∴∠=︒,4,60AB B =∠=︒,tan 6043AE AB ∴=︒=8cos60BE ==︒, 1082EC BC BE ∴=-=-=,四边形ABCD 是平行四边形,120BAD ∴∠=︒,1209030EAF BAD BAE ∴∠=∠-∠=︒-︒=︒,EF AD ⊥,90AFE ∴∠=︒,1232EF AE ∴== ∴cos306AF AE =︒=,1064FD AD AF ∴=-=-=,2222(23)427ED EF FD ∴++1122ECD S EC EF ED CG ∴==, 即112232722CG ⨯⨯⨯,221CG ∴ 221217sin 4CG EDC CD ∴∠==, 故选:A .【点拨】本题考查了平行四边形的性质,解直角三角形,勾股定理,含30的直角三角形的性质等知识点,熟练掌握解直角三角形以及勾股定理是解本题的关键.10.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得2222(2)BD CD BC a a ++解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,2222(2)5BD CD BC a a a =+=+,5cos 5CD CDB BD a∴∠=. 故选:B 【点拨】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.11.12- 【分析】先计算零次幂、负整数指数幂、正切值的平方,再按照运算顺序计算就可以了.解:()012212tan 60113231212---︒=-⨯=-=-故答案为: 12-. 【点拨】本题考查了0指数幂()()010a a =≠、负整数指数幂()10q qa a a -=≠、特殊角的正切值、二次根式的性质(()20a a a =≥和实数的混合运算等知识.正确的计算是解决本题的关键.122【分析】21代入方程2(3tan )20x x θ-+=,得出tan θ的值,从而得出θ的度数,进而的解.解:21是方程2(3tan )20x x θ-=的一个根, ∠2(21)3tan (21)20θ-+=,解得:tan 1θ=,∠45θ=︒,∠2cos cos 45θ==° 2. 【点拨】考查三角函数值与一元二次方程根的应用,熟练掌握一元二次方程的根的意义以及特殊角三角函数值是解本题的关键.13.32【分析】过点D 作DM ∠CM ,交CB 的延长线于点M ,可得∠DMC =90°,在Rt∠DMC 中,利用锐角三角函数的定义可设DM =a ,则CM =2a ,然后证明8字模型相似三角形∠ACB ∠∠DMB ,从而利用相似三角形的性质可得AB BD =AC DM =CB BM =2,进而可得AC =2a ,CB =43a ,最后进行计算即可解答.解:过点D 作DM ∠CM ,交CB 的延长线于点M ,∠∠DMC =90°,在Rt∠DMC 中,tan∠BCD =12, ∠tan∠DCM =DM CM =12, 设DM =a ,则CM =2a ,∠∠ACB =∠DMC =90°,∠ABC =∠DBM ,∠∠ACB ∠∠DMB , ∠AB BD=AC DM =CB BM =2, ∠AC =2DM =2a ,∠2433CB CM a ==, ∠AC BC =243a a =32, 故答案为:32. 【点拨】本题考查了相似三角形的判定与性质,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.14.31##1103+【分析】在Rt ADE △中,利用tan 310∠==AE AE ADE DE 103AE =1m 即为AC 的长.解:过点D 作DE AC ⊥交于点E ,如图:则四边形BCED 是矩形,∠BC =DE ,BD =CE ,由题意可知:60ADE ∠=︒,10m ==DE BC ,在Rt ADE △中,tan 310∠===AE AE ADE DE ∠103AE =∠()1031m +=AE EC ,故答案为:1031【点拨】本题考查了解直角三角形,解直角三角形的应用—仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.15.等边三角形【分析】根据特殊角三角函数值求出∠CDB 的度数,然后根据旋转的性质和等边三角形的判定即可解决问题.解:∠四边形ABCD 为矩形,∠DC =AB =1,BC =AD 3∠DCB =90°, ∠tan∠CDB 33=∠CDB =60°; 由旋转的性质可知:BD =BD ',∠∠BDD '为等边三角形.故答案为:等边三角形.【点拨】本题考查了矩形的性质,特殊角三角函数值,旋转的性质以及等边三角形的判定等知识,解题的关键是抓住旋转过程中的不变量,灵活运用有关性质来解题. 16.31()2【分析】根据B 点坐标可求出AB 、OB ,得到12AB OB =,所以30AOB ∠=︒,60BOC ∠=︒,再利用折叠与平行的性质,证明∠OEC ′是等边三角形,OE =CD =12AB ,然后可利用三角函数求出点C ′的坐标.解:∠点B 坐标为(32),∠AB =2,OA =3 ∠()222234OB + ∠12AB OB = ∠30AOB ∠=︒,60BOC ∠=︒∠C ′是C 关于DE 的对称点∠CED C ED '∠=∠, EC =EC ′∠DE ∠OB∠CED EOC '∠=∠=60°∠∠OE C ′=180°-2×60°=60°∠∠OE C ′是等边三角形∠OE = EC =EC ′=12AB =1112⨯= ∠C ′横坐标=31sin 60⨯︒==11sin302⨯︒= ∠C ′坐标为312⎫⎪⎪⎝⎭【点拨】本题考查了三角形,熟练运用特殊三角形的性质是解题的关键.17. 6037602512n + 【分析】在图∠中先解直角三角形ABC 得到3tan 4A =,4tan 3B =,=5AB ,再分别解直角三角形ADG 和直角三角形BEF 得到43AD DG =,34BE EF =,再由5AB AD DE BE =++=进行求解即可;对于图∠同图∠求解即可.解:如图∠所示,∠在Rt∠ABC 中∠C =90°,AC =4,BC =3,∠3tan 4BC A AC ==,4tan 3AC B BC ==,225AB AC BC +=, ∠四边形DEFG 是Rt∠ABC 的内接正方形,∠DG =DE =EF ,∠GDE =∠DEF =90°,∠∠ADG =∠BEF =90°,在Rt∠ADG 中,4tan 3DG AD DG A ==, 在Rt∠BEF 中,3tan 4EF BE EF B ==, ∠43534AB AD DE BE DG DG DG =++=++=, ∠6037DG =; 如图∠所示, 同理可得43AD DG =,34BE EF =,DE nDG =, ∠43534AB AD DE BE DG nDG DG =++=++=, ∠602512DG n=+, 故答案为:6037;602512n+.【点拨】本题主要考查了解直角三角形,勾股定理,正方形的性质,正确求出43AD DG =,34BE EF =是解题的关键. 18.(2023223-【分析】如图,设直线32y x =+与x 轴交于点C ,求出点A 、C 的坐标,可得OA =2,OC =23∠ACO =30°,可得1190CB A ∠=︒,130CB A =∠︒,然后求出12124323CB B O ===13228323CB CB ===324216323CB CB ===…,进而可得2023202223CB =2022OB 即可.解:如图,设直线32y x =+与x 轴交于点C , 在32y =+中,当x =0时,y =2; 当y =0320+=,解得:23x =- ∠A (0,2),C (23-0),∠OA =2,OC =23∠tan∠ACO =323OA OC == ∠∠ACO =30°,∠11AB A △是等边三角形,∠111160AA B AB A ∠=∠=︒,∠1190CB A ∠=︒,∠130CB A =∠︒,∠AC =1AB ,∠AO ∠1CB ,∠123O O C B == ∠12124323CB B O === 同理可得:13228323CB CB ==324216323CB CB ===…,∠2023202223CB = ∠(2023202320222323223OB =-∠点2022A 的横坐标是(2023223- 故答案为:(2023223-【点拨】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO=30°是解题的关键.19.(1)12;(23;(3)2.【分析】(1) 先进行绝对值、三角函数、零指数幂计算,然后根据实数的运算法则求得计算结果;(2)先进行负整数指数幂、零指数幂、三角函数计算,然后根据实数的运算法则求得计算结果;(3)先进行三角函数、负整数指数幂、绝对值、零指数幂、二次根式计算,然后根据实数的运算法则求得计算结果;解:(1)原式=12212+=1112+-=12;(2)原式=0.125×(-8)33(3)原式=111222221-⎛⎫÷+-⎪+⎝⎭2222222+-=2.【点拨】本题考查实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.20.()1见分析;()213【分析】(1)分别以A、B两点为圆心,以大于12AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得BE=AE,然后求出△BCE 的周长=AC+BC,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出AC的长,即可得解.解:()1AB的垂直平分线DE如图所示;()2DE 垂直平分AB ,BE AE ∴=,BCE ∴△的周长BE EC BC AE EC BC AC BC =+-++=++.在Rt ABC 中,330BC AC tan =︒BCE ∴△的周长为13【点拨】本题考查了复杂作图,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.21.(1)5;(2)125【分析】(1)利用直角三角形中4sin 5B =求解,AB 再利用勾股定理求解,BD 从而可得答案; (2)先利用直角三角形斜边上的中线的性质证明,EDEA EC 可得,EDC ECD ∠=∠ 再求解12tan tan ,5ADEDC ECD CD 从而可得答案. 解:(1) AD 是边BC 上的高,12AD =,4sin 5B =, ∴ 90ADB ADC ∠=∠=︒,412sin ,5B AB== 2215,15129,AB BD14,BC 149 5.CD BC BD(2) E 为边AC 的中点,90ADC ∠=︒,ED EA EC,EDC ECD ∴∠=∠ 12tan tan .5ADEDC ECD CD 【点拨】本题考查的是锐角三角函数的应用,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,掌握“等角的三角函数值相等”是解题的关键.22.(1)b =5,k =6(2)不在,理由见详解【分析】(1)把点B 的坐标分别代入一次函数与反比例函数解析式进行求解即可;(2)由(1)及题意易得点C 的坐标,然后根据旋转的性质可知点C ′的坐标,则根据等积法可得点A ′的纵坐标,进而根据三角函数可得点A ′的横坐标,最后问题可求解.(1)解:由题意得:166b k +=⎧⎨=⎩, ∠b =5,k =6;(2)解:点A ′不在反比例函数图像上,理由如下:过点A ′作A ′E ∠x 轴于点E ,过点C 作CF ∠x 轴于点F ,如图,由(1)可知:一次函数解析式为5y x =+,反比例函数解析式为6y x =, ∠点()5,0A -,∠∠OAC 与∠OAB 的面积比为2:3,且它们都以OA 为底,∠∠OAC 与∠OAB 的面积比即为点C 纵坐标与点B 纵坐标之比,∠点C 的纵坐标为2643⨯=,∠点C 的横坐标为451x =-=-,∠点C 坐标为()1,4-,∠CF =4,OF =1, ∠221417OC +tan 4CF COF OF∠==, 由旋转的性质可得:17,OC OC A OC AOC '''==∠=∠,根据等积法可得:2017OA CF A E OC ⋅'=='∠517tan A E OE A OE '=='∠, ∠5172017A '⎝⎭, 5172017100617=≠, ∠点A ′不在反比例函数图像上.【点拨】本题主要考查反比例函数与一次函数的综合、三角函数及旋转的性质,熟练掌握反比例函数与一次函数的综合、三角函数及旋转的性质是解题的关键.23.(1)9m(2)24m【分析】(1)过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,可得()4cos 1512m 5CE CD α=⋅=⨯=,再利用勾股定理可求出DE ,即可得出答案. (2)过点D 作DF AB ⊥于F ,设m AF x =,在Rt ADF 中,330AF x tan DF DF ︒===,解得3DF x =,在Rt ABC 中,()9m AB x =+,()312m BC x =-,tan603312AB BC x ︒===-x 的值,即可得出答案. (1)解:过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,4cos 5α=,15m CD =, ()4cos 1512m 5CE CD α∴=⋅=⨯=. ()222215129m DE CD CE ∴=--=.答:C ,D 两点的高度差为9m .(2)过点D 作DF AB ⊥于F ,由题意可得BF DE =,DF BE =, 设m AF x =,在Rt ADF 中,3tan tan30AF x ADF DF DF ∠=︒=== 解得3DF x =, 在Rt ABC △中,()9m AB AF FB AF DE x =+=+=+,)312m BC BE CE DF CE x =-=-=-, tan603312AB BC x ︒===- 解得9632x =, ()963924m 2AB ∴=+≈. 答:居民楼的高度AB 约为24m .【点拨】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.24.(1)75;60(2)1003103⎫⎪⎭米(3)110米 【分析】(1)根据平角的定义求APD ∠,过点A 作AE DC ⊥于点E ,再利用三角形内角和求ADC ∠;(2)在Rt AED △中,30DAE ∠=︒求出DE 的长度再根据CD DE EC =+计算即可; (3)作PG BC ⊥于点G ,交AE 于点F ,证明APF DAE △≌△即可.解:(1)过点A 作AE DC ⊥于点E ,由题意得:60,45,30,MPA NPD DAE ∠=︒∠=︒∠=︒∠18075APD MPA NPD ∠=︒-∠-∠=︒9060ADC DAE ∠=︒-∠=︒(2)由题意得:100AE BC ==米,10EC AB ==.在Rt AED △中,30DAE ∠=︒, ∠)3100tan 3010033DE AE =⋅︒==米, ∠()1003103CD DE EC =+米 ∠楼CD 的高度为1003103⎫⎪⎭米. (3)作PG BC ⊥于点G ,交AE 于点F ,则()90,10PFA AED FG AB ∠=∠=︒==米∠MN AE ∥,∠60PAF MPA ∠=∠=︒.∠60ADE ∠=︒,∠PAF ADE ∠=∠.∠30DAE ∠=︒,∠30PAD ∠=︒.∠75APD ∠=︒,∠75ADP ∠=︒.∠ADP APD ∠=∠.∠AP AD =.∠APF DAE △≌△(AAS ).∠100PF AE ==.∠()10010110PG PF FG =+=+=米∠无人机距离地面BC 的高度为110米.【点拨】此题考查了解直角三角形的应用-——仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.。

《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练

《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练

专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学基础知识复习测试卷一
一、选择题:
1.下列关系式中,哪个等式表示y 是x 的反比例函数( ) A :x
y 2
2
=
B :x
y 2=
C :21+=
x
y D :x
y 1-=
2.若反比例函数)0(≠=k x
k y 经过(-2,3)
,则这个反比例函数一定经过( ) A :(-2,-3) B :(3,2) C :(3,-2) D :(-3,-2) 3.在同一平面直角坐标系中,正比例函数x m y )1(-=与反比例函数x
m y 4=的图像大致位置不可能
( )
4.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP =x ,AE =y ,则能反映y 与x 之间函数关系的大致图象是( )
5
2
52
5
2
5
2
5.已知三点
111()
P x y ,,
222()P x y ,,
3(12)
P -,都在反比例函数x
k y =
的图象上,若10x <,
20
x >,
则下列式子正确的是( )A .120
y y << B .
12
0y y <<
C .
120
y y >> D .
12
0y y >>
6.如图,直线mx y =与双曲线x
k y =交于点A B ,.过点A 作A M x ⊥轴,垂足为点M ,连结BM .若1
ABM S =△,则k 的值是( )
A .1
B .1m -
C .2
D .m
7.如图,是一次函数y=kx+b 与反比例函数x
y 2=
的图像,则关于x 的方
程kx+b=
x
2的解为( ) (A)xl=1,x2=2 (B)xl=-2,x2=-1
(C)xl=1,x2=-2 (D)xl=2,x2=-1
8. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数x
y 2=
与x
y 2-
=的
图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A 、2 B 、4 C 、8 D 、6
9.三角形两边的长分别是8和6,第三边的长是一元二次方程2
16600x x -+=的一个实数根,则这个三
角形的面积是( )
A :24
B :24或58
C :48
D :58 10.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax2+c 的图象大致为
二、填空题:(每题3分,共36分) 11.已知抛物线c bx a
y x
++=2
的对称轴为2=x ,且经过点(1,4)和点(5,0),则该抛物线的解析式为
___________________ ;
12.在△ABC 中,∠C=900,AC=3, AB=5,则cos B=____________。

13.已知Rt △ABC 中,∠C=90度,sinA=
5
3,则=B cos _______________ 。

14.若∠A 是锐角,cosA =
2
3,则∠A =____________ 。

15.计算2sin30°+3tan30° ·tan45°=___________。

16.函数m x y +-=与23
3+-=x y 的图象都过C 点,与x 轴分别交于A 、B 两点。

若梯形DCAE 的面积为
4,求k 的值.
17.(6分)已知一个二次函数的图象经过点
(0,0),(1,—3),(2,—8). 求这个二次函数的解析式; 写出它的对称轴和顶点坐标。

初中数学基础知识复习测试卷二
一、选择题
1.在同一直角坐标平面内,如果x k y 1=与x
k y 2=
没有交点,那么1k 和2k 的关系一定是:
A.1k <0,2k >0
B.1k >0,2k <0
C.1k 、2k 同号
D.1k 、2k 异号
2.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊
完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志。

从而估计该地区有黄羊: A .400只 B. 600只 C. 800只 D. 1000只
3.如图1,在R t △ACB 中,∠ C = 90°,则 sin A = ( ) A 、
AB
AC ,B 、
AC
BC ,C 、
AB
BC ,D 、
BC
AC .
4.在R t △ACB 中,∠ C = 90°,下列式子成立的是( )
A 、a = c sin B,
B 、a = b cos B ,
C 、c = a sin B ,
D 、a = b tan A . 5.在R t △ACB 中,若 tan A = 3,则锐角∠A = ( ) A 、30°,B 、45°,C 、60°,D 、不能确定. 6.2cos 45°的值等于( ) A 、1 ,B 、2 ,C 、3 ,D 、2 .
7.已知α为锐角且tan (90°-α)= 3,则α= ( ) A 、30°,B 、45°,C 、60°,D 、不能确定.
8.在R t △ACB 中,∠ C = 90°,若sin A = 3
2
,则tan B =( )
A 、
3
2,B 、
3
5,C 、
5
2,D 、
2
5 .
9.甲、乙两地相距60km ,则汽车由甲地行驶
到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )
A.sin
A =4
B.cos A =53
C.tan A =43
D.sin B 5
11.用配方法将二次函数y=
2
1
x ²-2x+1写成y=a(x-h)²+k 的形式是( )
A .y=21 (x-2)²-1
B .y=21 (x-1)²-1
C .y=
2
1 (x-2)²-3 D 、y=
2
1 (x-1)²-3
12.把抛物线y=-2x 2的图象向左平移4个单位,再向上平移3个单位,所得的图象的表达式( )
A .y=-2(x +4)2+3
B .y=-2(x -4)2-3
C .y=-2(x +4)2-3
D .y=-2(x -4)2+3
13. 已知二次函数c bx ax y ++=2的图象如图所示, 则下
列结论正确的是 ( )
A . 0,0>>c ab
B .0,0<>c ab
C .0,0><c ab
D .0,0<<c ab
二、填空题
14.反比例函数x
k y =
的图象经过点P (a ,b ),且a 为是一元二次方程042=++kx x 的两根,那么点P
的坐标是________ _ 15.在函数x
k y 2
2
--=
(k 为常数)的图象上有三个点(-2,1y ),(-1,2y ),(
2
1,3y ),函数值1y ,2y ,
3y 的大小关系为 ;
16. 已知点P (1,a )在反比例函数)0(≠=k x
k y 的图像上,其中322
++=m m a (m 为实数),则这
个函数的图像在第_______ 象限;
17.(1)计算:6 tan 230°-3 sin 60°-2 cos 45°=___________.
(2)计算: (- 2 )2 - 4 sin 60°+ 12=____________ .
18.已知二次函数y=x 2
+bx +c ,其图象的顶点为(5,-2则b= ,c= .
19.若抛物线y =2x 2-4x +1与x 轴两交点分别是(x 1,0),(x 2,0),则
x 12+x 22=______. 20. 如果y=(m-2)
x
m
m -2
是关于x 的二次函数,则m=( )
A .-1
B .2
C .1或2
D .m 不存在
21.直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶
点为( )
A.(0,0)
B.(1,-2)
C.(0,-1)
D.(-2,1)
22.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是
A .3<k
B .03≠<k k 且
C .3≤k
D .03≠≤k k 且
B C。

相关文档
最新文档