直线与圆的方程教学案

直线与圆的方程教学案
直线与圆的方程教学案

教学课题: 直线与圆的方程 课时规划:4

教学目标:掌握圆的方程,直线与圆的位置判断,会求弦长。

教学重点:圆的方程,直线与圆的关系

教学难点:直线与圆的综合应用

教学过程

一、 知识链接(包括学情诊断、知识引入和过渡)

1. 复习直线的方程:点斜式、截距式、两点式、斜截式.;

2. 两点之间的距离公式:21221221)()(||y y x x P P -+-=.

3. 点到线的距离公式:2200B A C

By Ax d +++=,平行线间的距离公式:2221B A C C d +-=.

4. 过两点1

212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 5. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.

圆的一般方程:022=++++F Ey Dx y x ;

当0422 F E D -+时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2

422F E D r -+=. 当0422=-+F E D 时,方程表示一个点??? ??--2,2

E D . 当0422

F E D -+时,方程无图形(称虚圆).

6. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.

①M 在圆C 内22020)()(r b y a x -+-?

②M 在圆C 上22020)()r b y a x =-+-?

( ③M 在圆C 外22020)()(r b y a x -+-?

7. 直线和圆的位置关系:

设圆圆C :)0()()(222 r r b y a x =-+-; 直线l :)0(022≠+=++B A C By Ax ;

圆心),(b a C 到直线l 的距离22B A C Bb Aa d +++=

.

① r d =时,l 与C 相切;

② r d 时,l 与C 相交;,有两个交点,

③r d 时,l 与C 相离.

8. 求弦长问题:运用勾股定理和点到直线间的距离解决。

9. 圆与圆的位置关系:设两圆的半径分别为R 和r ,圆心距为d ,则两圆的位置关系满足以下关系:

外离?d>R +r ; 外切?d =R +r ; 相交?R -r

内切?d =R -r ; 内含?d

例1 圆C 经过点A(2,-1),和直线x + y = 1相切,且圆心在直线y = -2x 上,求圆C 的方程;

例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程

例3 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程

例4 已知圆与y 轴相切,圆心在直线x-3y=0,且这个圆经过点A (6,1),求该圆的方程.

例5(10山东理) 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 。

三、 易错题点拨(找几个易错的例题讲解,包括疑难辨析,跟进练习) 1.如果实数x 、y 满足等式()2

223x y -+=,那么y x 的最大值是 2. 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .

3.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内一点则过点P 的最短弦所在直线方程是 ,过点P 的最长弦所在直线方程是

4.直线02024322=-+=++x y x y x 与的位置关系为(

A 、相切

B 、相交

C 、相离

D 、以上都可能

5、直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2

6.过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点为A ,B ,则直线AB 的方程

(A )032=-+y x (B )032=--y x

(C )034=--y x (D )034=-+y x

7、过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________ 四、拓展练习(题目题型训练)

1、圆心为C(3,-5),且与直线x -7y + 2 = 0相切的圆的方程为

2、已知圆的方程为x 2 + y 2 = 25,则过点(-3,4)的圆的切线方程为

3.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是

4.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程

5. 圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的方程是

6. 已知圆221:2280C x y x y +++-= 与22

2:210240C x y x y +-+-= 相交于,A B 两点,(1)求公共弦AB 所在的直线方程;

7. 已知圆心在直线2x+y=0上,且过点A (2,-1),与直线x -y -1=0相切,求圆的方程。

五、本堂小节

六、作业布置(根据本堂课所讲内容,进行巩固练习的套题)

1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为

2. 以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为:

3. 求与圆:C 0222=+-+y x y x 关于直线01:=+-y x l 对称的圆的方程。

4. 已知点M (-3,-3)的直线l 被圆0214:2

2=-++y y x l 所截得的弦长为54,求直线l 的方程。

5. 圆222430x y x y +++-=上到直线10x y ++=的点共有 个

6.设圆上的点(2,3)A 关于直线20x y +=的对称点仍在圆上,且与直线10x y -+=相交的弦长为圆的方程为 .

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分) 1. 已知直线经过点 A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点 ( 1,3) 且平行于直线 x 2 y 3 0 的直线方程为( ) A . x 2y 7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线 y ax 与 y x a 正确的是( ) y y y y O x O x O x O x A B C D 4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则 a=( ) A . 2 B . 2 C . 3 3 3 3 2 D . ( 2 5.过 (x , y )和 (x , y )两点的直线的方程是 ) 1 1 2 2 A. y y 1 x x 1 y 2 y 1 x 2 x 1 B. y y 1 x x 1 y 2 y 1 x 1 x 2 C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0 D.( x 2 x 1)( x x 1) ( y 2 y 1 )( y y 1 ) 0 6、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则( ) A 、 K ﹤ K ﹤ K L 3 1 2 3 L B 、 K ﹤ K ﹤ K 2 1 3 C 、 K 3﹤ K 2﹤ K 1 o x D 、 K 1﹤K 3﹤ K 2 L 1 7、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( ) A 、 3x+2y-5=0 B 、 2x-3y-5=0 C 、 3x+2y+5=0 D 、 3x-2y-5=0 8、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方 程知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:

①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可 3、距离公式: ①两点间距离:2 2122121)()(y y x x P P -+-= ②点到直线距离:2 2 00B A C By Ax d +++= ③平行直线间距离:2 2 21B A C C d +-= 4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2 ,2( 2 121y y x x ++ ②AB 三分点),(),,(2211t s t s :)3 2,32(2 1 21y y x x ++ 靠近A 的三分点坐标 )3 2,32(2 121 y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。 三分点坐标公式,用得较少,多见于大题难题。 5.直线的对称性问题

直线与圆的方程单元测试卷含答案

直线与圆的方程单元测试卷 一。选择题 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

高中数学必修二《直线与方程及圆与方程》测试题_及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A.32- B .32 C.2 3 -? D.23 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A. 23 B .32 C .32- ?D. 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K ) A 、K1﹤K 2﹤K 3 B 、K2﹤K 1﹤K 3 C、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ?( ) A. 2 2 B.2?C .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x+3y -13=0 B 4x-3y-19=0 C 3x -4y-16=0 D 3x+4y -8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; x

高中数学直线与圆的方程知识点总结49648

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

考点:直线与圆的方程综合测试(教师版)

直线与圆的方程 (时间:90分钟__分数:120分) 一、选择题(共10小题,每小题5分,共50分) 1.(2015·河南安阳期末,3)x cos α+y sin α+1=0,α∈? ? ???0,π2的倾斜角为( ) A .α B.π2+α C .π-α D.π 2-α 【答案】 B 设直线x cos α+y sin α+1=0的倾斜角为θ, 则斜率 k =tan θ=-cos αsin α=sin ? ??? ?π2+αcos ? ?? ?? π2+α=tan ? ???? π2+α. 又α∈? ? ???0,π2,所以θ=π2+α. 2.(2015·山西太原二模,3)“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】 A 由a =2得两直线斜率满足(-2)×2 4=-1,即两直线垂直;由两直线垂直得(-a )×a 4=-1,解得a =±2,故选A. 3.(2014·吉林长春调研,5)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.17 5 C .8 D .2 【答案】 D ∵直线3x +4y -3=0与直线6x +my +14=0平行, ∴63=m 4≠-14 3,∴m =8,即直线6x +my +14=0为3x +4y +7=0,∴两平行直线间的距离为|7+3| 32+42 =2.故选D. 4.(2015·福建泉州一模,5)已知圆C :x 2+y 2=25,直线l 在x 轴、y 轴上的截距分别为6和8,则圆上的点到直线l 的最大值为( ) A.245 B .5 C .10 D.495 【答案】 D 由题意知,直线l 的方程为4x +3y -24=0,则圆心到直线的距离为d = |0+0-24| 42+32

直线和圆的方程知识及典型例题

数学基础知识与典型例题 直线和圆的方程 直线和 圆的方 程知识 关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2)是 直线上两个已知点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐标 轴平行的直线不能用 此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

两直线的位置关系⑵两条相交直线 1 l与 2 l的夹角: 两条相交直线 1 l与 2 l的夹角,是指由 1 l与 2 l相交所成的四 个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围 是0, 2 π ?? ? ? ? ,当两直线的斜率k1,k2都存在且k1·k2≠-1时, 则有21 12 tan 1 k k k k θ - = + . 4.距离公式。 ⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l 的距离d=00 22 || Ax By C A B ++ + ; ⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离 d=12 22 || C C A B - + 。 5.当直线位置不确定时,直线对应的方程中含有参数. 含参数方程中有两种特殊情形,它们的对应的直线是有规律的, 即旋转直线系和平行直线系. ⑴在点斜式方程y-y0=k(x-x0)中, ①当(x0,y0)确定,k变化时,该方程表示过定点(x0,y0)的 旋转直线系, ②当k确定,(x0,y0)变化时,该方程表示平行直线系. ⑵已知直线l:A x+B y+C=0, 则①方程A x+B y+m=0(m为参数)表示与l平行的直线系; ②方程-B x+A y+n=0(n为参数)表示与l垂直的直线系。 ⑶已知直线l1:A1x+B1y+C1=0, 直线l2:A2x+B2y+C2=0, 则方程A1x+B1y+C1+λ(A2x+B2y+C2)=0 表示过l1与l2交点的直线系(不含l2) 掌握含参数方程的几何意义是某种直线系,有时可以优化解题思 路. 例10. 经过两直线 11x-3y-9=0与 12x+y-19=0的交点,且过 点(3,-2)的直线方程为 _______. 例11. 已知△ABC中,A(2, -1),B(4,3), C(3,-2),求: ⑴BC边上的高所在直线方 程;⑵AB边中垂线方程;⑶ ∠A平分线所在直线方程. 例12. 已知定点 P(6,4)与定直线l1:y=4x, 过P点的直线l与l1交于第一 象限Q点,与x轴正半轴交 于点M,求使△OQM面积最 小的直线l方程. 简单的线性规划线性规划 ⑴当点P(x0,y0)在直线A x+B y+C=0上时,其坐标满足方程A x0+B y0+C=0; ⑵当P不在直线A x+B y+C=0上时,A x0+B y0+C≠0,即A x0+B y0+C>0或A x0+B y0+C<0。这就是二元一次不等式的几何意义:二元一次不等式A x+B y+C>0(或<0)表示直线A x+B y+C=0上方或下方区域,其具体位置的确定常用原点(0,0)代入检验。 利用此几何意义,可以解决一类二元函数的最值问题。这就是线性规划的内容。

相关文档
最新文档