等腰三角形重难点教学设计

合集下载

青岛版数学八年级上册2.6《等腰三角形》教学设计3

青岛版数学八年级上册2.6《等腰三角形》教学设计3

青岛版数学八年级上册2.6《等腰三角形》教学设计3一. 教材分析《等腰三角形》是青岛版数学八年级上册第二章第六节的内容。

本节内容是在学生已经掌握了三角形的性质和分类的基础上,进一步研究等腰三角形的性质。

等腰三角形是初中数学中的一个重要概念,它不仅涉及到三角形的性质,还涉及到对称性等数学思想。

本节课的教学内容不仅要求学生掌握等腰三角形的性质,还要培养学生的观察能力、推理能力以及运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本节内容之前,已经掌握了三角形的性质和分类,他们对三角形有了一定的认识。

但是,对于等腰三角形的性质,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生通过观察、操作、推理等方法,自主探索等腰三角形的性质,从而加深他们对三角形性质的理解。

三. 教学目标1.知识与技能目标:让学生通过观察、操作、推理等方法,掌握等腰三角形的性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:通过自主探索、合作交流,培养学生的观察能力、推理能力以及运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生在探究等腰三角形性质的过程中,体验到数学的乐趣,增强对数学的兴趣。

四. 教学重难点1.重点:等腰三角形的性质。

2.难点:如何引导学生通过观察、操作、推理等方法,自主探索等腰三角形的性质。

五. 教学方法1.情境教学法:通过设置问题情境,引导学生自主探索等腰三角形的性质。

2.合作学习法:引导学生分组讨论,培养学生的合作意识。

3.引导发现法:教师引导学生发现问题,解决问题,培养学生的观察能力和推理能力。

六. 教学准备1.准备等腰三角形的模型或者图片,用于引导学生观察。

2.准备等腰三角形性质的习题,用于巩固知识。

七. 教学过程1.导入(5分钟)利用多媒体展示等腰三角形的图片,引导学生观察等腰三角形的特征。

提问:你们观察到了等腰三角形的哪些特征?2.呈现(10分钟)呈现等腰三角形的性质,引导学生通过操作、推理等方法,验证这些性质。

八年级数学上册《等腰三角形的性质》教案、教学设计

八年级数学上册《等腰三角形的性质》教案、教学设计
3.演示验证,巩固知识
-利用几何画板等教学工具,直观演示等腰三角形的性质,帮助学生加深理解。
-通过典型例题,引导学生运用等腰三角形的性质进行计算和证明,巩固所学知识。
4.实践应用,拓展提高
-设计具有挑战性的练习题,让学生在解决问题的过程中提高几何素养。
-鼓励学生将所学知识运用到实际生活中,如设计等腰三角形图案,培养他们的创新意识和实际操作能力。
4.结合教材,引导学生学习等腰三角形的相关定理和公式,如等腰三角形的面积公式、周长公式等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组讨论一个问题,如等腰三角形的性质、判定方法、应用等。
2.学生在小组内交流观点,共同解决问题,教师巡回指导,给予提重难点和教学设想
(一)教学重难点
1.理解并掌握等腰三角形的定义及其性质,特别是等腰三角形的底角相等、底边上的高、中线和顶角的平分线相互重合。
2.学会运用等腰三角形的性质解决相关问题,如周长、面积的计算,以及几何证明。
3.培养学生的空间想象能力和逻辑推理能力,提高他们在几何领域的解题技巧。
(二)教学设想
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和求知欲,让他们在探索中发现问题,解决问题,从而提高他们的数学素养。
二、学情分析
八年级的学生已经具备了一定的几何知识基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理和论证。在此基础上,学生对等腰三角形的性质进行学习,有利于他们巩固和拓展已有的几何知识体系。然而,学生在几何方面的空间想象能力和逻辑推理能力仍有待提高,对等腰三角形性质的理解和应用可能存在困难。针对这种情况,教师在教学过程中应注重启发引导,关注学生的认知发展,通过直观演示、动手操作等教学手段,帮助他们突破难点,提高几何素养。同时,教师要关注学生的情感态度,鼓励他们积极参与课堂讨论,培养他们的自信心和合作精神,使他们在轻松愉快的氛围中学习等腰三角形的性质。

八年级数学上册《等腰三角形的判定》教案、教学设计

八年级数学上册《等腰三角形的判定》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)

等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。

《等腰三角形》教学设计

《等腰三角形》教学设计

《等腰三角形》教学设计《《等腰三角形》教学设计》这是优秀的教学设计文章,盼望可以对您的学习工作中带来协助!等腰三角形的性质教学设计教学目的:通过教学使学生驾驭等腰三角形的性质及推论,并能运用这些性质解题.教学重点:(1)等腰三角形的性质及证明(2)证明题证法的分析.教学难点:(1)等腰三角形的三线合一定理的题设和结论的区分.(2)证明题中协助线的问题.教学方法:探究发觉法.教学过程:一、新课引入师:我们在小学就已经学过等腰三角形,等腰三角形是一种特别的三角形,它除了具有一般三角形的性质外,还有一些特别的性质。

在学习这些性质之前,请同学们回忆一下等腰三角形的概念,即什么叫等腰三角形呢?生:有两条边相等的三角形叫等腰三角形,其中相等的两边叫做腰,另一边叫做底边.师:在等腰三角形中,三个内角分别叫做什么呢?生:两腰的夹角叫做顶角,腰和底边的夹角叫做底角.师:答复得很好(重复顶角和底角的概念),两腰有什么关系?生:由等腰三角形的概念知道等腰三角形的两腰相等.师:那么两个底角有什么关系呢?这便是我们今日所要学习的内容.二、新课讲解:师:在小学里,我们曾把等腰三角形的两腰重叠在一起,发觉它的两个底角重合,(向学生演示将一个硬纸片做成的等腰三角形对折,使两腰重合),这说明等腰三角形的两底角有什么关系呢?生:两底角相等.师:对,这便是我们本节课学习一特性质定理。

(板书:等腰三角形的性质定理:等腰三角形的两个底角相等,简称为:等边对等角。

)我们不但要记住这个定理,还要看如何证明这个定理,同学们想一下怎样证明这个定理呢?生:通过证明两个三角形全等去证明.师:可是我们这里只有一个三角形.生:可以通过作协助线得到两个三角形.师:怎样作协助线呢?提问学生甲:作顶角的平分线AD.师生共同写出:确定三角形ABC中,AB=AC,求证:师:请甲同学表达证明过程。

老师依据学生甲的表达写出证明过程作的平分线AD,在三角形ABD和三角形ACD中.(全等三角形对应角相等)师:上面作顶角的平分线为构造两个全等三角形缔造了条件,想一想还有没有其它的作法?提问学生乙:作底边BC上的高.师:请乙同学表达证明过程。

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间的联系。

(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。

2、培养学生进行独立思考,提高了独立解决问题的能力。

(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。

二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。

2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。

三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。

四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。

新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。

(三)、证明结论,得出性质1、性质定理的证明。

(1)学生找出文字命题的题设、结论、画图,换成符号语言。

(2)引导学生寻找辅助线、如何添加辅助线。

(3)电脑显示证明过程。

(4)说明“等边对等角”的作用。

2、推论1的证明。

(1)进一步启发学生得到“等腰三角形三线合一”的性质。

(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。

二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。

2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。

三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。

并通过提问的方式,激发学生对等腰三角形的认知。

步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。

然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。

步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。

学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。

步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。

学生可以在小组内探讨解题思路,并进行展示和讨论。

教师可以通过个别辅导,帮助学生理解和掌握解题方法。

步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。

教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。

步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。

四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。

我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。

我们还学会了如何运用等腰三角形的性质解决问题。

五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。

六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。

华师大版数学八年级上册《等腰三角形的性质》教学设计3

华师大版数学八年级上册《等腰三角形的性质》教学设计3

华师大版数学八年级上册《等腰三角形的性质》教学设计3一. 教材分析《等腰三角形的性质》是华师大版数学八年级上册的一个重要内容。

在学习本节课之前,学生已经掌握了三角形的性质,包括三角形的内角和定理和全等三角形的性质。

本节课主要让学生学习等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。

这些性质对于学生理解三角形的结构特征和解决三角形相关问题具有重要意义。

二. 学情分析学生在学习本节课之前,已经具备了一定的几何知识基础,能够理解并运用三角形的性质。

但是,对于等腰三角形的性质,学生可能还比较陌生,需要通过实例和操作来加深理解。

此外,学生可能对于一些专业术语,如高线、中线、角平分线等,还不够熟悉,需要在教学中进行解释和强调。

三. 教学目标1.知识与技能目标:使学生理解和掌握等腰三角形的性质,包括等腰三角形的定义、底角相等、高线、中线和角平分线的性质。

2.过程与方法目标:通过观察、操作、猜想和证明等过程,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:等腰三角形的性质,包括底角相等、高线、中线和角平分线的性质。

2.难点:理解并证明等腰三角形的底角相等和高线、中线、角平分线的性质。

五. 教学方法1.引导发现法:通过提问和引导学生观察,发现等腰三角形的性质。

2.操作验证法:通过实际操作,验证等腰三角形的性质。

3.几何画板法:利用几何画板软件,展示等腰三角形的性质。

4.小组合作法:引导学生分组讨论,培养团队合作意识。

六. 教学准备1.教学课件:制作课件,展示等腰三角形的性质。

2.几何画板软件:准备几何画板软件,用于展示等腰三角形的性质。

3.教学素材:准备一些等腰三角形的实物模型,用于观察和操作。

七. 教学过程1.导入(5分钟)通过提问方式复习三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示等腰三角形的定义和性质,引导学生观察和思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形
本周重点、难点分析:
一、等腰三角形的分类讨论
等腰三角形是一种特殊而又重要的三角形。

它的边、角的特殊性在处理许多几何问题中起着关键作用,因为等腰三角形的特殊性。

我们在处理问题时很多时候需要分类讨论。

(1)由于题目条件的不确定性导致结果的不唯一
1.已知等腰三角形的一个角为75度,则其顶角为_____________。

分析:等腰三角形的一个角是750这个角可能是顶角,也可能是底角。

因此需要分类讨论
当等腰三角形的底角是750时,则顶角为300
当等腰三角形的顶角是750 时,也符合题意。

评点对于等腰三角形,若条件中没有确定顶角或底角时,应注意分情况讨论,再用三角形内角和定理求解。

2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_____________。

分析:等腰三角形的一边等于5,另一边等于6,没有指明哪个是腰长,哪个是底边的长,
因此要分类讨论
当5是等腰三角形的腰长时那么底边长就是6 则它的周长等于16
当6是等腰三角形的腰长时那么底边长就是5 则它的周长等于17
这个等腰三角形的周长等于16 或17.
评点对于底和腰不等的等腰三角形若条件中没有明确底和腰时应在符合三角形三边关系的前提下分类讨论
3.若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

分析:如图,由于中线分周长为两部分并没有指明哪一部分是9cm
哪一部分是12cm 因此应有两种情形
设这个等腰三角形的腰长为x cm底边长为y cm
当腰长是6cm时底边长是9cm
当腰长是8cm时底边长是5cm
评点求出来的长不一定能构成三角形三条边应满足三角形三边关系定理
(2)由于题目条件的画出图形的不确定性导致结果的不唯一
4.等腰三角形一腰上的高与另一腰所成的夹角为45o,求顶角?
分析:依题意可画出如图所示的两种情形. 显然,易求得左图中顶角为45o和右图中的顶角为135o
评点:三角形的高是由三角形的形状所决定。

对于等腰三角形:当顶角是锐角时,腰上的高在三角形内部。

当顶角是钝角时,腰上的高在三角形外部。

5.在△ABC 中,AB=AC,AB 的中垂线与AC所在直线相交所得的锐角为50O,则底角为___________。

分析:按照题意我们可以画出示意图。

可以求得底角是70度或者20度。

评点右图,最容易漏掉,求解时一定要认真分析题意,画出可能的所有图形,才能正确解题。

(二)等腰三角形是几何的一块基石,同学们掌握有关等腰三角形证明中添加辅助线的常用方法.是重要的也是必要的
1、作底边上的高(或底边中线或顶角平分线) .
等腰三角形的性质和判定定理就是通过作这样的辅助线得证的.
1.如图1,在△ABC中, AB = AC, BD⊥AC于D,求证: ∠BAC = 2∠DBC.
分析:要证∠BAC = 2∠DBC. 可把∠BAC的一半作出来,故可作∠BAC的平分线,或作底边BC的高,
中线都可. 给出其中一种证明过程.
证明:作AE ⊥BC,则∠2 +∠C = 90°,
∵AB = AC,
∴∠1 = ∠2 =.
∵BD ⊥AC,
∴∠DBC + ∠C = 90°.
∴∠DBC = ∠2,
∴∠BAC = 2∠DBC.
结论:等腰三角形一腰上的高与底边的夹角等于顶角的一半.记住这个结论,对于解答填空题、选择题或判断题非常有帮助.
2、作底边上的中线
2.如图2, △ABC是等腰直角三角形,AB = AC, D是斜边BC的中点, E、F分别是AB、AC边上的点,且DE⊥DF,若 B E = 12, CF= 5,求EF的长.
分析:B E = 12, CF = 5,想到AE、AF应该好求,它们刚好又与EF构成直角三角形于是由图的启发进一步探索AE与CF的关系连结AD,不难证得AE = CF.
证明:连结AD.
∵AB = AC, ∠A = 90°, D是斜边BC的中点.
∴∠1 = ∠C = 45°, AD = CD, AD ⊥CD
∴∠2 + ∠4 = 90°.
∵DE ⊥DF,
∴∠2 + ∠3 = 90°.
∴∠3 = ∠4.
∴△DEA ≌△DFC.
∴AE = CF = 5,
∴AF = B E = 12. ∠A = 90°
∴EF = 13.
3、平移一腰
3.如图3,在△ABC中, AB = AC,点F在AB上,点E在AC延长线上, B F = CE,连接EF交BC于D,求证:D为EF中点.
分析:要证D为EF中点,可证DF =DE,那么,考虑把DF、DE放在可能全等的两个三角形中,
故过F点作FG∥AC交BC于G,或过E作AB的平行线交BC的延长
线于一点都可.现给出其中一种证明.
证明:作FG ∥AC,则
∠1 = ∠2, ∠3 = ∠E, ∠4 = ∠5.
∵AB = AC, ∴∠B = ∠2.
∴∠B = ∠1, ∴B F = GF.
∵B F = CE, ∴GF = CE.
∴△GFD ≌△CED.
∴FD = ED,即D为EF中点.
4、一般三角形中有二倍角时,构造等腰三角形使二倍角是等腰三角形的外角或平分二倍角
4.如图4,已知在△ABC中, ∠B =2∠C, AD是∠A的平分线,求证:AB + BD =AC.
分析:有二倍角,可延长AB到E,使B E= BD,连结DE,只需证AE = AC即可.
证明:延长AB到E使 B E = BD. 连结
DE,则∠E = ∠3.
∴∠4 = 2∠E.
∵∠4 = 2∠C, ∴∠E = ∠C.
∵AD是∠A的平分线,
∴∠1 = ∠2,又AD = AD,
∴△AED ≌△ACD,
∴AE = AC.
∴AB + BD = AB +B E = AC.
5、将等腰三角形转化成等边三角形
5.如图5, △DBE是等边三角形,点A在B E
延长线上,点C在BD延长线上,且AD =AC,求证:DE +DC = AE.
分析:要证AE = DE +DC,由于DE =BD故要证AE = BC.题中现有条件无法证明这个结论,若延长BC至F,使CF = B E,连接AF,则出现△ACF ≌△ADB.
故AF = AB,又∠B = 60°,从而△AB F为等边三角形,
故AB = B F,又AB = AE + B E,
B F = B
C +CF, B E = CF,故AE = BC,命题得证.
证明:延长BC至F,使CF = B E.
连接AF.
∵AC = AD,
∴∠ACD = ∠ADC,
∴∠ADB = ∠ACF.
∵△BDE为等边三角形,
∴∠B = 60°, BD = B E = DE = CF.
又∵AD = AC,
∴△ABD≌△AFC, ∴AF = AB.
又∵∠B = 60°,
∴△AB F为等边三角形,
∴AB = B F.
由等量代替得:
AE = AB - B E = B F - CF
= BD +DC = DE +DC。

相关文档
最新文档