概率的基本性质
概率的基本性质

(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
概率的基本性质(经典)

规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
温故知新
当几个集合是有限集时,常用列举法列出集 合中的元素,求集合A∪B与A∩B中的元素个 数.A∩B中的元素个数即为集合A与B中____ 公共___元素的个数;而当A∩B=Ø时, A∪B中的元素个数即为两个集合中元素个数 __之和____;而当A∩B≠Ø时,A∪B中的元 素个数即为A、B中元素个数之和_____减去 __A∩B中的元素个数.本节要学习的互斥事 件和对立事件与集合之间的运算有着密切的 联系,学习中要仔细揣摩、认真体会
上 页
下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 • 某班有50名同学,其中男女各25名,今有这个班的一个学 生在街上碰到一个同班同学,则下列结论正确的是( ) 概 • A.碰到异性同学比碰到同性同学的概率大 率 上 • B.碰到同性同学比碰到异性同学的概率大 页 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化 下
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
被调查者不必告诉调查人员自己回答的是哪一个问题,只需要 回答“是”或“不是”,因为只有被调查者本人知道回答了 哪个问题,所以都会如实回答.如果被调查者中的600人 (学号从1到600)中有180人回答了“是”,由此可以估计 在这600人中闯过红灯的人数是( ) 上 页 A.30 B.60 C.120 D.150 下 [答案] B 页
概率的基本性质

概率的基本性质概率是用来描述随机事件发生的可能性的数学工具。
在统计学和数学中,概率具有一些基本的性质。
本文将介绍概率的基本性质,包括概率的定义、概率的性质以及概率的运算性质。
一、概率的定义:1. 随机事件:随机事件是对结果不确定的事件的称呼,例如掷硬币的结果可能是正面或反面,这就是一个随机事件。
2. 样本空间:所有可能结果的集合称为样本空间,用S表示。
例如,掷硬币的样本空间是{正面,反面}。
3. 事件:样本空间的子集称为事件,用A、B等表示。
例如,正面朝上是一个事件。
4. 概率:概率是随机事件发生的可能性的度量,用P(A)表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率的性质:1. 非负性:对于任何事件A,有0≤P(A)≤1。
2. 必然事件的概率:对于样本空间S,有P(S) = 1,即必然事件发生的概率为1。
3. 不可能事件的概率:对于空集∅,有P(∅) = 0,即不可能事件发生的概率为0。
4. 互斥事件的概率:如果两个事件A和B不可能同时发生,称它们为互斥事件,则有P(A∪B) = P(A) + P(B)。
5. 加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
这个公式表示事件A和B同时发生的概率等于各自发生的概率之和减去它们共同发生的概率。
6. 对立事件的概率:对于事件A的对立事件,记为A',有P(A') = 1 - P(A)。
这个公式表示事件A不发生的概率等于1减去事件A发生的概率。
三、概率的运算性质:1. 乘法规则:对于任意两个事件A和B,有P(A∩B) = P(B|A)P(A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率。
2. 全概率公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(A) = ΣP(A|Bi)P(Bi),其中Σ表示求和。
3. 贝叶斯公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(Bi|A) = P(A|Bi)P(Bi)/ΣP(A|Bj)P(Bj),其中P(Bi|A)表示在事件A发生的条件下事件Bi发生的概率。
概率的基本性质ppt课件

我们借助树状图来求相应事件的样本点数,
可以得到,样本空间包含的样本点个数为 n 6 5 30 , 解法二: 上述解法需要分若干种情况计算概率, 注意到事件A的对立事件是“不中奖”,即“两罐都不中奖”。
因为n A1 A2
4 3 12,P A1 A2
12 2 30 5
所以PA 1 P A1 A2
所以P(R1)=P(R2)=6/12, P(R1UR2)=10/12.因此 P(R1∪R2)≠P(R1)+P(R2). 这是因为R1∩R2={(1,2),(2,1)}≠Φ,即事件R1, R2不是互斥的, 容易得到P(R1∪R2)=P(R1)+P(R2)-P(R1∩R2).
性质6 设A,B是一个随机试验中的两个事件,我 们有P(AUB)=P(A)+P(B)-P(A∩B)
解析 设事件 A=“中奖”,事件 A1 =“第一罐中奖”,事件 A2 =“第二罐中奖”,
那么事件 A1A2 =“两罐都中奖”, A1 A2 =“第一罐中奖,第二罐不中奖”,
A1A2 =“第一罐不中奖,第二罐中奖”,且 A A1A2 A1 A2 A1A2 ,
因为 A1A2, A1 A2, A1A2 两两互斥,所以根据互斥事件的概率加法公式,
这种处理问题的方法称为逆向思维,有时能使问题的解决事半功倍.
练习1.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别
为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;(2)不够7环的概率.
[解析] (1)设“射中10环”为事件A,“射中7环”为事件B, 由于在一次射击中,A与B不可能同时发生,故A与B是互斥 事件.“射中10环或7环”的事件为A∪B. 故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49. ∴射中10环或7环的概率为0.49.
概率的基本性质

概率的基本性质事件的关系:1.包含:如果当事件A发生时,事件B一定发生,则B⊇A ( 或A⊆B );注:不可能事件记作Φ,任何事件都包含不可能事件.2.相等事件:若B⊇A,且A⊇B,则称事件A与事件B相等,记作A=B.3.和事件:当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作 C=A∪B(或A+B).4.积事件:当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB)5.互斥事件:两个事件的交事件为不可能事件,即A∩B=Ф,此时,称事件A与事件B 互斥,其含义为事件A与事件B在同一次试验中不会同时发生.6.对立事件:若A∩B=Ф,A B=必然事件,则事件A与事件B互为对立事件,即事件A与事件B在同一次试验中有且只有一个发生.7. 概率的加法公式:若事件A与事件B互斥,则(A∪B)=P(A)+ P(B)8. 对立事件公式:若事件A与事件B互为对立事件,则P(A)+P(B)=1.9. 相互独立事件:若P(AB)=P(A)P(B),则称事件A与事件B为相互独立事件,即事件A是否发生对事件B的概率没有影响。
例1 某射手进行射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例2 一个人打靶时连续射击两次,下列各事件是“至少有一次中靶”的互斥事件的是()A.至多有一次中靶 B.两次都中靶C. 只有一次中靶D. 两次都不中靶例3 某射手连续射击两次,试判断下列事件的关系?事件A:第一次命中环数大于7环;事件B:第二次命中环数为10环;事件C:第一次命中环数都小于6环;事件D:两次命中环数都小于6环.练习1.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有一名女生的概率为.A,两个口袋, A袋中装有4个白球, 2个黑球; B袋中装有3个白球, 4个黑球. 从2.有BA,两袋中各取2个球交换之后, 则A袋中装有4个白球的概率为.B3. 甲、乙二人独立地解决同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么其中至少一人解决这个问题的概率是( )A.P 1+P 2B.P 1·P 2C.1-P 1P 2D.1-(1-P 1)·(1-P 2)4. 一个电路上装有甲、乙两根熔丝,甲熔断的概率是0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少一根熔断的概率为 .5. 10颗骰子同时掷出,并掷5次,至少有一次全部出现一个点的概率为 .6. 有三个形状相同的小罐,在第一罐中有2个白球和1个黑球,在第二罐中有3个白球和1个黑球,在第三个罐中有2个白球和2个黑球,从中各摸一个球,3个球都不是白球的概率为____ _.7. 一个袋中有带标号的7个白球,3个黑球.事件A :从袋中摸出两个球,先摸的是黑球,后摸的是白球.那么事件A 发生的概率为_______8. 某市派出甲, 乙两只球队参加全省篮球冠军赛, 甲, 乙两队夺取冠军的概率分别是73和41, 则该市夺得全省篮球冠军的概率是_______8. 口袋中装有10个相同的球, 其中6个球标有数字0, 4个球标有数字1, 若从袋中摸出5个球, 那么摸出的5个球所标数字之和小于2或大于3的概率是_______9. 在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.(Ⅰ)求笼内至少剩下....5只果蝇的概率;(Ⅱ)求笼内至少剩下....3只果蝇的概率.10. 甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是_______11.12. 在放有5个红球, 4个黑球, 3个白球的袋中, 任意取出3个球, 分别求出3个球全是同色球的概率及三个颜色互不相同的概率.13. 在一个袋子中装有7个红球, 3个绿球, 从中无放回地任意抽取两次, 每次只取一个,试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色球的概率;(4)至少取得一个红球的概率.1/24 7/3011.甲,乙两人各射击一次,击中目标的概率分别是32,43假设两人每次射击是否 击中相互之间没有有影响,求:(1)求甲射击5次,有两次未击中的概率 (2)假设某人连续2次未击中目标,就停止射击,求乙恰好射击5次后,被终止射击的概率12.甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.概率练习二1. 在一次试验中,事件A 出现的概率为P,则在n 次独立重复试验中,A 出现k 次的概率为__ __.k n k k n p p C --)1(2. 某人对某目标进行射击,若每次击中的概率为P,那么他只在第n 次击中目标的概率为_ _.p p n 1)1(--3. 某人对某目标进行射击,若每次击中的概率为P,那么他在第n 次恰是第k 次击中目标的概率为_ _.k n k k n p p C ----)1(11 4. 某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 1,3 (写出所有正确结论的序号)5. 某气象站对天气预报的准确率为60%,那么连续5次预报中有4次准确的概率为0.25926. 某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为12581 7. 在一次考试中出了6道是非题,正确的记“√”号,不正确的记“×”号,若某生完全随机记上6个符号,则全部是正确的概率为 1/64 ;正确解答不少于4道的概率为 11/32 ;至少正确解答一半的概率为 21/32 .8. 甲乙两人进行乒乓球比赛,每局比赛甲获胜的概率为32,则在三局两胜的赛制下甲获胜的概率为 20/27 , 比赛进行了两场即结束的概率为 5/9 , 在五局三胜的赛制下甲获胜的概率为 64/81 , 比赛进行了四场结束的概率为 10/279. 下列各图中,每个开关闭合的概率都是0.75,且是相互独立的,分别求灯亮的概率 9/16 15/16 57/64 249/2562. 2.1条件概率学案一、教学目标:条件概率定义的理解。
简述概率的性质

简述概率的性质概率的性质:1. 非负性:任何概率值范围都是非负的,即概率的取值范围始终为[0,1]。
2. 统计独立性:独立事件的概率为这两个事件的概率的乘积,即事件A和事件B的概率为P(A)* P(B)。
3. 加法性:两个互斥事件的概率可以由其各自的概率之和得出,即事件A和事件B的概率为P(A)+ P(B)。
4. 条件概率:如果两个事件A和B是有关联的,则事件A发生时事件B发生的概率是由事件A、B(同时)发生的概率(全概率)与事件A发生的概率(假设概率)的比值而定的P(B|A)= P(A、B)/ P (A)。
5. 期望的边际概率:边际概率是指一个双变量函数的一个变量确定时,函数值在一定范围内期望值。
即在事件A发生时,概率无条件若求,可以把另一个变量也称为边际概率。
6. 条件概率的乘法定理:如果事件A和B相互独立,那么在事件A发生条件下事件B发生的概率即P(B|A)= P(A、B)= P(A)*P (B)。
7. 全概率:全概率定理指的是概率的性质下的一个重要定理,它规定:随机变量X的概率可以由其有关的随机事件的概率之积获得。
即P(X)= P(Ai)* P(X|Ai)。
8. 贝叶斯定理:贝叶斯定理是贝叶斯统计学的基础定理,它是物理学家帕斯卡尔·贝叶斯在九十世纪初提出的,它提出了条件概率的关系对事实事件A发生时,改变对事实事件B的结论概率所获得的新概率。
即P(A|B)=P(B|A)*P(A)/P(B)。
9. 后验概率:后验概率是指在已知某一经验之后,概率值随着新数据的不断增加而改变的新概率。
后验概率表示的是既定信息条件下事件发生的概率,即P(A/B)=P(B/A)*P(A)/P(B)。
概率的基本性质

请判断那种正确!
小结
概率的基本性质: 1)必然事件概率为1,不可能事件概率 为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:
P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为
必然事件,所以P(A∪B)= P(A)+ P(B)=1,
于是有P(A)=1—P(B);
3 .1 .3
概率的基本性质
复
习
1.请回忆集合之间的关系有哪 些?什么是子集,集合的相等? 2. 集合之间的运算有哪些?
探 究
在掷骰子的试验中,可以定义许多事件,例如 :
C1={出现1点}; C2 ={出现2点} ; C3={出现3点}
C 4 ={出现4点}; C5={出现5点}; C6={出现6点} D ={出现点数为奇数} ; E ={出现点数为偶数} 类比集合与集合的关系、运算,你能发现它们之 请说出事件C1与D的关系. 间的关系与运算吗? 事件C1发生,则事件D一定发生. 一个事件可能包含试验的多个结果.我们把每一 个结果可看作元素,而每一个事件可看作一个集合. 因此,事件之间的关系及运算几乎等价于集合之间 的关系与运算.
排队人数 概率 0 0.1 1 0.16 2 0.3 3 0.3 4 0.1 5人以上 ቤተ መጻሕፍቲ ባይዱ.04
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
例.•如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到
红心(事件A)的概率是1 ,取到方片(事件B)的概率是1 .问:
4
4
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
解:(1)因为C A B,且A与B不会同时发生,所以 A与
B是互斥事件。根据概率 的加法公式,得
1,1,1. 464
小结复习
1.事件的各种关系与运算,可以类比集合的关 系与运算,互斥事件与对立事件的概念的外延 具有包含关系,即{对立事件} {互斥事件}.
2.在一次试验中,两个互斥事件不能同时发 生,它包括一个事件发生而另一个事件不发 生,或者两个事件都不发生,两个对立事件 有且仅有一个发生.
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
3.事件(A+B)或(A∪B),表示事件A与 事件B至少有一个发生,事件(AB)或A∩B, 表示事件A与事件B同时发生.
4.概率加法公式是对互斥事件而言的,一般 地,P(A∪B)≤P(A)+P(B).
作业:
P124习题3.1 A组:5,6.
§3.1 随机事件的概率
学习目标
1.了解事件间的相互关系; 2.理解互斥事件、对立事件的概念; 3.会用概率加法公式求某些事件的概率。
重点与难点
重点:事件的关系、运算与概率的性质; 难点:事件关系的判定。
复习回顾
1. 两个集合之间存在着包含与相等的关系, 集合可以进行交、并、补运算,你还记得子 集、等集、交集、并集和补集的含义及其符 号表示吗?
(4)当事件A与事件B互斥时,A∪B发生的频 数等于A发生的频数与B发生的频数之和,从而 A∪B的频fn (率A B) fn ( A) fn (B) 由此得到概率的加法公式
如果事件A与事件B互斥,则 ••P (A B) P(A) P(B)
(5)特别的,若事件B与事件A互为对立事件, 则A∪B为必然事件,P(A∪B)=1.再由加法公式 得P(A)=1-P(B).
事件A与事件C互斥,事件B与事件C 互斥,事件C与事件D互斥且对立.
2.一个人打靶时连续射击两次事件“至
少有一次中靶”的互斥事件是(D )
A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶
3.把红、蓝、黑、白4张纸牌随机分给 甲、乙、丙、丁四人,每人分得一张,那 么事件“甲分得红牌”与事件“乙分得红
(1)显然,如果事件C1发生,则事件H一定发生,
这时我们说事件H包含事件C1,记作
H C1
一般的,对于事件A与事件B,如果事件A 发生,则事件B一定发生,这时称事件B包含 事件A(或称事件A包含于事件B),记作
B A(或A B)
B
A
不可能事件记作,任何事件都包含不可能事件。
知识探究(一):事件的关系与运算
P(C) P(A) P(B) 1 2
(2)C与D也是互斥事件,又由于 C D为必然事件,所以 C 与D互为对立事件。所以
P(D) 1 P(C)判断下列事件 哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.
(5)若A∩B为不可能事件(A∩B =Φ),那么 称事件A与事件B互斥,其含义是:事件A与事 件B在任何一次试验中不会同时发生。
例如,在掷骰子的试验中,事件C1与事件C2互 斥,事件G与事件H互斥。
知识探究(一):事件的关系与运算
在掷骰子试验中,我们用集合形式定义许 多事件,例如:
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
知识探究(二):概率的几个基本性质
(1)由于事件的频数总是小于或等于试验的次 数,所以频率在0~1之间,从而任何事件的概率 在0~1之间,即
0≤P(A)≤1
(2)在每次试验中,必然事件一定发生,因此 它的频率为1,从而必然事件的概率为1.
(3)在每次试验中,不可能事件一定不出现, 因此它的频率为0,从而不可能事件的概率为0.
在掷骰子试验中,我们用集合形式定义许 多事件,例如:
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
(4)若某事件发生当且仅当事件A发生且事件B 发生,则称此事件为事件A与事件B的交事件(或 积事件),记作A∩B(或AB)
A
A∩B
B
例如,在掷骰子的试验中,事件D2∩D3表示出 现的点数大于3且小于5这个事件;事件C4表示 出现4点,即D2∩D3=C4。
知识探究(一):事件的关系与运算
在掷骰子试验中,我们用集合形式定义许 多事件,例如:
(3)若某事件发生当且仅当事件A发生或 事件B发生,则称此事件为事件A与事件B的 并事件(或和事件),记作A∪B(或A+B)
例如,在掷骰子的试验中,事件C1∪C5表示出 现1点或5点这个事件,即C1∪C5={出现1点或5 点}。
知识探究(一):事件的关系与运算
在掷骰子试验中,我们用集合形式定义许 多事件,例如:
A B, A B, A B, A B,CU A
2. 我们可以把一次试验可能出现的结果看成 一个集合(如连续抛掷两枚硬币),那么必 然事件对应全集,随机事件对应子集,不可 能事件对应空集,从而可以类比集合的关系 与运算,分析事件之间的关系与运算,使我 们对概率有进一步的理解和认识.
知识探究(一):事件的关系与运算
(2)如果事件C1 发生,那么事件D1一定发 生,反过来也对,这时我们说这两个事件相 等,记作C1=D1
一般的,若B A,且A B,那么称事件A 与事件B相等,记作A B。
知识探究(一):事件的关系与运算
在掷骰子试验中,我们用集合形式定义许 多事件,例如:
C1 出现1点;C2 出现2点;C3 出现3点; C4 出现4点;C5 出现5点;C6 出现6点; D1 出现的点数不大于1;D2 出现的点数大于3; D3 出现的点数小于5; E 出现的点数小于7;F 出现的点数大于6; G 出现的点数为偶数;H 出现的点数为奇数
(6)若A∩B为不可能事件,A∪B为必然事件, 那么称事件A与事件B互为对立事件,其含义 是:事件A与事件B在任何一次试验中有且仅 有一个发生。
例如,在掷骰子的试验中,G∩H为不可能事件, G∪H为必然事件,所以事件G与事件H为对立事 件。
思考:
概率的取值范围是什么?必然事件、不 可能事件的概率分别是多少?
牌”是( B)
A.对立事件 B. 互斥但不对立事件 C.必然事件 D. 不可能事件
4. 袋中有12个小球,分别为红球、黑球、 黄球、绿球,从中任取一球,已知得到红球 的 概 率 是 1/3 , 得 到 黑 球 或 黄 球 的 概 率 是 5/12,得到黄球或绿球的概率也是5/12, 试求得到黑球、黄球、绿球的概率分别是多 少?