第十一章 多重线性回归分析

合集下载

第11章 多重线性回归分析2010

第11章 多重线性回归分析2010

22.5 21.5 28.5 26.0 35.0 20.0 23.0 24.8 23.3 27.0 26.0 28.0
2.00 2.40 3.00 1.00 2.80 1.45 1.50 1.50 0.90 0.65 1.83 2.00
资料来源:数据选自《卫生统计学》第 5 版(方积乾主编)人民卫生出版社
20.0 23.0 26.5 23.0 29.5 30.0 22.5 21.8 27.0 27.0 22.0 28.0
0.45 0.50 1.50 0.40 0.90 0.80 1.80 0.60 1.70 0.65 0.40 2.00
0.948 1.440 1.084 1.844 1.116 1.656 1.536 0.960 1.784 1.496 1.060 1.436
Xi Xi X Si
' i
标准化偏回归系数(standardized partial regression coefficient)
自变量筛选的统计学标准:
1. 残差平方和( SS残差 )缩小或确定系数(
R2 )
增大;
2 MS R 2. 残差的均方( 残差 )缩小或调整确定系数( ad)
增大;
偏回归系数的 t 检验与标准化偏回归系数 回归系数 0.116 0.004 -6.5510-6 -0.035 标准误 0.027 0.002 0.001 0.011
t
4.23 2.36 -0.01 -3.21
P
0.0005 0.0289 0.9925 0.005
标准化偏 回归系数 0.592 0.273 -0.001 -0.448
虑对数据进行变量变换 ;
3. 如果方差齐性的假定不成立,可以采用其它的

11-多重线性回归分析

11-多重线性回归分析

1个
1个
统计方法
简单线性相关
simple linear correlation
简单线性回归
simple linear regression
多重相关
multiple correlation
多重回归
multiple regression
典则相关
cononical correlation
多元回归
multivariate regression
量x 取值均为0时,y的平均估计值。
➢bi:变量xi的偏回归系数(partial regression coefficient),
是总体参数βi 的估计值;指在方程中其它自变量固定 不变的情况下, xi 每增加或减少一个计量单位,反应 变量Y 平均变化 bi个单位。
Yˆ b0 b1X1 b2 X 2 ... bp X p
问题:对NO浓度的贡献,哪个因素作用的大一点, 哪个小一些?
回归系数的标准化:
1.自变量数据的标准化: 2.求标准化偏回归系数:
X
' i
Xi Xi Si
用标准化的数据进行回归模型的拟合,算出它的方程,
此时所获得的偏回归系数b’,叫~。
b’无单位,可用来比较各个自变量对反应变量的贡献大小
比较:
未标准化的回归系数(偏回归系数):用来构建回归 方程,即方程中各自变量的斜率。
计值 Yˆ 之间的残差(样
本点到直线的垂直距离) 平方和达到最小。 .
两个自变量时回归平面示意图
通过SPSS等统计软件,拟合X1、X2 、X3 、X4关于空 气中NO浓度的多重线性回归方程,得:
Y 0.142 0.116X1 0.004X 2 6.55106 X3 0.035X 4

管理统计学习题参考答案第十一章

管理统计学习题参考答案第十一章

十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。

相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。

相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。

既可以从描述统计的角度,也可以从推断统计的角度来说明。

所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。

所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。

由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。

在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。

需要指出的是,相关分析和回归分析只是定量分析的手段。

通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。

因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。

第十一章多重多元回归分析

第十一章多重多元回归分析

X1 11.5 9 7.9 9.1 11.6 13 11.6 10.7 11.1
X2 95.3 97.7 110.7 89 88 87.7 79.7 119.3 87.7
Y1 26.4 30.8 39.7 35.4 29.3 24.6 25.6 29.9 32.2
Y2 39.2 46.8 39.1 35.3 37 44.8 43.7 38.8 35.6
第十一章 多重多元回归分析
第一节 什么是多重多元回归分析
– 在工厂里研究产品的质量指标,而反映产品质量指标 有好几个,产品的质量指标可作为多个因变量;而 影响产品质量指标的因素也有多个,可作为自变量, 如何从数量上揭示这种相互依赖关系,又如何建立 它们的回归式以及预测预报就是一个多重多元回归 分析问题。
回归方程的检验:
即检验
这里,P=2,m2=m=2,N=9
在 所以,回归方程是显著的。
回归系数的检验 (1)检验
即检验

有无作用,在
之下,
表明

作用显著
(2)再检验
即检验 对
有无作用,在
之下,
表明

作用不显著

在 其中:
之下的剩余阵为:

独立,所以,
例:下表为某农学院育种研究室2002年品种区试的部分资料,其中x1为冬季分 蘖(单位:万),x2为株高(单位:厘米),y1为每穗粒数,y2为千粒重(单 位:克),进行y1、y2关于x1、x2的归归分析。
品种 小偃6号 7576/3矮790 68G(2)8 79190-1 9615_1 9615-13 73(36) 丰产3号 矮丰3号
称为回归方程
将数据写成矩阵的形式:
将n组数据带入到回归模型中:

11多元(重)线性回归精品PPT课件

11多元(重)线性回归精品PPT课件

编号
收缩压 年龄
(ID)
Y
X1
17
145
49
18
142
46
19
135
57
20
142
56
21
150
56
22
144
58
23
137
53
24
132
50
25
149
54
26
132
48
27
120
43
28
126
43
29
161
63
30
170
63
31
152
62
32
164
65
吸烟
X2
1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0
多元(重)线性回归
例子
人的体重与身高、胸围 血压值与年龄、性别、劳动强度、饮食习惯、
吸烟状况、家族史 糖尿病人的血糖与胰岛素、糖化血红蛋白、
血清总胆固醇、甘油三脂 射频治疗仪定向治疗脑肿瘤过程中,脑皮质
的毁损半径与辐射的温度、与照射的时间
32例40岁以上男性的年龄、吸烟、 体 重指数与收缩压
0.7967
Adj R-Sq (校正决定系数) 0.7749
Dependent Mean 应变量Y 的均值=144.43750
剩余标准差( Root MSE )
S Y|12...p (YYˆ)2 /(np1)
SS残(np1) MS残 46.044886.78564
反映了回归方程的精度,其值越小说明回归效果越好
2. 逐步选择法
1. 前进法(forward selection) 2. 后退法(backward elimination) 3. 逐步回归法(stepwise regression)

多重线性回归分析方法

多重线性回归分析方法

多重线性回归分析方法多重线性回归分析是一种常用的统计方法,用于揭示自变量对因变量的影响。

它可以帮助我们理解多个自变量如何共同影响因变量,并通过建立一个数学模型来预测因变量的值。

本文将介绍多重线性回归分析的基本原理、步骤以及常见的模型评估方法。

一、基本原理多重线性回归分析是建立在线性回归模型的基础上的。

在简单线性回归模型中,只有一个自变量可以解释因变量的变化;而在多重线性回归模型中,有多个自变量同时对因变量产生影响。

其模型可表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1, X2, ..., Xn代表自变量,β0, β1, β2, ..., βn代表回归系数,ε代表误差项。

二、分析步骤进行多重线性回归分析时,通常可以遵循以下步骤:1. 收集数据:首先,需要收集相关的自变量和因变量的数据,并确保数据的准确性和完整性。

2. 建立模型:根据收集到的数据,可以利用统计软件或编程工具建立多重线性回归模型。

确保选择合适的自变量,并对数据进行预处理,如去除异常值、处理缺失值等。

3. 模型拟合:利用最小二乘法或其他拟合方法,对模型进行拟合,找到最优的回归系数。

4. 模型评估:通过各种统计指标来评估模型的拟合效果,比如决定系数(R^2)、调整决定系数、F统计量等。

这些指标可以帮助我们判断模型的可靠性和解释力。

5. 解释结果:根据回归系数的正负和大小,以及显著性水平,解释不同自变量对因变量的影响。

同时,可以进行预测分析,根据模型的结果预测未来的因变量值。

三、模型评估方法在多重线性回归分析中,有多种方法可评估模型的拟合效果。

以下是几种常见的模型评估方法:1. 决定系数(R^2):决定系数是用来衡量模型拟合数据的程度,取值范围为0到1。

其值越接近1,表示模型能够较好地解释数据的变异。

2. 调整决定系数:调整决定系数是在决定系数的基础上,考虑自变量的数量和样本量后进行修正。

管理统计学习题参考答案第十一章

管理统计学习题参考答案第十一章

一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。

相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。

相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。

既可以从描述统计的角度,也可以从推断统计的角度来说明。

所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。

所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。

只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。

由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。

在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。

需要指出的是,相关分析和回归分析只是定量分析的手段。

通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。

因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。

多重线性回归分析

多重线性回归分析
32
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.1 决定系数(R2)
即复(全)相关系数的平方,其值等于因变量
观测值与预测值之间简单相关系数的平方。计算 公式为:
R =
2
l回归 l yy
l误差 = 1 l总
33
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.1 决定系数(R2)
R2取值介于0到1之间,其含义为自变量能够
2 C
其中,n为样本含量,p为模型中自变量个数。 决定系数相同时,自变量个数越多, Rc2越小。
37
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.3 AIC信息准则
该准则由日本学者赤池于1973年提出,广泛
应用于时间序列分析中自回归阶数的确定,多重 回归、广义线性回归中自变量的筛选以及非线性 回归模型的比较和选优。该统计量取值越小,反
24
三、分析步骤
• 2.4.2 后退法(BACKWARD)
从模型中包含全部自变量开始,计算留在回
归方程中的各个自变量所产生的F统计量和P值,
当P值小于sls(规定的从方程中踢除变量的临界水
准)则将此变量保留在方程中。
否则,从最大的P值所对应的自变量开始逐 一踢除,直到回归方程中没有变量可以被踢除时 为止。
变量之间的线性依存关系,称为多重线性回归分
析(multiple linear regression analysis)。
自变量是相互独立的连续型变量或分类变量。
4
一、方法简介
• 1.3 数据结构
表1 进行多重线性回归分析资料的数据结构 编号 1 2 : X1 X11 X21 : X2 X12 X22 : … … … Xk X1k X2k : Y Y1 Y2 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、作业
教材P214 三。

二、自我练习
(一)教材P213 一。

(二)是非题
1.当一组资料的自变量为分类变量时,对这组资料不能做多重线性回归分析。

( )
2.若多重线性方程模型有意义.则各个偏回归系数也均有统计学意义。

〔)
3.回归模型变量的正确选择在根本上依赖于所研究问题本身的专业知识。

()
4.从各自变量偏回归系数的大小.可以反映出各自变量对应变量单位变化贡献的大小。

( )
5.在多元回归中,若对某个自变量的值都增加一个常数,则相应的偏回归系数不变。

( )
(三)选择题
1. 多重线性回归分析中,共线性是指(),导致的某一自变量对Y的作用可以由其他自变量的线性函数表示。

A. 自变量相互之间存在高度相关关系
B. 因变量与各个自变量的相关系数相同
C. 因变量与自变量间有较高的复相关关系
D. 因变量与各个自变量之间的回归系数相同
2. 多重线性回归和Logistic 回归都可应用于()。

A. 预测自变量
B. 预测因变量Y 取某个值的概率π
C. 预测风险函数h
D. 筛选影响因素(自变量)
3.在多重回归中,若对某个自变量的值都增加一个常数,则相应的偏回归系数:
A.不变
B.增加相同的常数
C.减少相同的常数
D.增加但数值不定
4.在多元回归中,若对某个自变量的值都乘以一个相同的常数k,则:
A.该偏回归系数不变
B.该偏回归系数变为原来的 1/k倍
C.所有偏回归系数均发生改变
D.该偏回归系数改变,但数值不定
5.作多重线性回归分析时,若降低进入的F 界值,则进入方程的变量一般会:
A.增多 B.减少 C.不变 D.可增多也可减少(四)筒答题
1.为什么要做多重线性回归分析?
2.多重线性模型中,标准化偏回归系数的解释意义是什么?
3.简述确定系数的定义及意义。

4.多重线性回归中自变量的筛选共有哪几种方法.请比较它们的优缺点?
5.何谓多重共线性,多重共线性对资料分析有何影响?。

相关文档
最新文档