步进电机说明书

合集下载

3MA22100 步进电机驱动器使用手册说明书

3MA22100 步进电机驱动器使用手册说明书

3MA22100(三相高压)细分步进驱动器使用手册Version1.0版权所有 不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】宁波纳川自动化科技有限公司3MA22100步进电机驱动器使用说明 在使用本品前,请仔细阅读本使用说明书请妥善保管本说明书,以备日后参考本册外观图片仅供参考,请以实物为准安全注意事项请勿带电插拔连接线缆。

此产品非密封,请勿在内部混入镙丝、金属屑等导电性异物或可燃性异物,储存和使用时请注意防潮防湿。

驱动器为功率设备,尽量保持工作环境的散热通风。

在连上步进电机,调节好电流后使其连续工作半小时后观察步进电机是否在额定温度后方可进行后续使用,如果电机温度过高请联系制造商。

一、产品简介1.1 产品概述3MA22100是纳川科技最新推出的一款采用精密电流控制技术设计的高细分步进电机驱动器,适合驱动110-130型各种品牌的三相混合式步进电机。

由于采用了先进的抗噪声控制方法,能大幅度降低电机运转时的噪声和振动,使得步进电机运转时的噪声和平稳性趋近于伺服电机的水平。

和市场上的大多数其他细分驱动产品相比,步进电机和驱动器的发热量降幅达15-30%。

1.2 产品特点⏹高性能、低价格、超低噪声⏹电机和驱动器发热极低⏹供电电压AC110-250V⏹输出电流峰值可达8.3A(均值5.86A)⏹输入电信号TTL兼容(5V兼容)⏹静止时电流自动减半⏹可驱动三相混合式步进电机⏹高速光耦隔离信号输入,脉冲响应频率最高可达100KHz⏹抗高频干扰能力强⏹输出电流设定方便⏹有过压、欠压、过流、过热、相间短路保护功能1.2 应用领域适合各种大型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。

在用户期望低成本、小噪声、高速度的设备中效果特佳。

二、电气、机械和环境指标2.1 电气指标说明 3MA22100最小值 典型值 最大值 单位 输出电流 3.3(均值2.34)- 10(均值7.11) A 输入电源电压 110 180 250(含纹波)VAC 逻辑输入电流 7 10 16 mA 步进脉冲频率 0 - 40 KHZ 绝缘电阻500MΩ2.2 使用环境及参数冷却方式自然冷却使用环境场合 尽量避免粉尘、油雾及腐蚀性气体环境温度0℃-+50℃ 最高工作温度70℃湿度 40-90% RH9 (不能结露和有水珠)震动 5.9m/S2 Max 保存温度 -20℃-125℃ 重量约1500克2.3 机械安装图 单位:毫米2.4 加强散热方式(1)驱动器的可靠工作温度通常在65℃以内,电机的工作温度在80℃以内;(2)安装驱动器时请采用竖着侧面安装,形成较强的空气对流,必要时机内靠近驱动器出安装风扇,强制散热,保证驱动器在可靠的工作温度范围内工作。

28BYJ48电机详细使用说明

28BYJ48电机详细使用说明

24BYJ48 步进电机使用手册驱动方法及参数插入到开发板的方法:直接插入到LCD12864 位置一、前言:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

为此,黑金刚开发板套件中首次引入了步进电机技术,采用扩展的方式,方便用户应用掌握。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

步进电机的主要特性:1、步进电机必须加驱动才可以运转,驱动信号必须为脉冲信号,没有脉冲的时候,步进电机静止,如果加入适当的脉冲信号,就会以一定的角度(称为步角)转动。

转动的速度和脉冲的频率成正比。

2、黑金刚配套的是28BYJ48 5V 驱动的4 相5 线的步进电机,而且是减速步进电机,减速比为1:64,步进角为5.625/64度。

如果需要转动 1 圈,那么需要360/5.625*64=4096个脉冲信号。

3、步进电机具有瞬间启动和急速停止的优越特性。

4、改变脉冲的顺序,可以方便的改变转动的方向。

因此,目前打印机,绘图仪,机器人,等等设备都以步进电机为动力核心。

二、配套的原理图及程序:1、如果不考虑数据锁存功能,步进电机的扩展板电路可以简化为下图:2、黑金刚套件采用的是5V 步进电机,该步进电机的耗电流为200m a左右,采用uln2003 驱动,驱动端口为P0.0(A),P0.1(B),P0.2(C),P0.3(C)。

正转次序: AB 组--BC 组--CD 组--DA 组(即一个脉冲,正转5.625度);反转次序:AB组--AD组--CD组--CB组(即一个脉冲,正转5.625 度),如下表:表1:正转表表2:反转表3ASM 驱动程序:;*** ****步进电机的驱动********;F O S C = 12M H z;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!!转动的速度和脉冲的频率成正比!!!; 本步进电机步进角为5.625 度. 一圈360 度, 需要64 个脉冲完成!!!;---------------------------------------------------------------------------------; A 组线圈对应P0.0; B 组线圈对应P0.1; C 组线圈对应P0.2; D 组线圈对应P0.3; 正转次序:AB 组--BC组--CD组--DA组(即一个脉冲,正转5.625 度);----------------------------------------------------------------------------------ORG 0000HL J M P M A I NORG 0100HM A I N:;----------------------------正转--------------------------M OV R3,#192 ;正转3 圈共192 个脉冲S T A R T:M OV R0,#00HS T A R T1:M OV P0,#00HM OV A,R0M OV D P T R,#T A B LEM OV C A,@A+D P TRJ Z START ;对A 的判断,当A=0 时则转到S T A RTM OV P0,AL C A LL D EL AYI N C R0D J N Z R3,S T A R T1M OV P0,#00HLCALL D EL AY1;-----------------------------反转------------------------M OV R3,#128 ;反转2 圈共128 个脉冲S T A R T2:M OV P0,#00HM OV R0,#05S T A R T3:M OV A,R0M OV D P T R,#T A B LEM OV C A,@A+D P TRJ Z S T A R T2M OV P0,ACALL D EL AYI N C R0D J N Z R3,S T A R T3M OV P0,#00HLCALL D EL AY1L J M P M A I N;---------------------------转速控制-----------------------D EL AY:M OV R7,#10 ;步进电机的转速M3:M OV R6,#248D J N ZR6,$D J N Z R7,M3RET;---------------------------延时控制----------------------D EL AY1:M OV R4,#5 ;2S延时子程序D EL2:M OV R3,#200D EL3:M OV R2,#250D J N ZR2,$ D JN Z R3,D E L3D J N Z R4,DE L2RET;---------------------------正反转表----------------------T A B L E:DB 03H,06H,0C H,09H;正转表DB 00;正转结束DB 03H,09H,0C H,06H;反转表DB 00;反转结束E ND4、C语言驱动程序:/******************************步进电机的驱动************************************* ;F O S C = 12M H z;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!!转动的速度和脉冲的频率成正比!!!; 本步进电机步进角为5.625 度. 一圈360 度, 需要64 个脉冲完成!!!;---------------------------------------------------------------------------------; A 组线圈对应P0.0; B 组线圈对应P0.1; C 组线圈对应P0.2; D 组线圈对应P0.3; 正转次序:AB 组--BC组--CD组--DA组(即一个脉冲,正转5.625 度);----------------------------------------------------------------------------------**********************************************************************************/ /*头文件*/#i n c l ud e<r e g52.h>#i n c l ud e<i n t r i n s.h>#d e f i n e u i n t un s i gn e d i n t#d e f i n e u c h a r un s i gn e d c h a r#d e f i n e nop() _nop_()u c h a r code t a b l e1[]={0x03,0x06,0x0c,0x09};/*正转表*/u c h a r code t a b l e2[]={0x03,0x09,0x0c,0x06};/*反转表*/#d e f i n e m o t o r P0vo i d d e l a y(u c h a r m s)/*延时*/{u c h a r j;w h il e(m s--){f o r(j=0;j<250;j++){;}}}vo i d m a i n(){u c h a r i,j;w h il e(1){//正转3 圈共192 个脉冲j=0;f o r(i=0;i<192;i++){m o t o r = 0x00;m o t o r = t a b l e1[j];j++;i f(j>=4)j=0;d e l a y(2);}d e l a y(200);d e l a y(200);d e l a y(200);d e l a y(200);d e l a y(200);//正转2 圈共128 个脉冲j=0;f o r(i=0;i<128;i++){m o t o r = 0x00;m o t o r = t a b l e2[j];j++;i f(j>=4)j=0;d e l a y(2);}d e l a y(200);d e l a y(200);d e l a y(200);d e l a y(200);d e l a y(200);}}。

步进电机说明书

步进电机说明书

17HS001
17HS101
- +55 !" !" 500V DC 100M 0.1 0.3mm 0.02mm Max 85 Max B
17HS111
! "10-85% ! !"#$"% Min ! "
!" -25
!" !" !" !"
!"#
电机型号 17HS001 原型号42BYGH001 17HS101 原型号42BYGH101 17HS111
Start MicroStep Co., Ltd.
!"#$%&'()*+
5
! " # $ SERIES STEP MOTORS
110BYG250A
!" -25
110BYG250B
110BYG250C
! "
!" !" !" !"
- +55 !" !" 500V DC 100M 0.1 0.3mm 0.02mm Max 85 Max B
!"#$ /
相数 步距角 相电流 驱动电压 最大静转矩 相电阻 0.15Nm 2 1.8° 1.7A DC24V 0.35Nm 0.45Nm
!" !"
相电感
转动惯量
重量
空载启动 转速 390转/分
配套驱动器
1.4Ω 2.3Ω 3.3Ω
SH-2H042Ma SH-2H042Mb 2.88mH 0.032kg·cm 0.24kg 396转/分 MS-2H057M
Start MicroStep Co., Ltd.

PD-1140 Pan drive 步进电机驱动器说明书

PD-1140 Pan drive 步进电机驱动器说明书

MECHATRONIC DRIVE WITH STEPPER MOTORTRINAMIC Motion Control GmbH & Co. KGHamburg, GermanyHardware Version V1.2HARDWARE MANUAL+ +PD-1140+ +U NIQUE F EATURES :Table of Contents2Features (3)3Order Codes (5)4Mechanical and Electrical Interfacing (6)4.1Dimensions (6)4.2Stepper Motor Specifications (7)4.3Connectors of PD-1140 (8)4.3.1Power and Communication Connector (9)4.3.1.1Power Supply (9)4.3.1.2RS485 (10)4.3.1.3CAN (11)4.3.2Multipurpose I/O Connector (12)4.3.2.1Digital Inputs IN_1, IN_2, IN_3 (13)4.3.2.2Analog Input IN_0 (14)4.3.2.3Outputs OUT_0, OUT_1 (14)4.3.3Motor Connector (15)4.3.4Mini-USB Connector (16)5Reset to Factory Defaults (17)6On-Board LEDs (18)7Operational Ratings (19)8Torque Curves (20)8.1.1PD42-1-1140 Torque Curve (20)8.1.2PD42-2-1140 Torque Curve (20)8.1.3PD42-3-1140 Torque Curve (21)8.1.4PD42-4-1140 Torque Curve (21)9Functional Description (22)10PD-1140 Operational Description (23)10.1Calculation: Velocity and Acceleration vs. Microstep and Fullstep Frequency (23)11Life Support Policy (25)12Revision History (26)12.1Document Revision (26)12.2Hardware Revision (26)13References (26)2FeaturesThe PANdrive™PD-1140 is a full mechatronic solution with state of the art feature set. It is highly integrated and offers a convenient handling. The PD-1140 includes a stepper motor, controller/driver electronics, and TRINAMICs sensOstep™ encoder. It can be used in many decentralized applications and has been designed for 0.20… 0.70Nm max. holding torque and 24V DC nominal supply voltage. With its high energy efficiency from TRINAMICs coolStep technology cost for power consumption is kept down. The TMCL™ firmware allows for standalone operation and direct mode.M AIN C HARACTERISTICSMotion controller-Motion profile calculation in real-time-On the fly alteration of motor parameters (e.g. position, velocity, acceleration)-High performance microcontroller for overall system control and serial communication protocol handlingBipolar stepper motor driver-Up to 256 microsteps per full step-High-efficient operation, low power dissipation-Dynamic current control-Integrated protection-stallGuard2 feature for stall detection-coolStep feature for reduced power consumption and heat dissipationEncoder-sensOstep magnetic encoder (1024 increments per rotation) e.g. for step-loss detection under all operating conditions and positioning supervisionInterfaces-RS485 2-wire communication interface-CAN 2.0B communication interface-USB full speed (12Mbit/s) device interface- 4 multipurpose inputs:-3x general-purpose digital inputs(Alternate functions: STOP_L / STOP_R / HOME switch inputs or A/B/N encoder input) -1x dedicated analog input- 2 general purpose outputs-1x open-drain 1A max.-1x +5V supply output (can be switched on/off in software)Software-TMCL: standalone operation or remote controlled operation,program memory (non volatile) for up to 2048 TMCL commands, andPC-based application development software TMCL-IDE available for free.Electrical and mechanical data-Supply voltage: +24V DC nominal (9… 28V DC)-Motor current: up to 2A RMS / 2.8A peak (programmable)-0.22… 0.70Nm max. holding torque (depends on motor)Refer to separate TMCL Firmware Manual, too.TRINAMIC S U NIQUE F EATURES – E ASY TO U SE WITH TMCLstallGuard2™ stallGuard2 is a high-precision sensorless load measurement using the back EMF on thecoils. It can be used for stall detection as well as other uses at loads below those which stall the motor. The stallGuard2 measurement value changes linearly over a wide range of load, velocity, and current settings. At maximum motor load, the value goes to zero or near to zero. This is the most energy-efficient point of operation for the motor.Load [Nm]stallGuard2Initial stallGuard2 (SG) value: 100%Max. loadstallGuard2 (SG) value: 0Maximum load reached. Motor close to stall. Motor stallsFigure 2.1 stallGuard2 load measurement SG as a function of loadcoolStep ™coolStep is a load-adaptive automatic current scaling based on the load measurement via stallGuard2 adapting the required current to the load. Energy consumption can be reduced by as much as 75%. coolStep allows substantial energy savings, especially for motors which see varying loads or operate at a high duty cycle. Because a stepper motor application needs to work with a torque reserve of 30% to 50%, even a constant-load application allows significant energy savings because coolStep automatically enables torque reserve when required. Reducing power consumption keeps the system cooler, increases motor life, and allows reducing cost.00,10,20,30,40,50,60,70,80,9050100150200250300350EfficiencyVelocity [RPM]Efficiency with coolStepEfficiency with 50% torque reserveFigure 2.2 Energy efficiency example with coolStep3Order CodesThe PD-1140 is currently available with four NEMA 17 stepper motors.The length of the PANdrives is specified without the length of the axis. For the overall length of the product please add 24mm.Table 3.1 PD-1140 order codesThe following options are available:Table 3.2 PD-1140 firmware optionsA cable loom set is available for this module:Table 3.2 Cable loom order codes4Mechanical and Electrical Interfacing4.1DimensionsThe PD-1140 includes the TMCM-1140 stepper motor controller/driver module, the magnetic encoder based on sensOstep technology and a NEMA17 bipolar stepper motor. Currently, there is a choice between four NEMA 17/42mm bipolar stepper motors with different lengths and different holding torques.Figure 4.1 PD-1140 dimensions4.2Stepper Motor SpecificationsM AIN CHARACTERISTICS OF FOUR DIFFERENT MOTORS AVAILABLE AS PART OF THE PD-1140Table 4.1: NEMA 17 / 42mm stepper motor technical data4.3 Connectors of PD-1140The controller/driver board of the PD-1140 offers four connectors including the motor connector which is used for attaching the motor coils to the electronics. The power and communication connector is used for power supply, CAN interface, and RS485 interface. The 8pin multipurpose I/O connector offers four multipurpose inputs and two general purpose outputs. Further, there is a connector for the USB interface.USBMotor14Multi-purposeI/O18Power and Communication16Figure 4.2 Overview connectorsFigure 4.3 Connectors and mating connectors, contacts and applicable wire4.3.1 Power and Communication ConnectorA 6pin JST PH-series 2mm pitch single row connector is used for power supply, RS485 and CAN serial communication. Please note the additional power supply information in chapter 4.3.1.1.61Table 4.1 Connector for power supply and interfaces4.3.1.1 Power SupplyFor proper operation care has to be taken with regard to power supply concept and design. Due to space restrictions the TMCM-1140 includes about 40µF/35V of supply filter capacitors. These are ceramic capacitors which have been selected for high reliability and long life time. The module includes a 28V suppressor diode for over-voltage protection. There is no reverse polarity protection. The module will short any reversed supply voltage due to the suppressor diode (uni-directional version) and the internal diodes of the driver transistors.It is important that the power supply voltage is kept below the upper limit of 28V (please see also chapter 6, operating values). Otherwise the driver electronics might be seriously damaged! Especially, when the selected operating voltage is near the upper limit a regulated power supply is highly recommended. In addition to power stabilization (buffer) and filtering this added capacitor will also reduce any voltage spikes which might otherwise occur from a combination of high inductance power supply wires and the ceramic capacitors. In addition it will limit slew-rate of power supply voltage at the module. The low ESR of ceramic-only filter capacitors may cause stability problems with some switching power supplies.4.3.1.2RS485For remote control and communication with a host system the TMCM-1140 provides a two wire RS485 bus interface. For proper operation the following items should be taken into account when setting up an RS485 network:1.BUS STRUCTURE:The network topology should follow a bus structure as closely as possible. That is, the connection between each node and the bus itself should be as short as possible. Basically, it should be short compared to the length of the bus.termination resistor (120 Ohm)termination resistor (120 Ohm)Figure 4.4 Bus structure2.BUS TERMINATION:Especially for longer busses and/or multiple nodes connected to the bus and/or high communication speeds, the bus should be properly terminated at both ends. The TMCM-1140 does not integrate any termination resistor. Therefore, 120 Ohm termination resistors at both ends of the bus have to be added externally.3.NUMBER OF NODES:The RS485 electrical interface standard (EIA-485) allows up to 32 nodes to be connected to a single bus. The bus transceiver used on the PD-1140 units (SN65HVD3082ED) has just 1/8th of the standard bus load and allows a maximum of 256 units to be connected to a single RS485 bus. 4.NO FLOATING BUS LINES:Avoid floating bus lines while neither the host/master nor one of the slaves along the bus line is transmitting data (all bus nodes switched to receive mode). Floating bus lines may lead to communication errors. In order to ensure valid signals on the bus it is recommended to use a resistor network connecting both bus lines to well defined logic levels. In contrast to the termination resistors this network is normally required just once per bus. Certain RS485 interface converters available for PCs already include these additional resistors (e.g. USB-2-485).terminationresistor(120 Ohm)RS485- / RS485BRS485+ / RS485AFigure 4.5 Bus lines with resistor network4.3.1.3CANFor remote control and communication with a host system the TMCM-1140 provides a CAN bus interface. Please note that the CAN interface is not available in case USB is connected. For proper operation the following items should be taken into account when setting up a CAN network:1.BUS STRUCTURE:The network topology should follow a bus structure as closely as possible. That is, the connection between each node and the bus itself should be as short as possible. Basically, it should be short compared to the length of the bus.termination resistor (120 Ohm)terminationresistor(120 Ohm) Figure 4.6: CAN bus structure2.BUS TERMINATION:Especially for longer busses and/or multiple nodes connected to the bus and/or high communication speeds, the bus should be properly terminated at both ends. The TMCM-1140 does not integrate any termination resistor. Therefore, 120 Ohm termination resistors at both ends of the bus have to be added externally.3.NUMBER OF NODES:The bus transceiver used on the TMCM-1140 units (TJA1050T) supports at least 110 nodes under optimum conditions. Practically achievable number of nodes per CAN bus highly depends on bus length (longer bus -> less nodes) and communication speed (higher speed -> less nodes).4.3.2Multipurpose I/O ConnectorAn 8pin JST PH-series 2mm pitch single row connector is available for all multipurpose inputs and outputs.18Table 4.4 Multipurpose I/O connector4.3.2.1 Digital Inputs IN_1, IN_2, IN_3The eight pin connector of the TMCM-1140 provides three multipurpose digital inputs IN_1, IN_2 and IN_3.All three inputs accept up-to +24V input signals. They are protected against these higher voltages using voltage resistor dividers together with limiting diodes against voltages below 0V (GND) and above +3.3V DC (see figure below).IN_1IN_2IN_3microcontroller (all)and TMC429 (IN_0, IN_1)common switch for allFigure 4.7 General purpose inputs (simplified input circuit)The three digital inputs have alternate functionality depending on configuration in software. The following functions are available:Table 4.7 Multipurpose inputs / alternate functions4.3.2.2 Analog Input IN_0The eight pin connector of the TMCM-1140 provides one dedicated analog input IN_0.This dedicated analog input offers a full scale input range of 0… +10 V with a resolution of the internal analog-to-digital converter of the microcontroller of 12bit (0… 4095).The input is protected against higher voltages up-to +24 V using voltage resistor dividers together with limiting diodes against voltages below 0 V (GND) and above +3.3 V DC (see figure below).IN_0ADC input (microcontroller)Figure 4.8 General purpose inputs (simplified input circuit)4.3.2.3 Outputs OUT_0, OUT_1The eight pin connector of the TMCM-1140 offers two general purpose outputs OUT_0 and OUT_1. OUT_0 is an open-drain output capable of switching up to 1A. The output of the N-channel MOSFET transistors is connected to a freewheeling diode for protection against voltage spikes especially from inductive loads (relais etc.) above supply voltage (see figure below).microcontrollerFigure 4.9 General purpose output OUT_0In contrast OUT_1 is able to supply +5V (100mA max.) to an external load. An integrated P-channel MOSFET allows to switch on / off this +5V supply in software (see figure below). This output might be used in order to supply +5V to an external encoder circuit.microcontrollerOUT_0Figure 4.10 General purpose output OUT_14.3.3Motor ConnectorAs motor connector a 4pin JST PH-series 2mm pitch single row connector is available. The motor connector is used for connecting the four motor wires of the two motor coils of the bipolar stepper motor to the electronics.41Table 4.5 Motor connector4.3.4 Mini-USB ConnectorA 5pin mini-USB connector is available on-board for serial communication (as alternative to the CAN and RS485 interface). This module supports USB 2.0 Full-Speed (12Mbit/s) connections.15Table 4.6 Connector for USBFor remote control and communication with a host system the TMCM-1140 provides a USB 2.0 full-speed(12Mbit/s) interface (mini-USB connector). As soon as a USB-Host is connected the module will accept commands via USB.USB B US P OWERED O PERATION M ODEThe TMCM-1140 supports both, USB self powered operation (when an external power is supplied via the power supply connector) and USB bus powered operation, (no external power supply via power supply connector).On-board digital core logic will be powered via USB in case no other supply is connected (USB bus powered operation). The digital core logic comprehends the microcontroller itself and also the EEPROM. The USB bus powered operation mode has been implemented to enable configuration, parameter settings, read-outs, firmware updates, etc. by just connecting an USB cable between module and host PC. No additional cabling or external devices (e.g. power supply) are required.Please note that the module might draw current from the USB +5V bus supply even in USB self powered operation depending on the voltage level of this supply.5Reset to Factory DefaultsIt is possible to reset the PD-1140 to factory default settings without establishing a communication link. This might be helpful in case communication parameters of the preferred interface have been set to unknown values or got accidentally lost.For this procedure two pads on the bottom side of the board have to be shortened.Please perform the following steps:1.Power supply off and USB cable disconnected2.Short two pads as marked in Figure 5.13.Power up board (power via USB is sufficient for this purpose)4.Wait until the on-board red and green LEDs start flashing fast (this might take a while)5.Power-off board (disconnect USB cable)6.Remove short between pads7.After switching on power-supply / connecting USB cable all permanent settings have beenrestored to factory defaultsShort these two padsFigure 5.1 Reset to factory default settings6On-Board LEDsThe board offers two LEDs in order to indicate board status. The function of both LEDs is dependent on the firmware version. With standard TMCL firmware the green LED should be flashing slowly during operation and the red LED should be off.When there is no valid firmware programmed into the board or during firmware update the red and green LEDs are permanently on.B EHAVIOR OF LED S WITH S TANDARD TMCL F IRMWARERed LEDGreen LEDFigure 6.1 On-board LEDs7Operational RatingsThe operational ratings show the intended or the characteristic ranges and should be used as design values.In no case shall the maximum values be exceeded!Table 7.1 General operational ratings of moduleO PERATIONAL RATINGS OF MULTIPURPOSE I/O STable 7.2 Operational ratings of multipurpose I/Os8Torque Curves8.1.1PD42-1-1140 Torque CurveFigure 8.1 PD42-1-1140 torque vs. velocity 24V / 2A, 256µsteps 8.1.2PD42-2-1140 Torque CurveFigure 8.2 PD42-2-1140 torque vs. velocity 24V / 2A, 256µsteps8.1.3PD42-3-1140 Torque CurveFigure 8.3 PD42-3-1140 torque vs. velocity 24V / 2A, 256µsteps 8.1.4PD42-4-1140 Torque CurveFigure 8.4 PD42-4-1140 torque vs. velocity 24V / 2A, 256µsteps9Functional DescriptionThe PD-1140 is a highly integrated mechatronic device which can be controlled via several serial interfaces. Communication traffic is kept low since all time critical operations, e.g. ramp calculations are performed on board. Nominal supply voltage of the unit is 24V DC. The PANdrive is designed for both: direct mode and standalone operation. Full remote control of device with feedback is possible. The firmware of the module can be updated via any of the serial interfaces.In Figure 9.1 the main parts of the PD-1140 are shown:-the microprocessor, which runs the TMCL operating system (connected to TMCL memory),-the motion controller, which calculates ramps and speed profiles internally by hardware,-the power driver with stallGuard2 and its energy efficient coolStep feature,-the MOSFET driver stage,-the QSH stepper motor, and-the sensOstep encoder with resolutions of 10bit (1024 steps) per revolution.9…Figure 9.1 Main parts of the PD-114010 PD-1140 Operational Description10.1 C alculation: Velocity and Acceleration vs. Microstep andFullstep FrequencyThe values of the parameters sent to the TMC429 do not have typical motor values like rotations per second as velocity. But these values can be calculated from the TMC429 parameters as shown in this section.Table 10.1 TMC429 velocity parametersM ICROSTEP F REQUENCYThe microstep frequency of the stepper motor is calculated with3220482][][_⋅⋅⋅=divpulse CLK velocityHz f Hz usf with usf: microstep-frequencyF ULLSTEP F REQUENCYTo calculate the fullstep frequency from the microstep frequency, the microstep frequency must be divided by the number of microsteps per fullstep.usrsHz usf Hz fsf 2][][=with fsf: fullstep-frequencyThe change in the pulse rate per time unit (pulse frequency change per second – the acceleration a ) is given by 29__max 22++⋅=div ramp div pulse CLK a f aThis results in acceleration in fullsteps of:usrs aaf 2=with af: acceleration in fullstepsE XAMPLE :Hz MHz msf 31.12207032204821000161=⋅⋅⋅=Hz Hz fsf 34.1907231.122070][6==sMHzMhz a 21.11921000)16(29112=⋅=++s MHzs MHzaf 863.1221.1196==C ALCULATION OF THE NUMBER OF ROTATIONSA stepper motor has e.g. 72 fullsteps per rotation.49.267234.1907===rotation per fullsteps fsf RPS46.1589726034.190760=⋅=⋅=rotation per fullsteps fsf RPM11Life Support PolicyTRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.© TRINAMIC Motion Control GmbH & Co. KG 2013Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.Specifications are subject to change without notice.All trademarks used are property of their respective owners.12Revision History12.1Document RevisionTable 12.1 Document revision12.2H ardware RevisionTable 12.2 Hardware revision13References[PD-1140 TMCL] PD-1140 TMCL Firmware Manual [TMC262] TMC262 Datasheet[TMC429] TMC429 Datasheet[TMCL-IDE] TMCL-IDE User ManualPlease refer to .。

步进电机驱动器使用手册说明书

步进电机驱动器使用手册说明书

步进电机驱动器使用手册目录1安全事项 (2)2产品外形 (4)2.1产品外形 (4)3接口定义 (5)3.1电机、电源接口C N1 (5)3.1.1两相步进电机接线 (5)3.1.2五相步进电机接线 (6)3.2控制接口C N2 (7)3.2.1脉冲(P u l)信号/上限位信号 (9)3.2.2方向(D i r)信号/下限位信号 (9)3.2.3回零(Z e r o)信号/原点信号 (9)3.2.4脱机/使能(F r e e/E n a b l e)信号 (9)3.2.5到位(I N P)信号 (10)3.2.6就绪(R D Y)信号 (11)3.2.7接口电压 (11)3.3编码器接口C N3 (13)3.4U S B接口C N4 (14)3.5M o d b u s接口C N5 (15)4L E D指示 (16)4.1状态指示L E D (16)4.2通讯指示L E D (18)5性能参数 (18)5.1机械参数 (18)5.2安装尺寸 (19)6应用指南 (20)6.1安装准备 (20)6.2机械安装 (20)6.3电气安装 (21)6.4日常维护 (21)6.5注意事项 (21)6.5常见问题 (22)为保障使用者人身安全,保护设备正常使用,请务必阅读并遵守本章的安全事项。

在操作时违反本事项所示要求,可能会导致人员重伤或者死亡。

在操作时违反本事项所示要求,可能会引起驱动器永久损坏及附加事故。

谨防触电,爆炸或其他危险禁止在易爆、易燃或腐蚀性环境使用本产品;禁止开启产品外壳;驱动器带电时内部电压可能超过36VDC,驱动器和电机都必须接安全保护地线;驱动器内部电压不会瞬间释放,必须先切断电源,等指示灯熄灭后才能进行插拔、接线、设置、测量、搬动等人工操作;禁止带电插拔;驱动器故障时温度可能很高,必须先切断电源,等下降至安全温度后才能进行人工操作;驱动器应用于直接涉及人身安全的设备,必须配备人身安全防范措施;驱动器或设备故障时可能存在火灾隐患,必须配备消防安全防范措施。

QSH5718 步进电机手册说明书

QSH5718 步进电机手册说明书

QMOT STEPPER MOTORSTRINAMIC Motion Control GmbH & Co. KGHamburg, GermanyV 2.3QMOT QSH5718 MANUAL++QSH-5718 -41-28-05557mm 2.8A, 0.55Nm-51-28-10157mm 2.8A, 1.01Nm-56-28-12657mm 2.8A, 1.26Nm-76-28-18957mm 2.8A, 1.89Nm++Contents1Life support policy (3)2Features (4)3Order Codes (5)4Mechanical dimensions (6)4.1Dimensions (6)4.2Leadwire configuration (7)5Torque figures (8)5.1QSH5718-41-28-055 (8)5.2QSH5718-51-28-101 (9)5.3QSH5718-56-28-126 (9)5.4QSH5718-76-28-189 (10)6Considerations for operation (11)6.1Choosing the best fitting motor for an application (11)6.2Motor Current Setting (11)6.2.1Choosing the optimum current setting (12)6.2.2Choosing the standby current (12)6.3Motor Driver Supply Voltage (12)6.3.1Determining if the given driver voltage is sufficient (13)6.4Back EMF (BEMF) (13)6.5Choosing the Commutation Scheme (14)6.5.1Fullstepping (14)7Revision history (15)7.1Document revision (15)1Life support policyTRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.© TRINAMIC Motion Control GmbH & Co. KG 2011Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.Specifications are subject to change without notice.2FeaturesThese two phase hybrid stepper motors are optimized for microstepping and give a good fit to the TRINAMIC family of motor controllers and drivers.Characteristics:∙NEMA 23 mounting configuration∙ 6.35mm axis diameter, 20mm axis length∙step angle 1.8∙optimized for microstep operation∙optimized fit for TMC239/TMC249/TMC262 based driver circuits∙ 4 wire connection∙CE approved∙flange max. 56.5mm x 56.5mm∙D-cut of 15mm length and 0.5mm depth∙up to 75V recommended operation voltageTable 2.1: Specifications of QSH5718-41-28-055, QSH5718-51-28-101, QSH5718-56-28-126,and QSH5718-76-28-1893Order CodesThe length of the motor is specified without the length of the axis. For the total length of the product add 24mm.Table 3.1: Order codes4Mechanical dimensions4.1DimensionsFigure 4.1: Dimensions of QSH5718. All values in mm.4.2 Leadwire configurationblackr e db l u eFigure 4.2: Leadwire configuration5 Torque figuresThe torque figures detail motor torque characteristics for half step operation in order to allow simple comparison For half step operation there are always a number of resonance points (with less torque) which are not depicted. These will be minimized by microstep operation in most applications.5.1 QSH5718-41-28-055VM: 30V, 2,8A/Phase100001000100Speed [Pps]Torque [Nm]0,5600,4800,4000,3200,2400,1600,0800,000Half stepFigure 5.1: QSH5718-41-28-055 speed vs. torque characteristicsVM: 30V, 2,8A/Phase100001000100Speed [Pps]Torque [Nm]1,0500,9000,7500,6000,4500,3000,1500,000Half stepFigure 5.2: QSH-5718-51-28-101 speed vs. torque characteristics5.3 QSH5718-56-28-126VM: 30V, 2,8A/Phase100001000100Speed [Pps]Torque [Nm]1.2601.0800.9000.7200.5400.3600.1800.000Half stepFigure 5.3: QSH5718-56-28-126 speed vs. torque characteristicsVM: 30V, 2,8A/Phase100001000100Speed [Pps]Torque [Nm]2,1001,8001,5001,2000,9000,6000,3000,000Half stepFigure 5.4: QSH5718-76-28-189 speed vs. torque characteristics6Considerations for operationThe following chapters try to help you to correctly set the key operation parameters in order to get a stable system.6.1Choosing the best fitting motor for an applicationFor an optimum solution it is important to fit the motor to the application and to choose the best mode of operation. The key parameters are the desired motor torque and velocity. While the motor holding torque describes the torque at stand-still, and gives a good indication for comparing different motors, it is not the key parameter for the best fitting motor. The required torque is a result of static load on the motor, dynamic loads which occur during acceleration/deceleration and loads due to friction. In most applications the load at maximum desired motor velocity is most critical, because of the reduction of motor torque at higher velocity. While the required velocity generally is well known, the required torque often is only roughly known. Generally, longer motors and motors with a larger diameter deliver a higher torque. But, using the same driver voltage for the motor, the larger motor earlier looses torque when increasing motor velocity. This means, that for a high torque at a high motor velocity, the smaller motor might be the better fitting solution.Please refer to the torque vs. velocity diagram to determine the best fitting motor, which delivers enough torque at the desired velocities.Determining the maximum torque required by your applicationJust try a motor with a torque 30-50% above the application’s maximum requirement. Take into consideration worst case conditions, i.e. minimum driver supply voltage and minimum driver current, maximum or minimum environment temperature (whichever is worse) and maximum friction of mechanics. Now, consider that you want to be on the safe side, and add some 10 percent safety margin to take into account for unknown degradation of mechanics and motor. Therefore try to get a feeling for the motor reliability at slightly increased load, especially at maximum velocity. That is also a good test to check the operation at a velocity a little higher than the maximum application velocity.6.2Motor Current SettingBasically, the motor torque is proportional to the motor current, as long as the current stays at a reasonable level. At the same time, the power consumption of the motor (and driver) is proportional to the square of the motor current. Optimally, the motor should be chosen to bring the required performance at the rated motor current. For a short time, the motor current may be raised above this level in order to get increased torque, but care has to be taken in order not to exceed the maximum coil temperature of 130°C respectively a continuous motor operation temperature of 90°C.Table 6.1: Motor current settings6.2.1Choosing the optimum current settingGenerally, you choose the motor in order to give the desired performance at nominal current. For short time operation, you might want to increase the motor current to get a higher torque than specified for the motor. In a hot environment, you might want to work with a reduced motor current in order to reduce motor self heating.The Trinamic drivers allow setting the motor current for up to three conditions:-Stand still (choose a low current)-Nominal operation (nominal current)-High acceleration (if increased torque is required: You may choose a current above the nominal setting, but be aware, that the mean power dissipation shall not exceed the motors nominal rating)6.2.2Choosing the standby currentMost applications do not need much torque during motor standstill. You should always reduce the motor current during standstill. This reduces power dissipation and heat generation. Depending on your application, you typically at least can half power dissipation. There are several aspects why this is possible: In standstill, motor torque is higher than at any other velocity. Thus, you do not need the full current even with a static load! Your application might need no torque at all, but you might need to keep the exact microstep position: Try how low you can go in your application. If the microstep position exactness does not matter for the time of standstill, you might even reduce the motor current to zero, provided that there is no static load on the motor and enough friction in order to avoid complete position loss.6.3Motor Driver Supply VoltageThe driver supply voltage in many applications cannot be chosen freely, because other components have a fixed supply voltage of e.g. 24V DC. If you have the possibility to choose the driver supply voltage, please refer to the driver data sheet and consider that a higher voltage means a higher torque at higher velocity. The motor torque diagrams are measured for a given supply voltage. You typically can scale the velocity axis (steps/sec) proportionally to the supply voltage to adapt the curve, e.g. if the curve is measured for 48V and you consider operation at 24V, half all values on the x-Axis to get an idea of the motor performance.For a chopper driver, consider the following corner values for the driver supply voltage (motor voltage). The table is based on the nominal motor voltage, which normally just has a theoretical background in order to determine the resistive loss in the motor.Comment on the nominal motor voltage: Array(Please refer to motor technical data table.)Table 6.2: Driver supply voltage considerations6.3.1Determining if the given driver voltage is sufficientTry to brake the motor and listen to it at different velocities. Does the sound of the motor get raucous or harsh when exceeding some velocity? Then the motor gets into a resonance area. The reason is that the motor back-EMF voltage reaches the supply voltage. Thus, the driver cannot bring the full current into the motor any more. This is typically a sign, that the motor velocity should not be further increased, because resonances and reduced current affect motor torque.Measure the motor coil current at maximum desired velocityFor microstepping: If the waveform is still basically sinusoidal, the motor driver supply voltage is sufficient.For Fullstepping: If the motor current still reaches a constant plateau, the driver voltage is sufficient. If you determine, that the voltage is not sufficient, you could either increase the voltage or reduce the current (and thus torque).6.4Back EMF (BEMF)Within SI units, the numeric value of the BEMF constant has the same numeric value as the numeric value of the torque constant. For example, a motor with a torque constant of 1 Nm/A would have a BEMF constant of 1V/rad/s. Turning such a motor with 1 rps (1 rps = 1 revolution per second = 6.28 rad/s) generates a BEMF voltage of 6.28V.The Back EMF constant can be calculated as:is multiplied by 2 in this formula, The voltage is valid as RMS voltage per coil, thus the nominal current INOMsince the nominal current assumes a full step position, with two coils switched on. The torque is in unit [Nm] where 1Nm = 100cNm = 1000mNm.One can easily measure the BEMF constant of a two phase stepper motor with a (digital) scope. One just has to measure the voltage of one coil (one phase) when turning the axis of the motor manually. With this, one gets a voltage (amplitude) and a frequency of a periodic voltage signal (sine wave). The full stepfrequency is 4 times the frequency the measured sine wave.6.5Choosing the Commutation SchemeWhile the motor performance curves are depicted for fullstepping and halfstepping, most modern drivers provide a microstepping scheme. Microstepping uses a discrete sine and a cosine wave to drive both coils of the motor, and gives a very smooth motor behavior as well as an increased position resolution. The amplitude of the waves is 1.41 times the nominal motor current, while the RMS values equal the nominal motor current. The stepper motor does not make loud steps any more – it turns smoothly! Therefore, 16 microsteps or more are recommended for a smooth operation and the avoidance of resonances. To operate the motor at fullstepping, some considerations should be taken into account.Table 6.3: Comparing microstepping and fullsteppingMicrostepping gives the best performance for most applications and can be considered as state-of-the art. However, fullstepping allows some ten percent higher motor velocities, when compared to microstepping. A combination of microstepping at low and medium velocities and fullstepping at high velocities gives best performance at all velocities and is most universal. Most Trinamic driver modules support all three modes.6.5.1FullsteppingWhen operating the motor in fullstep, resonances may occur. The resonance frequencies depend on the motor load. When the motor gets into a resonance area, it even might not turn anymore! Thus you should avoid resonance frequencies.6.5.1.1Avoiding motor resonance in fullstep operationDo not operate the motor at resonance velocities for extended periods of time. Use a reasonably high acceleration in order to accelerate to a resonance-free velocity. This avoids the build-up of resonances. When resonances occur at very high velocities, try reducing the current setting.A resonance dampener might be required, if the resonance frequencies cannot be skipped.7Revision history 7.1Document revisionTable 7.1: Documentation revisionMouser ElectronicsAuthorized DistributorClick to View Pricing, Inventory, Delivery & Lifecycle Information:A nalog Devices Inc.:QSH5718-76-28-189QSH5718-56-28-126QSH5718-51-28-101QSH5718-41-28-055。

57MM步进电机资料说明书玖洋

57MM步进电机资料说明书玖洋

57系列二相步进电机◆步进电机详细信息◆步进电机性能参数注:1. 以上仅为代表性产品,如需其它非代表性产品可以根据客户需求定制。

2.根据客户不同需求可以定制4线,6线,8线步进电机3.两相步进电机基本步距角是1.8°,三相步进电机步距角是1.2°。

◆步进电机安装尺寸(单位:mm)57 FH系列步进电机标准出轴为光轴,直径6.35mm,直径8mm,伸出轴长度21mm。

可按用户要求铣单扁、做双出轴、变更出轴长度;也可按用户要求定制电气参数,例如电流大小;或根据用户使用环境做参数调整,例如供电电压36V要求低速大力矩;还可按用户提供样品仿制步进电机。

◆步进电机曲线图说明◆步进电机接线图说明注意:◆电机特性数据和技术数据都是在匹配我公司驱动器驱动YBM86的情况下测得,测试电压为DC28V。

◆步进电机力矩测试数据与驱动器型号、参数设置、驱动器供电电压密切相关;同规格步进电机因定转子间隙不同,饶线方式不同,其矩频特性也不同。

◆电机安装前务必用电机前端盖安装止口定位,并注意公差配合,严格保证电机轴与负载轴的同心度,不同心会导致断轴。

◆电机与负载连接时,严禁敲击,电机轴与轴承受敲击后可能影响电机性能,甚至损坏。

◆电机与驱动器连接时,请勿接错相,错相或缺相时电机不能正常运转,可能损伤步进电机驱动器。

◆无电机接线图时,用万用表测量,电机线两两相通,分别接A+A-、B+B-。

无万用表时,挑两根电机线短接,若电机轴旋转阻力增大,则这两根线是一组线圈。

电机旋转初始方向与所需方向相反时,把A+A-两线换位即可57BYGH系列步进电机说明书步距角:0.9/1.8度绝缘电阻:500 V DC 100MΩ绝缘强度:500V AC 1 Minute温升:65K环境温度:-10℃~+55℃绝缘等级:B二相混合式步进电机型号相数电压(V)额定电流(A)电阻(Ω)电感(mH)静转矩(Kg.cm)定位转矩(kg.cm)重量(Kg)机身长(mm)出轴长(mm)接线图57BYGH101 4 3 1.3 2.3 2.2 4.9 0.3 0.45 45 21 a 57BYGH102 2 5.1 0.75 6.8 12.5 5 0.3 0.45 45 21 b 57BYGH201 4 12 0.7 17.5 22 8.5 0.7 0.65 55 21 a 57BYGH202 2 2.4 1.5 1.6 4.0 8 0.7 0.65 55 21 b 57BYGH203 4 5 1.5 3.3 3.6 8.5 0.7 0.65 55 21 a 57BYGH204 4 2.7 3 0.9 1.4 8.5 0.7 0.65 55 21 a 57BYGH205 2 4.4 1.15 3.8 8 9 0.7 0.65 55 21 b 57BYGH206 4 4 1.6 2.5 3.5 8.5 0.7 0.65 55 21 a 57BYGH207 4 3 2 1.5 2 8.5 0.7 0.65 55 21 a 57BYGH208 2 1.8 3 0.6 1.3 8.5 0.7 0.65 55 21 b 57BYGH209 2 4.5 1.5 3 5.4 9 0.7 0.65 55 21 b 57BYGH301 4 3.0 3 1.0 1.8 14 0.9 1.0 76 21 a 57BYGH302 4 2.6 2.4 1.1 1.9 14 0.9 1.0 76 21 a 57BYGH303 4 5.4 1.5 3.6 6.8 14 0.9 1.0 76 21 a 57BYGH304 4 7 1.5 4.7 7.4 14 0.9 1.0 76 21 a 57BYGH306 2 2.7 3 0.9 2.2 15 0.9 1.0 76 21 b 57BYGH308 4 2.4 3 0.8 1.7 14 0.9 1.0 76 21 a 57BYGH401 4 2.7 3 0.9 1.9 20 1.1 1.5 96 21 a型号相数电压(V)额定电流(A)电阻(Ω)电感(mH)静转矩(Kg.cm)定位转矩(kg.cm)重量(Kg)机身长(mm)出轴长(mm)接线图接线说明:步进电机与步进电机驱动器的接法很简单:只要能分清楚电机的A+,A-,B+,B-端就可以了。

步进电机说明书

步进电机说明书

!"#
配套驱动器型号: SH-2H057M 驱动器细分数:5, 360 0.33 Nm 0.60Nm 0.62Nm 480 0.20 Nm 0.51Nm 0.52Nm 步距角:0.36° 600 0.16 Nm 0.36Nm 0.38Nm 0.33Nm 0.32Nm 720
驱 动 器 电 流 为 额 定 电流 , 120 0.64Nm 0.72Nm 0.89Nm 240 0.61 Nm 0.67Nm 0.80Nm
!"#$%& '
!"#
电机型号 L Φd 电机轴 23HS2001 53 23HS2003 53 Φ6.35
0 -0.013
A 红线
23HS3002 75 23HS3002Z 75 Φ8.0
0 -0.013
A 绿线
电机轴铣扁,厚度0.5mm
B 黄线
B 蓝线
!"#
测试电机型号: 23HS2001、23HS2003、23HS3002 、23HS3002Z 测试条件 转速 (转/分) 23HS2001(DC24V) 转矩 23HS2003(DC40V) 23HS3002(DC40V) 23HS3002Z(DC40V) 驱动器电压:DC24V、DC40V, 30 0.72Nm 0.72Nm 1.02Nm 60 0.70Nm 0.73Nm 0.96Nm
Start MicroStep Co., Ltd.
!"#$%&'()*+
3
! " # $ SERIES STEP MOTORS
57BYG096
!" -25 - +55 !" !" 500V DC 100M 0.1 0.3mm 0.02mm Max 85 Max B ! "10-85% ! !"#$"% Min ! "
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4
1300
2.6
86BYG250B-03 2/4 4.3 2.5 1.7 9
3.2
2.4
1300
2.6
86BYG250B-04 2/4 5.4 2
2.7 15
3.2
2.4
1300
2.6
86BYG250C-01 2/4 2
7
0.29 2
4.8
3.6
1900
3.8
86BYG250C-02 2/4 4
2.2/1 2.2/2 2/4 1.5/6 1.2/8 1/10
90BYG250B 0.9º
4.5/1 4.5/2 3.1/4 2.0/6 1.4/8 0.6/10
90BYG250C 0.9º
6/1 5.6/2 4.5/4 3.2/6 2/8 1/10
驱动器 2HB1108MAE 2HB806MAE 2HB808MA
相 电 压 电 流 电 阻 电 感 保 持 转 定位转矩 转动惯量 机 身 长
数V
A
Ω
mH 矩 N.M Kg.cm
g.cm²
mm
2 9.6 0.4 24
36
0.17
0.15
20
25
2 12 0.4 30
37
0.25
0.20
38
34
2
8
0.8 10
17
0.32
0.22
57
40
2 3.84 1.2 3.2
转动惯量 g.cm² 60 145 230
重量 kg
0.45 0.65 1.0
机身长 mm 41 56 76
外型尺寸
接线图
注:轴为单扁丝,也可根据客户需要定做
运行矩频特性(平均参考值)
型号
运行步距角 运行矩频特性 N.M/Hz (24VDC 测试)
57BYG250A 0.9º
0.25/400 0.2/1000 0.1/2000
0.6/400 0.55/1000 0.5/2000 0.4/3000
57BYGH250B 0.9º
1.3/400 1.2/1000 0.9/2000 0.5/3000
57BYGH250C 0.9º
1.5/400 1.3/1000 0.7/2000 0.5/3000
驱动器 2HB363MAE 2HB504MAE 2HB504MA
环 境 温 度————-25℃~+55℃

升————75K Max
绝 缘 等 级————B
高性能两相混合式步进电机
技术参数
型号


85BYGH250A 4
电流 电 阻 保 持 转 矩 定 位 转 矩 转 动 惯 量 机身长(L)
A Ω N.M
Kg.cm
g.cm²
mm
2 2.2
2.1
0.8
1000
65
-7-
110BYG 系列
高性能两相混合式步进电机
步 距 角————0.9º/1.8º
步 距 角 精 度————±5%
轴 向 间 隙————0.1~0.3mm
径 向 跳 动————0.025mmMax
绝 缘 电 阻————500V DC 100MΩ Min
85BYGH250B
4 4.5 0.62
4.1
1.2
1400
94
85BYGH250C
4 4.0 0.95
6.3
2.4
2700
118
85BYGH250D
4 6.2 0.75
12.23.6来自4000156外型尺寸
接线图
运行矩频特性(平均参考值)
型号
运行步距角 运行矩频特性 N.M/Hz (63VDC 测试)
绝 缘 等 级————B
高性能两相混合式步进电机
技术参数
型号


57BYG250A 4
57BYG250B 4
57BYG250C 4
电压 V 2.3 2.4 5.4
电流 A 1.5 2.4 1.5
电阻 Ω 1.5 1 3.6
电感 mH 1.3 1.9 6
保持转矩 N.M 0.29 0.58 0.88
定位转矩 Kg.cm 0.333 0.706 0.98
定位转矩 Kg.cm
0.05 0.12 0.25
转动惯量 g.cm²
11 20 40
机身长 mm 20 34 44
外型尺寸
接线图
运行矩频特性(平均参考值)
型号
运行步距角 运行矩频特性 N.M/Hz (24VDC 测试)
39BYGH250A 0.9º
0.05/600 0.02/1000
39BYGH250B 0.9º
86BYG250A-03 2/4 1.6 3.6 0.23 2.5 1.6
0.8
640
1.6
86BYG250A-04 2/4 1.4 4.5 0.31 1.3 1.6
0.8
640
1.6
86BYG250B-01 2/4 3
4
0.65 6.9 3.2
2.4
1300
2.6
86BYG250B-02 2/4 2.5 4.6 0.55 2.5 3.2
700 10
2.1
0.8
1200
69 2.2
2/4 100 4
700 10
4.2
0.8
2400
98 3.6
2/4 100 4
700 10
6.3
0.8
3600
128 4.8
外型尺寸
接线图
运行矩频特性(平均参考值)
型号
运行步距角 运行矩频特性 N.m/KHz (63VDC 测试)
90BYG250A 0.9º
9/400 8.5/1000 6.0/2000 4.0/3000
0.9/4000 1.8/4000 2.3/4000 3/4000
驱动器 2HB504MAE 2HB504MA 2HB806MAE 2HB808MA
-5-
86BYG 系列
高性能两相混合式步进电机
步 距 角————0.9º/1.8º
步 距 角 精 度————±5%
85BYGH250A 0.9º
2/400 2.0/1000 1.6/2000 1.3/3000
85BYGH250B 0.9º
3.5/400 3.2/1000 2.6/2000 2.4/3000
85BYGH250C 0.9º
6/400 5.5/1000 4.2/2000 3.2/3000
85BYGH250D 0.9º
3.0/400 2.8/1000 2.2/2000 1.7/3000
86BYG250C 0.9º
4.8/400 4.1/1000 3.9/2000 3.2/3000
驱动器
2HB504MAE 2HB504MA 2HB806MAE 2HB808MA
-6-
90BYG 系列
步 距 角————0.9º/1.8º

升————75K Max
绝 缘 等 级————B
高性能两相混合式步进电机
技术参数
型号


39BYGH250A 2
39BYGH250B 2
39BYGH250C 2
电压 V
6.5 12 13.5
电流 A
0.4 0.4 0.3
电阻 Ω
6.8 30 45
电感 mH
6.5 42 80
保持转 矩 N.M
0.05 0.21 0.31
57BYG250B 0.9º
0.38/400 0.35/1000 0.3/2000 0.25/3000
57BYG250C 0.9º
0.8/400 0.71000 0.5/2000 0.3/3000
驱动器 2HB363MAE 2HB504MAE 2HB504MA
-3-
57BYGH 系列
步 距 角————0.9º/1.8º
-4-
85BYGH 系列
步 距 角————0.9º/1.8º
步 距 角 精 度————±5.4%
轴 向 间 隙————0.1~0.3mm
径 向 跳 动————0.02mmMax
绝 缘 电 阻————500V DC 100MΩ Min
绝 缘 强 度————500V AC 50Hz 1Ma Minute
绝 缘 电 阻————500V DC 100MΩ Min
绝 缘 强 度————500V AC 50Hz 1Ma Minute
环 境 温 度————-25℃~+55℃

升————75K Max
绝 缘 等 级————B
高性能两相混合式步进电机
技术参数
型号
42BYH250 42BYH250A 42BYH250B 42BYH250C
42BYGH250B 0.9º
0.29/300 0.27/1000 0.2/2000 0.15/3000
42BYGH250C 0.9º
0.4/600 0.36/1000 0.36/2000 0.3/3000
驱动器 2HB363MAE 2HB504MAE 2HB504MA
-2-
57BYG 系列
步 距 角————0.9º/1.8º
型号
相 电压 电 流 电 阻 电 感 保 持 转 定位转矩 转 动 惯 重
数V A Ω
mH 矩 N.M Kg.cm 量 g.cm² 量
kg
86BYG250A-01 2/4 2.9 1.7 1.7 6
1.6
0.8
640
1.6
86BYG250A-02 2/4 5 1.25 4
相关文档
最新文档