关于大学高等数学函数极限和连续
关于大学高等数学函数极限和连续

第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
数学中的函数极限与连续性知识点

数学中的函数极限与连续性知识点函数极限与连续性是数学中非常重要的概念,在解决实际问题和理论研究中起着至关重要的作用。
在本文中,我们将深入探讨函数极限与连续性的基本概念、性质以及相关定理,并举例说明其在实际问题中的应用。
一、函数极限的定义与性质函数极限是研究函数在某一点上的变化趋势的重要工具。
在介绍函数极限之前,我们首先需要定义一些基本的概念。
设函数f(x)在点x_0的某个去心邻域内有定义,如果对于任意给定的正数ε,都能找到另一个正数δ,使得当0 < |x - x_0| < δ时,有|f(x) - A| < ε成立,其中A为常数,则称函数f(x)在点x_0处极限为A,记作lim┬(x→x_0)f(x)=A。
函数极限具有以下性质:1.唯一性:函数极限是唯一的,即一个函数在某一点的极限只能有一个值。
2.局部有界性:若lim┬(x→x_0)f(x)=A,则存在正数δ,使得当0 < |x - x_0| < δ时,有|f(x)| < M成立,其中M为常数。
3.局部保号性:若lim┬(x→x_0)f(x)=A,则存在正数δ,使得当0 < |x - x_0| < δ时,有f(x)与A同号。
二、连续性的概念与性质连续性是函数学中的一个重要的概念,是函数极限的基础。
一个函数在一个点x_0处连续,意味着在该点的函数值与极限值相等。
函数f(x)在区间[a, b]上连续,是指f(x)在该区间内的每一个点都连续。
在具体分析连续性时,我们需要关注以下几个方面的性质:1. 初等函数的连续性:常数函数、幂函数、指数函数、对数函数、三角函数等初等函数在其定义域内连续。
2. 复合函数的连续性:若f(x)在点x_0处连续,且g(x)在点y_0=f(x_0)处连续,则复合函数h(x) = g[f(x)]在点x_0处连续。
3. 极限运算法则:若lim┬(x→x_0)f(x)=A,lim┬(x→x_0)g(x)=B,则lim┬(x→x_0)[f(x)±g(x)] = A±B,lim┬(x→x_0)[f(x)g(x)] = A·B,及lim┬(x→x_0)[f(x)/g(x)] = A/B(其中B≠0)。
第一章函数极限与连续总结

第一章函数极限与连续总结函数极限与连续是高等数学中的重要概念,对于函数的性质和特征有着深远的影响。
在第一章的学习中,我们主要学习了函数的极限以及连续的定义与性质。
本文将对第一章的内容进行总结。
函数的极限是研究函数在其中一点或其中一区间的变化趋势的工具。
当自变量趋近于其中一点或其中一区间时,函数的值也有可能趋近于其中一固定值,这个固定值就是函数的极限。
在函数的极限的概念中,我们主要学习了一些基本的性质和计算方法。
通过极限的四则运算法则,我们可以将复杂的函数进行简化和转化,从而更好地研究它们的性质。
我们还学习了一些常见的函数的极限值,如指数、对数、三角函数及其反函数的极限。
通过对函数的极限的学习,我们可以了解函数在其中一点或其中一区间的变化趋势,从而更好地理解函数的特征和性质。
极限的计算方法也有助于我们解决实际问题,比如利用极限来计算一些数列的极限,从而得到更加精确的近似值。
连续是函数的一个重要性质,它代表了函数图像的连贯性和平滑性。
连续函数的定义是:当自变量在其中一点或其中一区间内变化时,函数的值也会在同一点或同一区间内变化,并且不会有跳跃或断层的现象。
我们学习了一些常见的连续函数,并掌握了判断函数连续性的方法。
其中,我们主要研究了基本初等函数、分段函数和复合函数的连续性。
通过学习这些连续性的性质,我们可以更好地分析函数的行为和特点。
在函数极限和连续的学习中,我们还学习了一些重要的定理和概念。
例如,极限存在准则、函数极限的无穷大与无穷小、函数极限的唯一性等。
这些定理和概念帮助我们更好地理解和应用函数的极限和连续性。
总的来说,函数的极限和连续性是高等数学中重要的概念和工具。
通过学习函数的极限,我们可以更好地了解函数的性质和特征,对于求解实际问题和进行精确计算有着重要的作用。
而学习连续性则可以帮助我们判断函数的连贯性和平滑性,更好地分析函数的行为和特点。
对于进一步学习高等数学以及其他数学学科,函数的极限和连续性是必不可少的基础知识。
函数极限与连续知识点总结大一

函数极限与连续知识点总结大一函数极限与连续知识点总结函数极限和连续是微积分中非常重要的概念,对于大一学生来说,掌握这些知识点是非常关键的。
在本文中,我将对函数极限和连续的相关知识进行总结,并强调一些必要的注意事项。
一、函数极限1. 定义:函数极限是指当自变量趋近于某个特定值时,函数对应的因变量的值也趋近于一个确定的值。
数学上可以表示为lim(f(x))=L,其中lim表示极限,f(x)表示函数,L表示极限值。
2. 基本性质:- 极限存在唯一性:当自变量趋近于某个特定值时,函数对应的极限值唯一。
- 有界性:如果函数在某个区间内有极限,那么函数在该区间内是有界的。
- 保号性:如果函数在某个点的左侧极限和右侧极限大于(或小于)某个特定值,那么函数在该点处的极限也大于(或小于)该特定值。
3. 常用的函数极限:- 常数函数的极限:对于常数函数f(x)=C,其极限值为C。
- 多项式函数的极限:多项式函数的极限与最高次项的系数有关。
- 幂函数的极限:幂函数的极限与指数之间的关系有关。
- 三角函数的极限:三角函数的极限可以通过泰勒展开或利用三角函数的性质推导得出。
二、连续函数1. 定义:连续函数是指在定义域内,函数的图像可以画成一条连续的曲线,即没有间断点。
数学上可以表示为f(x)在[a, b]上连续。
2. 基本性质:- 连续函数的和、差、积仍然是连续函数。
- 连续函数与常数的乘积仍然是连续函数。
- 连续函数的复合函数仍然是连续函数。
- 定义域上的有界函数与连续函数的乘积仍然是连续函数。
3. 常见连续函数:- 多项式函数与有理函数在其定义域上都是连续函数。
- 正弦函数、余弦函数、指数函数、对数函数在其定义域上都是连续函数。
三、注意事项1. 极限的计算要点:- 直接代入法:当极限形式符合直接代入法的条件时,可以直接将自变量的值代入函数中计算极限值。
- 四则运算法则:对于在极限运算过程中出现的加、减、乘、除操作,可以利用四则运算法则进行简化。
极限与连续知识点总结

极限与连续知识点总结在高等数学中,极限与连续是非常重要的基础概念,它们贯穿了整个数学分析的学习过程。
下面,我们就来对极限与连续的相关知识点进行一个系统的总结。
一、极限的概念极限是指当自变量无限趋近于某个值时,函数值无限趋近于一个确定的常数。
例如,对于函数$f(x) =\frac{x^2 1}{x 1}$,当$x$趋近于 1 时,$f(x)$的极限为 2。
这是因为通过化简$f(x) = x + 1$,当$x$趋近于1 时,$f(x)$趋近于 2。
极限的定义有多种形式,常见的有$\epsilon \delta$定义。
二、极限的计算1、代入法对于一些简单的函数,如果在极限点处函数有定义且连续,直接将极限点代入函数即可计算极限。
2、因式分解法当分子分母有公因式时,可以通过因式分解约去公因式来计算极限。
3、有理化法对于含有根式的式子,可以通过有理化来消除根式,从而计算极限。
4、利用重要极限常见的重要极限有:$\lim_{x \to 0} \frac{\sin x}{x} = 1$,$\lim_{x \to \infty} (1 +\frac{1}{x})^x = e$。
5、洛必达法则当遇到分子分母同时趋近于 0 或无穷大的情况,可以使用洛必达法则,对分子分母分别求导来计算极限。
三、无穷小与无穷大1、无穷小如果函数$f(x)$在某个变化过程中极限为 0,那么称$f(x)$为该变化过程中的无穷小。
例如,当$x \to \infty$时,$\frac{1}{x}$是无穷小。
2、无穷大如果在某个变化过程中,函数的绝对值无限增大,那么称该函数为无穷大。
例如,当$x \to 0$时,$\frac{1}{x^2}$是无穷大。
无穷小与无穷大之间有着密切的关系:在同一变化过程中,无穷大的倒数是无穷小,非零无穷小的倒数是无穷大。
四、极限的性质1、唯一性极限如果存在,则一定是唯一的。
2、有界性如果函数在某个区间上有极限,那么在该区间上一定有界。
高等数学:函数、极限与连续

函数、极限与连续
3.函数的特性
函数的特性指的是函数的单调性、奇偶性、有界性和周
期性,可以参看绪论的预备知 识,这里不再重复介绍.
函数、极限与连续
二、 初等函数
1.基本初等函数
基本初等函数主要有如下六类:
(1)常数函数y=C;
(2)幂函数y=xa ;
(3)指数函数y=ax (a >0,a ≠1);
(4)对数函数y=logax(a >0,a ≠1);
(5)三角函数y=sinx、y=cosx、y=tanx、y=cotx、y=secx、
y=CSCx;
(6)反三角函数y=arcsinx、y=arccosx、y=arctanx、
y=arccotx. 这六类基本初等函数的图形和主要性质可以参见
绪论的预备知识.
数值与之对应.
函数、极限与连续
引例2 【邮资收费问题】设寄达某国的国际航空信件的
邮资标准是20g及以内邮资 6元,超过20g时每续重10g加收1.8
元,则邮资F 与信件重量m 的函数关系可表示为
函数、极限与连续
定义1-1-设有两个变量x 和y,若变量x 在非空实数集D 内
任取定一个数值时,变 量y 按照一定的法则f,总有确定的数值
篇》中有这样一段话:“一尺之 棰,日取其半,万世不竭.”即
一尺长的一根木棒,每天截下它的一半,可以一天天地截下 去,
永远都有剩余的量.每天剩余的长度构成一个数列
函数、极限与连续
定义1-3 如果当项数n无限增大时,无穷数列{xn} 的通项
xn 无限地趋近于某个确 定的常数A,则称A 是数列{xn} 的极
数u=φ(x)的 值域与y=f(u)的定义域相交非空,我们称函数y
极限与连续函数的关系与性质

极限与连续函数的关系与性质极限与连续函数是微积分学中的重要概念,它们在数学和物理等领域的应用广泛。
本文将介绍极限和连续函数的关系以及它们的性质。
一、极限的定义与性质1. 极限的定义:设函数f(x)在点x=a的某个去心邻域内有定义,若对于任意给定的正实数ε,存在正实数δ,使得当0 < |x-a| < δ时,有|f(x) - L| < ε,则称L是函数f(x)当x趋于a时的极限。
即表示为lim(x→a) f(x) = L。
2. 极限的性质:- 唯一性:如果lim(x→a) f(x)存在,那么极限是唯一的。
- 局部有界性:如果lim(x→a) f(x) = L存在,则存在一个正实数δ,使得a的邻域内,函数f(x)有界。
- 局部保号性:如果lim(x→a) f(x) = L存在且L>0(或L<0),则存在一个正实数δ1,当0 < |x-a| < δ1时,f(x) > 0(或f(x) < 0)。
- 保序性:如果lim(x→a) f(x) = L1,lim(x→a) g(x) = L2,且L1 < L2,则对于充分小的正实数ε,存在正实数δ,当0 < |x-a| < δ时,有f(x) < g(x) - ε。
二、连续函数的定义与性质1. 连续函数的定义:设函数f(x)在区间[a,b]上有定义,在[a,b]内的任意一点c 上,lim(x→c) f(x) = f(c),则称函数f(x)在区间[a,b]上连续。
2. 连续函数的性质:- 有界性:如果函数f(x)在区间[a,b]上连续,则函数f(x)在区间[a,b]上有界。
- 介值性:如果函数f(x)在区间[a,b]上连续且不恒取常数,则对于函数f(x)的任意两个值f(a)和f(b)之间的任意实数L,存在区间[a,b]上的某个点c,使得f(c) = L。
- 零点定理:如果函数f(x)在区间[a,b]上连续且f(a)和f(b)异号(即f(a) * f(b) < 0),则在区间[a,b]上至少存在一个点c,使得f(c) = 0。
高等数学常用基础知识点

高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于大学高等数学函数极限和连续Last revision on 21 December 2020第一章 函数、极限和连续§ 函数一、主要内容㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D内严格单调增加( );若f(x1)>f(x2),则称f(x)在D内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称偶函数:f(-x)=f(x)奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x∈(-∞,+∞)周期:T——最小的正数4.函数的有界性: |f(x)|≤M , x∈(a,b)㈢基本初等函数1.常数函数: y=c , (c为常数)2.幂函数: y=x n , (n为实数)3.指数函数: y=a x , (a>0、a≠1)4.对数函数: y=logx ,(a>0、a≠1)a5.三角函数: y=sin x , y=con xy=tan x , y=cot xy=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon xy=arctan x, y=arccot x㈣复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x∈X 2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、主要内容㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量。
X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量。
3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlim(c为常数),则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim,则称β是比α较低阶的无穷小量。
定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理 1.数列极限存在的判定准则:设:n n n z x y ≤≤ (n=1、2、3…)且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2.函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 (点x 0除外)有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o0)]()([lim lim 0000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2.函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4.函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续。
在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续。
a + 0b - x5.函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点。
间断点有三种情况:1o)(x f 在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f 在0x 处有定义,且)(lim 0x f x x→存在,但)()(lim 00x f x f x x ≠→。
两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在。
可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义。
2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在。
无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值。
)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定有界。
3.介值定理:)(x f 在],[b a 上连续⇒在),(b a 内至少存在一点ξ,使得:c f =)(ξ,其中:M c m ≤≤b x与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf 。
4.初等函数的连续性:初等函数在其定域区间内都是连续的。
第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左(或右)邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-(或:)(lim )(00x f x f x x '='+→+)3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在。
5.导函数:),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导。
y )(0x f ' )(x f6.导数的几何性质:y ∆)(0x f '是曲线)(x f y =上点 x ∆()00,y x M 处切线的斜率。
o x 0x㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导。
4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数。