DDS实验报告
实验1 DDS信号源实验

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期实验1 DDS信号源实验一、实验目的1.了解DDS信号源的组成及工作原理;2.掌握DDS信号源使用方法;3.掌握DDS信号源各种输出信号的测试。
二、实验仪器1.DDS信号源(位于大底板左侧,实物图片如下)2.频率计1台3. 20M双踪示波器1台4.低频信号发生器 1台三、实验原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。
DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。
在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。
PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32 写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。
对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。
RZ8681 D实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行AM调制输出。
四、各测量点的作用调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。
若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。
P03:DDS各种信号输出铆孔。
DDS实验报告

电子线路课程设计 --直接数字频率合成器(DDS)2014 年 11 月摘要本实验通过使用 QuartusⅡ软件,并结合数字逻辑电路的知识设计,使用DDS 的方法设计一个任意频率的正弦信号发生器,要求具有频率控制、相位控制、以及使能开关等功能。
在此基础上,本实验还设计了扩展功能,包括测频、切换波形,动态显示。
在控制电路的作用下能实现保持、清零功能,另外还能同时显示输出频率、相位控制字、频率控制字。
在利用 QuartusⅡ进行相应的设计、仿真、调试后下载到SmartSOPC实验实现 D/A转换,验证实验的准确性,并用示波器观察输出波形。
关键词:SmartSOPC实验箱 QUARTUSⅡ数字频率合成仿真AbstractThis experiment is based on QuartusⅡ,with the help of knowledge relating to the digital logic circuits and system design,to design a sine signal generator which generates any frequency by the method of DDS. This generator is provided with the functions of frequency control,phase control and switch control. Based on the basic design,I also design extra functions,including frequency measurement,changes of wave forms and dynamic display.The control circuit can be maintained time clearing and time keeping functions,and also shows the output frequency,phase control characters,frequency control word. All the designing and simulating work are based on QuartusⅡ. After all the work finished on computer, I downloaded the final circuit to SmartSOPC experiment system to realize the transformation of D/A ,and then test the accuracy of the design by means of oscilloscope observing the wave forms.Key words: SmartSOPC QUARTUSⅡ DDS Simulation目录摘要 (1)目录 (2)一、设计要求 (3)二、方案论证 (3)三、直接数字频率合成器总电路图 (4)四、各子模块设计原理及分析说明 (5)4.1、脉冲发生电路 (5)4.2、频率相位预置与调节电路 (9)4.3、累加器电路 (10)4.4、相位控制电路 (11)4.5、波形存储器ROM电路 (12)4.6、测频电路 (14)4.7、不同波形选择电路 (15)4.8、动态译码显示电路 (16)五、程序下载、仿真与调试 (17)六、实验结果 (18)七、实验总结与感想 (23)八、参考文献 (23)一、设计要求1、利用QuartusII软件和SmartSOPC实验箱实现直接数字频率合成器(DDS)的设计;2、DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM 实现,RAM结构配置成212×10类型;3、具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到;4、系统具有使能功能;5、利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形;6、通过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证;7、可适当添加其他功能二、方案论证直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
实验三 DDS系统

CENTRAL SOUTH UNIVERSITY数字信号处理实验报告题目DDS 系统学生姓名钱学文学院物理与电子学院专业班级电子信息科学与技术1004班实验三 DDS 系统一、实验仪器:PC 机一台,JQ-NIOS-2C35实验箱一台及辅助软件(DSP Builder 、Matlab/Simulink 、Quartus II 、Modelsim )二、实验目的:1、初步了解JQ-NIOS-2C35实验箱的基本结构。
2、学习和熟悉基于DSP Builder 开发数字信号处理实验的流程。
3、理解DDS 设计的原理和方法。
三、实验原理:对于正弦信号发生器,它的输出可以用下式来描述:)t 2(Asin t Asin S out out pf ==ω (1-1)其中out S 是指该信号发生器的输出波形,out f 指输出信号对应的频率。
上式的表述对于t 是连续的,为了用数字逻辑实现该表达式,必须进行离散化处理。
用基准时钟clk 进行抽样,令正弦信号的相位:t pf out 2=θ (1-2)在一个clk 周期内,相位θ的变化量为:clkfout f p clkT out fp ⋅=⋅⋅=∆22θ (1-3) 其中clk f 指clk 的频率,对于p 2,可以理解成“满”相位。
为了对θ∆进行数字量化,把p 2切割成N 2份,由此,每个clk 周期的相位增量θ∆可用量化值θ∆B 来表示为:N2p2B ⋅∆≈∆θθ(1-4) 且θ∆B 为整数。
与(1-3)式联立,可得:,clk out f f =∆N2B θclk out f f ⋅=∆N2B θ (1-5)显然,信号发生器的输出可描述为:()()⎥⎦⎤⎢⎣⎡+⋅=∆+=∆-θθθθB B p K N 122sin A Asin S 1-k out(1-6) 其中,指前一个周期的相位值clk ,同样可以得出:N 1-K 2p2B 1-K ⋅≈θθ (1-7)由上面的推导可以看出,只要对相位的量化值进行简单的累加运算,就可以得到正弦信号的当前相位值,而用于累加的相位增量量化值θ∆B 决定了信号的输出频率out f ,并呈现简单的线性关系。
实验1 DDS信号源实验

信息学院班级:14电本实验1 DDS信号源实验一、实验目的1.了解DDS信号源的组成及工作原理;2.掌握DDS信号源使用方法;3.掌握DDS信号源各种输出信号的测试。
二、实验仪器1.DDS信号源(位于大底板左侧,实物图片如下)2. 20M双踪示波器1台三、实验原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。
DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。
在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。
PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。
对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。
四、各测量点的作用调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。
若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。
P03:DDS各种信号输出铆孔。
P04:20KHZ载波输出铆孔。
P09:抽样脉冲输出铆孔。
SS01:复合式按键旋纽,按键用来选择输出信号状态;旋纽用来改变信号频率。
LCD:显示输出信号的频率。
五、实验内容及步骤1)加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
DDS信号发生器实验报告

DDS信号发生器一、实验目的:学习利用EDA技术和FPGA实现直接数字频率综合器DDS的设计。
二、实验原理实验原理参考教材6.4节和6.11节相关内容。
三、实验内容1、实验原理参考教材6.4节相关内容。
根据6.4.2节和例6-10,在Quartus II上完成简易正弦信号发生器设计,进行编辑、编译、综合、适配、仿真;2、使用SignalTap II测试;3、硬件测试:进行引脚锁定及硬件测试。
信号输出的D/A使用DAC0832,注意其转换速率是1μs。
下载到实验系统上,接上D/A模块,用示波器测试输出波形;4、按照教材图6-72完成DDS信号发生器设计,进行编辑、编译、综合、适配、仿真,引脚锁定及硬件测试。
5、建立.mif格式文件。
四、实验步骤1、建立.mif文件:(1)设定全局参数:(2)设定波形:(3)文件保存:2、新建工程:3、LPM—ROM定制:(1)(2)(3)(4)(5)(6)(7)sinrom源程序:module SIN_CNT(RST,CLK,EN,Q,AR); output [7:0] Q;input [6:0] AR;input EN,CLK,RST;wire [6:0] TMP;reg[6:0] Q1;reg[7:0] F;reg C;always @(posedge CLK)if(F<AR) F<=F+1;elsebeginF=8'b00;C=~C;endalways @(posedge CLK or negedge RST)if(!RST) Q1<=7'b0000000;else if(EN) Q1<=Q1+1;else Q1<=Q1;assign TMP=Q1;sinrom IC1(.address(TMP),.clock(CLK),.q(Q)); endmodule4、锁相环:5、顶层文件:6、SignalTap II的使用7、锁定引脚8、下载。
DDS信号发生器实验报告含原理图PCB和代码

电子信息技术综合实训报告格式竞赛题名称:《DDS信号发生器的设计》队员名称:评阅人签名:2012年9月15日1、设计思路描述:本设计是一个以AT89C51单片机为核心基于DAC0832芯片的DDS信号发生器。
信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出正弦波和三角波,波形的转换可通过软件控制。
本设计通过按键选择波形,经过AT89C51单片机将数据输出到DAC0832,由数字信号转变为模拟信号,再通过运放器稳定地输出到示波器上。
原理框图如下:2、硬件电路图:DAC0832是采样频率为八位的D/A转换器件,芯片内有两级输入寄存器,使DAC0832具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。
D/A转换结果采用电流形式输出。
要是需要相应的模拟信号,可通过一个高输入阻抗的线性运算放大器实现这个供功能。
运放的反馈电阻可通过RFB端引用片内固有电阻,还可以外接。
该片逻辑输入满足TTL电压电平范围,可直接与TTL电路或微机电路相接。
下面是DAC0832引脚图和内部结构电路图DAC0832引脚功能说明:DI0~DI7:数据输入线,TLL电平。
ILE:数据锁存允许控制信号输入线,高电平有效。
CS:片选信号输入线,低电平有效。
WR1:为输入寄存器的写选通信号。
XFER:数据传送控制信号输入线,低电平有效。
WR2:为DAC寄存器写选通输入线。
Iout1:电流输出线。
当输入全为1时Iout1最大。
Iout2: 电流输出线。
其值与Iout1之和为一常数。
Rfb:反馈信号输入线,芯片内部有反馈电阻。
Vcc:电源输入线 (+5v~+15v)Vref:基准电压输入线 (-10v~+10v)AGND:模拟地,摸拟信号和基准电源的参考地。
DGND:数字地,两种地线在基准电源处共地比较好。
主控电路及数模转换电路分别如下:主控电路数模转换电路3软件流程图:4测试方法描述:运用proteus软件设计好电路图,将程序代码编译好以后载入proteus中的AT89C51芯片进行仿真。
DDS 直接数字频率合成器 实验报告(DOC)

直接数字频率合成器(DDS)实验报告课程名称电类综合实验实验名称直接数字频率合成器设计实验日期2015.6.1—2013.6.4学生专业测试计量技术及仪器学生学号114101002268学生姓名陈静实验室名称基础实验楼237教师姓名花汉兵成绩摘要直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。
本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。
其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。
经控制能够实现保持、清零功能。
除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。
实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。
本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。
最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。
关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节AbstractThe Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last.Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment目录一、设计内容 (4)二、设计原理 (4)2.1 DDS概念 (4)2.2 DDS的组成及工作原理 (4)三、设计要求 (6)3.1 基本要求 (6)3.2 提高要求 (6)四、设计内容 (6)4.1 分频电路 (6)4.2 频率预置与调节电路 (10)4.3 累加器 (12)4.4 波形存储器(ROM) (13)4.5 测频电路 (19)4.6 译码显示电路 (21)4.7 消颤电路 (22)4.8 总电路 (23)五、电路调试仿真与程序下载 (24)六、示波器波形图 (25)七、实验中遇到的问题及解决方法 (25)八、电路改进 (26)九、实验感想 (28)十、参考文献 (28)一、设计内容设计一个频率及相位均可控制的具有正弦和余弦输出的直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)。
南理工dds电类综合实验报告(dds)直接数字频率合成器设计大学论文

南京理工大学研究生电类综合实验实验报告作者: 袁一超学号:514101001333学院(系):机械工程学院专业: 航天工程题目: (DDS)直接数字频率合成器设计指导者:花汉兵姜萍2015年6月电类综合实验(实验报告)中文摘要电类综合实验(实验报告)外文摘要电类综合实验(实验报告)第I 页共II 页目次1设计内容 (1)2方案论证 (1)2.1DDS 概念 (1)2.2DDS 的组成及工作原理 (1)2.3DDS 的工作流流程图 (1)2.4DDS 的总体框图 (2)3设计要求 (3)3.1设计基本要求 (3)3.2设计提高部分要求 (3)4各基本电路子模块设计原理 (3)4.1脉冲发生电路 (3)4.1.1二分频 (4)4.1.2三分频 (4)4.1.3八分频 (4)4.1.4十分频 (5)4.1.5千分频 (5)4.1.6总脉冲电路图 (5)4.2频率和相位调节电路 (5)4.2.1设计原理 (5)4.2.2频率和相位调节电路总图 (6)4.3累加器 (8)4.3.1累加器的原理 (8)4.3.2电路 (8)4.3.3波形仿真 (9)4.4加法器 (9)4.4.1设计原理 (9)4.4.2电路图 (10)4.5波形存储器(ROM) (10)4.5.1波形存储器(ROM)的原理 (10)4.5.2存储器(ROM)的设计 (11)4.6DDS电路 (15)4.6.1设计原理 (15)4.6.2电路总图 (15)4.7测频电路 (15)4.7.1设计原理 (15)4.7.2测频电路电路图 (16)4.8动态显示电路 (17)4.8.1设计原理 (17)电类综合实验(实验报告)第II 页共II 页4.8.2电路图 (17)4.9消颤电路 (18)4.9.1设计原理 (18)4.9.2电路图 (18)5整体封装图 (18)6管脚分配仿真下载 (19)6.1管脚分配 (19)6.2仿真 (19)6.3下载 (20)结论 (21)参考文献 (22)电类综合实验(实验报告)第1 页共22 页1设计内容设计一个频率及相位均可控制的具有正弦和余弦输出的直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS或DDS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京理工大学电类综合实验实验报告作者: 徐伟伟学号:314101002254 学院(系):机械工程专业: 机械制造及其自动化题目: 直接数字频率合成器(DDS)指导老师:花汉兵2015年6月摘要:本文介绍了直接数字式频率合成器(DDS)的设计以及其附加功能的拓展,主要包括了频率控制、加法电路、相位控制、测频电路、译码显示、输出多种波形(包括正余弦、三角波、锯齿波、方波梯形波)、D/A转换等模块。
文中详细说明了实验原理,并用Quartus II 软件对各模块进行电路设计,最后在SmartSOPC 实验箱上演示得到了预期的实验结果。
关键词:DDS 实验原理电路设计Quartus II SmartSOPCAbstract:This paper introduces the design of Direct Digital Frequency Synthesizer (DDS) and its additional function, mainly including the frequency control, add circuit, the phase control, frequency measuring circuit, decoding display and the output of a variety of waveform (including cosine, triangular wave, sawtooth wave and square wave), D/A conversion etc. In this paper, the experimental principle is described in detail, and the circuits of each module are designed with the use of Quartus II software. Finally, the desired results are presented on the SmartSOPC experiment box.Key words: DDS, experiment principle, circuit design, Quartus II, SmartSOPC目录1 设计说明 (1)1.1 设计内容 (1)1.2 设计目的 (1)1.3 设计要求 (1)1.3.1 基本要求 (1)1.3.2 提高要求 (1)1.4 设计原理 (2)1.4.1 DDS概念 (2)1.4.2 DDS组成及工作原理 (2)2 实验电路设计 (6)2.1 电路总体设计图 (6)2.2 各模块设计 (6)2.2.1 分频电路 (6)2.2.2 频率相位控制电路 (10)2.2.3 波形存储器电路 (16)2.2.4 波形选择电路 (20)2.2.5 显示电路 (20)2.2.6 消颤电路 (21)2.2.7 测频电路 (22)3 调试仿真及下载 (23)3.1 调试 (23)3.2 仿真 (24)3.3 下载 (24)4 实验结果 (25)4.1 仿真结果 (25)4.2 示波器结果 (25)4.3 实验结果 (28)5 设计感想 (29)致谢 (30)参考文献 (30)1 设计说明1.1 设计内容利用QuartusII软件和SmartSOPC实验箱设计一个频率及相位均可控制的具有正弦和余弦输出的直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS或DDS)。
1.2 设计目的(1)学习EDA集成工具软件QuartusII的使用;(2)学习基于可编程逻辑器件的EDA设计流程;(3)学会基于可编程逻辑器件的电路设计。
1.3 设计要求1.3.1 基本要求(1)利用QuartusII软件和SmartSOPC实验箱实现DDS的设计;(2)DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM 实现,RAM结构配置成212×10类型;(3)具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到;(4)系统具有使能功能;(5)利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形;(6)通过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证。
1.3.2 提高要求(1)通过按键(实验箱上的Si)输入DDS的频率和相位控制字,以扩大频率控制和相位控制的范围;(注意:按键后有消颤电路);(2)在数码管上显示生成的波形频率;(3)设计能输出多种波形(三角波、锯齿波、方波等)的多功能波形发生器;(4)充分考虑ROM结构及正弦函数的特点,进行合理的配置,提高计算精度;(5)基于DDS的AM调制器的设计;(6)自己添加其他功能。
1.4 设计原理1.4.1 DDS概念DDS是将先进的数字处理理论与方法引入频率合成的一项新技术,DDS把一系列数字量形式的信号通过数/模转换器转换成模拟量形式的信号。
在本系统中,DDS的具体工作过程是由N位相位累加器、N位加法器和N位累加寄存器组成。
每来一个时钟脉冲,N位加法器将频率控制字K与N位累加寄存器输出的累加相位数据相加,并把相加后的结果送至累加寄存器的输入端。
累加寄存器一方面将上一时钟周期作用后所产生的新的相位数据反馈到加法器的输入端,使加法器在下一时钟的作用下继续与频率控制字K相加;另一方面将这个值作为取样地址送入幅度/相位转换电路,幅度/相位转换电路根据这个地址输出相应的波形数据。
1.4.2 DDS组成及工作原理主电路是由脉冲信号发生电路利用分频器产生1MHz的时钟信号,该时钟信号驱动地址累加电路循环产生12位地址信息。
产生的地址信息同时输出到各种预存好函数信息的ROM的地址端,根据这一地址,各ROM便会输出地址所对应的函数值,再通过数据选通模块,根据我们的需要选择输出某路函数信息,送至实验箱上的D/A芯片,便能将二进制信息变为模拟量,最后用低通滤波器滤除高频分量,送至示波器便能输出较为清晰的函数图像。
DDS的组成及其工作原理结构图如图1.1所示:图1.1 DDS的组成及工作原理结构框图(1)频率预置与调节电路频率预置电路输入有清零、使能和频率控制字,频率控制字改变函数频率的原理主要是通过改变累加的步长改变输出信号的频率,没有频率控制字的时候,步长默认为1,当改变频率控制字为n时,频率则变为f/n.(2)累加器地址累加模块原理并不复杂,其主要由加法器和寄存器构成,累加的地址结果存储在寄存器中,每当一个时钟来到,原地址便加上预置的频率控制字成为新的地址并保存在寄存器中,以供稳定输出供ROM选择数据使用。
相位累加器如图1.2所示,当相位累加器累加满量时就会产生一次溢出,完成一个周期性的动作,相位累加器的组成= N位加法器+N位寄存器。
图1.2 N位相位累加器(3)波形存储器ROM模块是本系统的核心部分之一,该模块中储存了所需要的函数信息,用Matlab生成储存函数信息的. mif文件,再用Quartus II 中编辑好的LPM ROM 模块便能轻松产生对应的ROM模块,该系统所用的ROM有12位的地址线和10位的数据线,ROM中共有4096个数值。
其原理图如图1.3所示:图1.3 波形存储器(4)D/A转换器D/A转换器的作用:把已经合成的正弦波的数字量转换成模拟量。
其原理如图1.4所示:图1.4 D/A转换器工作原理图(5)低通滤波器低通滤波器的作用:滤除生成的阶梯形正弦波中的高频成分,将其变成光滑的正弦波。
如图1.5所示:图1.5 低通滤波器工作原理(6)核心单元电路及工作流程DDS的基本结构主要由相位累加器、相位调制器、正弦波数据表(ROM)、D/A 转换器构成。
相位累加器由N位加法器N位寄存器构成。
每来一个CLOCK,加法器就将频率控制字fwrod与累加寄存器输出的累加相位数据相加,相加的结果又反馈送至累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。
这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位累加。
由此,相位累加器在每一个时钟脉冲输入时,把频率控制字累加以此,相位累加器输出的数据作为波形存储器的相位取样地址,这样就可把存储在波形存储器内的波形抽样值进行找表查出,完成相位到幅值的转换。
频率和相位均可控制的具有正弦和余弦输出的DDS核心单元电路及其工作流程示意图如图1.6所示图1.6 核心单元电路及工作流程示意图2 实验电路设计2.1 电路总体设计图图2.1 总体电路设计图由电路总图可以直观的看出,该电路由5个模块组成,它们分别是分频电路、累加器及频率相位控制电路、显示电路、消颤电路和测频电路。
在下文中将会对各个模块加以详细说明。
2.2 各模块设计2.2.1 分频电路该实验平台已经提供了48MHz的时钟频率,本系统使用的基准频率是1Mhz 的时钟频率,因此我们需要对48Mhz进行48分频,但是动态显示电路也需要1Khz、1Hz和0.5Hz的时钟,因此我们需要设计多个分频器组合得到各种我们所需要的频率。
(1)二分频二分频电路就是一个D触发器,其原理图如下所示:图2.2 二分频电路图封装后:图2.3 二分频封装图仿真波形图:图2.4 二分频波形图(2)三分频三分频电路由两个D触发器来实现,其原理图如下所示;图2.5 三分频电路图封装后:图2.6 三分频封装图波形仿真图:图2.7 三分频波形图(3)八分频八分频是由3个二分频串联而成。
如下图所示:图2.8 八分频电路图波形仿真图:图2.9 八分频波形图(4)十分频电路十分频电路是由74163来实现,如下图所示:图2.10 十分频电路图封装后:图2.11 十分频封装图(5)1000分频1000分频是由3个十分频电路串联而成,其电路图如下所示:图2.11 1000分频电路图(6)分频电路总设计图图2.12 总分频电路封装后:图2.13 总分频封装图2.2.2 频率相位控制电路累加电路主要由加法器和寄存器构成,累加的地址结果存储在寄存器中,每当一个时钟来到,原地址便加上预置的频率控制字成为新的地址并保存在寄存器中,以供稳定输出供ROM选择数据使用。
频率预置与调节电路由四部分组成,首先需将输入信号进行模100的计数,在将所记的8421BCD码转化为2进制数,以控制频率域相位的变化。
该设计实现一个频率和相位自动递增的过程。
频率变化范围由100HZ-8KHZ。
通过开关K1和K2分别控制频率的清零和保持端,以便计数到需要值时清零重新开始递增和保持同一频率显示。