课时作业55 曲线与方程
高考数学总复习课时作业55曲线与方程理北师大版

A 级1.已知两点M( -2,0),N(2,0),点 P 为坐标平面内的动点,知足→→→ →| MN|·|MP|+MN· NP= 0,则动点P( x,y) 的轨迹方程为 ()A.y2= 8x B.y2=- 8xC.y2= 4x D.y2=- 4x2.方程 ( x2+y2- 4)x+ y+1=0的曲线形状是 ()3.已知点P 在定圆 O的圆内或圆周上,动圆C过点 P 与定圆 O相切,则动圆C的圆心轨迹可能是 ()A.圆或椭圆或双曲线B.两条射线或圆或抛物线C.两条射线或圆或椭圆D.椭圆或双曲线或抛物线4.设点A为圆 ( x- 1) 2+y2= 1上的动点, PA是圆的切线,且| PA|=1,则 P 点的轨迹方程为 ()A.y2= 2x B. ( x- 1) 2+y2= 4C.y2=- 2x D. ( x- 1) 2+y2= 25.长为 3 的线段的端点,B 分别在x轴、y轴上挪动,→= 2→,则点C的轨迹AB A AC CB是 ()A.线段B.圆C.椭圆D.双曲线0,y→→6.平面上有三点A( -2,y) ,B2, C( x, y),若 AB ⊥B C,则动点 C 的轨迹方程为 ________.7.已知△ABC的周长为6,A( - 1,0), B(1,0),则极点 C的轨迹方程为________.8.已知定点A(2,0) ,它与抛物线y2=x上的动点P连线的中点M的轨迹方程是________.9.已知⊙O 的方程是x2+y2- 2=0,⊙′的方程2+y2- 8 +10= 0,由动点P向⊙OO x x和⊙ O′所引的切线长相等,则动点P的轨迹方程是________.10.已知点A( - 1,0), B(2,4),△ ABC的面积为10,求动点C的轨迹方程.→→11.已知点A(-2,0), B(2,0),曲线C上的动点P知足 AP· BP=-3,(1)求曲线 C的方程;(2) 若过定点M(0,-2)的直线 l 与曲线 C有交点,求直线 l 的斜率 k 的取值范围.B 级1.平面直角坐标系中,已知两点A(3,1), B(-1,3),若点 C→→→知足 OC=λOA+λ OB( O12为原点 ) ,此中λ,λ ∈R,且λ +λ =1,则点C的轨迹是()1212A.直线B.椭圆C.圆D.双曲线2.(2011 ·北京卷 ) 曲线C 是平面内与两个定点1(-1,0)和2(1,0)的距离的积等于常F F数a2(a>1)的点的轨迹.给出以下三个结论:①曲线 C过坐标原点;②曲线 C对于坐标原点对称;③若点P 在曲线C上,则△12 的面积不大于12.F PF2a此中全部正确的结论的序号是________.3.(2012 ·山西省考前适应性训练) 已知椭圆的中心是坐标原点O,焦点 F1, F2在 y 轴上,它的一个极点为(2,0) ,且中心到直线AF的距离为焦距的1的直线,过点 (2,0)14l 与椭圆交于不一样的两点,,点N在线段上.P Q PQ(1)求椭圆的标准方程;(2)设| PM|·|NQ|= | PN| ·|MQ| ,求动点N的轨迹方程.详解答案课时作业 ( 五十五 )A级1.B |→| = 4,|→| =x+ 22+2,→·→=4(x-2) ,MN MP y MN NP∴ 4x+22+ y2+4( x-2)=0,∴ y2=-8x.2. C由题意可得x2+ y2-4=0,或 x+ y+1=0.它表示直线x+y+1=0和圆 x2x+y+1≥0,+ y2-4=0在直线 x+ y+1=0右上方的部分.3.C当点P在定圆O的圆周上时,圆C与圆 O内切或外切, O,P,C三点共线,∴轨迹为两条射线;当点 P 在定圆 O内时(非圆心),| OC|+| PC|= r 0为定值,轨迹为椭圆;当 P与 O重合时,圆心轨迹为圆.4. D如图 ,设 P ( x ,y ) ,圆心为 M (1,0) .连结 MA ,则 MA ⊥PA ,且 | MA |= 1,又∵ | PA | = 1, ∴| PM |= | MA |2+| PA | 2= 2,即 | PM |2=2,∴ ( x -1) 2+ y 2= 2.5. C 设 C ( x ,y ) , A ( a, 0) , B (0 , b ) ,则 a 2+ b 2= 9,①又 →= 2→ ,因此 (x - , ) =2( - , b - ) ,ACCB a yx y= 3 x ,a即3 ② b = 2y ,2y 2把②代入①式整理可得 x + 4 = 1. 应选 C.→y →y6.分析:AB = 2,-2 , B C = x , 2 .→→→ → y y2∵ AB ⊥ B C ,∴ AB ·BC =0,得 2·x - 2·2= 0. 得 y = 8x .答案:y 2= 8x7.分析: ∵A ( - 1,0) , B (1,0) ,∴ | AB | = 2,又∵△ ABC 的周长为 6,∴ | CA | +| CB | = 4>2,∴ C 点的轨迹是以 A , B 为焦点的椭圆 ( 去掉左、右极点 ) .22∵ 2a =4, c = 1,∴ b = a - c = 3.x 2 y 2∴轨迹方程为 4 + 3 = 1( x ≠± 2) .答案:x 2+ y 2= 1( x ≠± 2)438.分析:设 ( 1,1), ( , ) ,则y 12= 1,①P xy M x yxx 1+ 2x = 2x 1= 2x - 2又 M 为 AP 中点,∴,即 ,y1y 1= 2y = 2代入①得答案:221(2 y ) = 2x - 2,即 y = 2( x -1) .21y = 2( x - 1)9.分析:由⊙ O : x 2+y 2= 2,⊙ O ′: ( x - 4) 2+ y 2= 6 知两圆相离,而 2=2- 2,2= ′ 2-6,PTPO PQ PO22-6,设 P ( x , y ) ,∴ PO - 2= PO ′222 23即得 x + y - 2= ( x - 4) + y -6,即 x =2.答案: 3x =2222010.分析: ∵AB = 3 +4 = 5,∴ AB 边上高 h = 5 =4.故 C 的轨迹是与直线 AB 距离等于 4 的两条平行线.∵ k AB = 4,3的方程为 4 - 3 y + 4=0,可设轨迹方程为 4 x- 3 + = 0.ABx y c由| c -4|= 4 得 c = 24 或 c =- 16,5故动点 C 的轨迹方程为: 4x - 3y - 16= 0 或 4x - 3y + 24= 0.11.分析:(1) 设 P ( x , y ) ,→ → 2 2由 AP ·BP = ( x +2, y ) ·(x - 2, y ) =x - 4+ y =- 3,得 P 点轨迹 ( 即曲线 C ) 的方程为 x 2+y 2 =1,即曲线 C 是圆.(2) 可设直线 l 方程为 y = kx - 2,其一般方 程为: kx - y - 2=0,由直线l 与曲线 C 有交点,得 |0 -0- 2|k ≤- 3或 k ≥ 3,≤1,解得k 2+ 1即所求 k 的取值范围是 ( -∞,-3] ∪[ 3,+∞ ) .B 级1. A 设( , y ) ,则 →= ( x , y ),→=(3,1) , → =( - 1,3) ,C xOC OAOB→→→x = 3λ 1- λ2∵ OC =λ1OA + λ2OB ,∴,又 λ1+ λ 2= 1,y =λ1+ 3λ2∴ x +2 y - 5= 0,表示一条直线.2.分析:设 ( , y ) 为曲线C 上随意一点,A x122则由 | AF | ·|AF | =a ,得C : x + 1 2+ y 2· x - 12+y 2= a 2,把 (0,0) 代入方程可得 1= a 2,与 a > 1 矛盾,故①不正确; 当 M ( x , y ) 在曲线 C 上时,点 M 对于原点的对称点 M ′( - x ,- y ) 也知足方程,故曲线C 对于原点对称,故②正确;1 S △ F 1PF 2= | PF 1|| PF 2|sin ∠ F 1PF 221=2a2sin 答案:1∠F1PF2≤2a2,故③正确.②③y2x23.分析:(1) 设椭圆的标准方程是a2+b2=1(a>b>0).因为椭圆的一个极点是A( 2 ,0) ,故b2=2.1π1b2依据题意得,∠ AFO=6,sin∠ AFO=a,即 a=2b, a =8,因此椭圆的标准方程是y2+ x2=1.82(2) 设P( x1,y1) ,Q( x2,y2) ,N( x,y) ,由题意知,直线l 的斜率存在,设直线l 的方程为y = (-2) .k x直线 l 的方程与椭圆方程联立消去y 得:( k2+ 4) x2- 4k2x+ 4k2- 8= 0.由=16k 4- 4(k2+ 4)(4k2- 8)>0 ,得- 2< <2.k依据根与系数的关系得x1+x2=4k22,4k2- 84+kx x4+k又 | PM|·|NQ| =| PN| ·|MQ|,即 (2 -x1)( x2-x) = ( x-x1)(2 -x2) .解得 x=1,代入直线 l 的方程得 y=- k, y∈(-2,2).因此动点 N的轨迹方程为 x=1,y∈(-2,2).。
高中数学选修2-1课时作业5:2.1.1 曲线与方程

2.1.1 曲线与方程1.方程y=3x-2(x ≥1)表示的曲线为( ).A.一条直线B.一条射线C.一条线段D.不能确定[答案]:B[解析]:方程y=3x-2表示的曲线是一条直线,当x ≥1时,它表示一条射线.2.已知曲线C 的方程为2x 2-3y-8=0,则有( ).A.点(3,0)在C 上B.点20,-3⎛⎫ ⎪⎝⎭在C 上C.点3,12⎛⎫ ⎪⎝⎭在C 上D.点80,-3⎛⎫ ⎪⎝⎭在C 上 [答案]:D[解析]:经逐一检验知只有点80,-3⎛⎫ ⎪⎝⎭的坐标适合曲线C 的方程,故只有点80,-3⎛⎫ ⎪⎝⎭在曲线C 上.3.方程y=2||x x 表示的曲线的图象大致为( ).[答案]:C[解析]:当x>0时,y=21x x x =;当x<0时,y=2x x -=-1x ,即y=1,x 0,1,x 0.x x⎧>⎪⎪⎨⎪-<⎪⎩ 4.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( ).A.(x+3)2+y 2=4B.(x-3)2+y 2=1C.(2x-3)2+4y 2=1D.232x ⎛⎫+ ⎪⎝⎭+y 2=1 [答案]:C[解析]:设C (x 0,y 0),P (x ,y ).依题意有003,2.2x x y y +⎧=⎪⎪⎨⎪=⎪⎩所以002x 3,2y.x y =-⎧⎨=⎩ 由于点C (x 0,y 0)在曲线x 2+y 2=1上,所以(2x-3)2+(2y )2=1,即点P 的轨迹方程为(2x-3)2+4y 2=1.5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ).A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0[答案]:B[解析]:5.由于S △ABC =12|AB|·h=10, ∴h=4,即顶点C 到AB 所在直线的距离为4.易知AB 所在直线的方程为4x-3y+4=0. 设点C (x ,y ),则|434|5x y -+=h=4,∴4x-3y+4=±20. 6.平面内有两定点A ,B 且|AB|=4,动点P 满足|PA PB +u u u r u u u r |=4,则点P 的轨迹是( ).A.线段B.半圆C.圆D.直线[答案]:C[解析]:以AB 的中点为原点,以AB 所在的直线为x 轴建立直角坐标系,则A (-2,0),B (2,0).设P (x ,y ),则PA PB +u u u r u u u r =2PO uuu r =2(-x ,-y ).∴x 2+y 2=4.7.方程x 2+y 2-3x-2y+k=0表示的曲线经过原点的充要条件是k= .[答案]:0[解析]:若曲线过原点,则(0,0)适合曲线的方程,即02+02-3×0-2×0+k=0,得k=0.8.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN u u u u r |·|MP u u u r |+·MN NP u u u u r u u u r =0,则动点P (x ,y )的轨迹方程为 .[答案]:y 2=-8x[解析]:设点P 的坐标为(x ,y ),则MN u u u u r =(4,0),MP u u u r =(x+2,y ),NP uuu r =(x-2,y ).∴|MN u u u u r |=4,|MP u u u r|=MN u u u u r ·NP uuu r =4(x-2). 由已知条件得4(2-x ),整理得y 2=-8x.∴点P 的轨迹方程为y 2=-8x.9.在△ABC 中,A (-2,0),B (0,-2),顶点C 在曲线y=3x 2-1上移动,求△ABC 的重心的轨迹方程.解:设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1).由重心坐标公式得1120,302,3x x y y -++⎧=⎪⎪⎨-+⎪=⎪⎩∴113x 2,3y 2.x y =+⎧⎨=+⎩代入y=3x 2-1中,得3y+2=3(3x+2)2-1.∴所求轨迹方程为y=9x 2+12x+3. 10.若曲线y 2-xy+2x+k=0过点(a ,-a )(a ∈R ),求k 的取值范围.解:∵曲线y 2-xy+2x+k=0过点(a ,-a ),∴a 2+a 2+2a+k=0.∴k=-2a 2-2a=-221122a ⎛⎫++ ⎪⎝⎭. ∴k ≤12.∴k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.。
课时作业11:2.1.1 曲线与方程的概念

2.1.1 曲线与方程的概念基础巩固一、选择题1.设圆M 的方程为(x -3)2+(y -2)2=2,直线l 的方程为x +y -3=0,点P 的坐标为(2,1),那么( )A .点P 在直线l 上,但不在圆M 上B .点P 在圆M 上,但不在直线l 上C .点P 既在圆M 上,也在直线l 上D .点P 既不在圆M 上,也不在直线l 上2.f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.下列各组方程中表示相同曲线的是( ) A .x 2+y =0与xy =0 B.x +y =0与x 2-y 2=0 C .y =lg x 2与y =2lg x D .x -y =0与y =lg10x4.若方程x -2y -2k =0与2x -y -k =0所表示的两条曲线的交点在方程x 2+y 2=9的曲线上,则k =( ) A .±3 B .0 C .±2D. 一切实数 5.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( ) ①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③D .②③④6.曲线y =14x 2与x 2+y 2=5的交点是( )A .(2,1)B .(±2,1)C .(2,1)或(22,5)D .(±2,1)或(±25,5) 二、填空题7.如图所示曲线方程是__________________.8.方程(x2-4)2+(y2-4)2=0表示的图形是________.三、解答题9.若直线x+y-m=0被曲线y=x2所截得的线段长为32,求m的值.能力提升一、选择题1.方程4x2-y2+6x-3y=0表示的图形是()A.直线2x-y=0B.直线2x+y+3=0C.直线2x-y=0或直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=02.设曲线F1(x,y)=0和F2(x,y)=0的交点为P,那么曲线F1(x,y)-F2(x,y)=0必定() A.经过P点B.经过原点C.经过P点和原点D.不一定经过P点3.方程(x-2)2+(y+2)2=0表示曲线是()A.圆B.两条直线C.一个点D.两个点4.曲线y=-1-x2与曲线y=-|ax|(a∈R)的交点个数一定是()A.2B.4C.0D.与a的取值有关二、填空题5.方程1-|x|=1-y表示的曲线是________.6.已知直线y=2x-5与曲线x2+y2=k,当________时,有两个公共点;当________时,有一个公共点;当________时,无公共点.7.|x|+|y|=1表示的曲线围成的图形面积为____.三、解答题8.已知直线y=2x+b与曲线xy=2相交于A、B两点,且|AB|=5,求实数b的值.9.求方程|x2-1|=x+b的解的个数.参考答案基础巩固一、选择题 1.【答案】 C【解析】 将P (2,1)代入圆M 和直线l 的方程,得(2-3)2+(1-2)2=2且2+1-3=0,∴点P (1,2)既在圆(x -3)2+(y -2)2=2上也在直线l :x +y -3=0上,故选C. 2.【答案】 C【解析】 根据曲线与方程的概念知. 3.【答案】 D【解析】 ∵lg10x =x ,故x -y =0与y =lg10x 表示相同的曲线. 4.【答案】 A【解析】 两曲线的交点为(0,-k ),由已知点(0,-k )在曲线x 2+y 2=9上,故可得k 2=9,∴k =±3. 5.【答案】 D【解析】 y =-2x -3与4x +2y -1=0平行,无交点;将y =-2x -3代入x 2+y 2=3得5x 2+12x +6=0,Δ=144-4×5×6=24>0故有两个交点; 同理y =-2x -3与x 22±y 2=1也有交点.故选D.6.【答案】 B【解析】 易知x 2=4y 代入x 2+y 2=5得y 2+4y -5=0得(y +5)(y -1)=0解得y =-5,y =1,y =-5不合题意舍去,∴y =1,解得x =±2. 二、填空题 7.【答案】 |y |=x【解析】 曲线表示两条射线y =x (x ≥0)和y =-x (x ≥0)∴曲线方程为|y |=x . 8.【答案】 四个点【解析】 由⎩⎪⎨⎪⎧ x 2-4=0y 2-4=0,得⎩⎪⎨⎪⎧ x =2y =2,或⎩⎪⎨⎪⎧ x =2y =-2,或⎩⎪⎨⎪⎧ x =-2y =2,或⎩⎪⎨⎪⎧x =-2y =-2.故方程(x 2-4)2+(y 2-4)2=0表示的图形是四个点. 三、解答题9.解:设直线x +y -m =0与曲线y =x 2相交于A (x 1,y 1),B (x 2,y 2)两点,联立直线与曲线得⎩⎪⎨⎪⎧x +y -m =0,(1)y =x 2.(2)将(2)代入(1)得x 2+x -m =0, 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=1+(-1)2·|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2 =2·1+4m =32,所以1+4m =3,所以m 的值为2.能力提升一、选择题 1.【答案】 C【解析】 ∵4x 2-y 2+6x -3y =(2x +y )(2x -y )+3(2x -y )=(2x -y )(2x +y +3), ∴原方程表示两条直线2x -y =0和2x +y +3=0. 2.【答案】 A【解析】 设A 点坐标为(x 0,y 0),∴F 1(x 0,y 0)=0,F 2(x 0,y 0)=0,∴F 1(x 0,y 0)-F 2(x 0,y 0)=0,∴F 1(x ,y )-F 2(x ,y )=0过定点P .是否有F 1(0,0)=F 2(0,0)未知,故是否过原点未知. 3.【答案】 C【解析】 由题意得x =2且y =-2为一个点. 4.【答案】 A【解析】 画出图形,易知两曲线的交点个数为2. 二、填空题5.【答案】 两条线段【解析】 由已知得1-|x |=1-y,1-y ≥0,1-|x |≥0,∴y =|x |,|x |≤1∴曲线表示两条线段. 6.【答案】 k >5;k =5;0<k <5【解析】 首先应用k >0,再联立y =2x -5和x 2+y 2=k 组成方程组,利用“△”去研究. 7.【答案】 2【解析】 利用x ≥0,y ≥0时,有x +y =1;x ≥0,y ≤0时,x -y =1;x ≤0,y ≥0时,有-x +y =1;x ≤0,y ≤0时,-x -y =1,作出图形为一个正方形,其边长为2,面积为2. 三、解答题8.解:设A (x 1,y 1),B (x 2,y 2)联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2.消去y 整理得2x 2+bx -2=0, ①运用x 1+x 2=-b2,x 1·x 2=-1及y 1-y 2=(2x 1+b )-(2x 2+b )=2(x 1-x 2),得|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+4(x 1-x 2)2 =5·(x 1-x 2)2=5·b 24+4=5. 解得b 2=4,b =±2.而①式中Δ=b 2+16>0一定成立,故b =±2.9.解:方程|x 2-1|=x +b 的解的个数就是曲线y =|x 2-1|和y =x +b 的公共点的个数.作出曲线y =|x 2-1|,如图中实线部分,方程y =x +b 表示斜率是1,在y 轴上截距为b 的直线.当-1≤x ≤1时,y =|x 2-1|=1-x 2. 将y =x +b 代入y =1-x 2, 令Δ=0,得b =54.由图可知:当b <-1时,原方程无解; 当b =-1时,原方程只有一解; 当-1<b <1时,原方程有两解; 当b =1时,原方程有三解; 当1<b <54时,原方程有四解;当b =54时,原方程有三解;当b >54时,原方程有两解.。
2022届高考数学一轮复习课时作业曲线与方程

曲线与方程1.若方程x 2+y 2a =1(a 是常数),则下列结论正确的是( )A .任意实数a 方程表示椭圆B .存在实数a 方程表示椭圆C .任意实数a 方程表示双曲线D .存在实数a 方程表示抛物线2.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x3.(2020·静安区二模)方程2x 2-9xy +8y 2=0的曲线C 所满足的性质为( ) ①不经过第二、四象限;②关于x 轴对称;③关于原点对称;④关于直线y =x 对称.A .①③B .②③C .①④D .①②4.(2020·成都模拟)设C 为椭圆x 2+y 25=1上任意一点,A (0,-2),B (0,2),延长AC 至点P ,使得|PC |=|BC |,则点P 的轨迹方程为( )A .x 2+(y -2)2=20B .x 2+(y +2)2=20C .x 2+(y -2)2=5D .x 2+(y +2)2=55.在△ABC 中,B (-2,0),C (2,0),A (x ,y ),给出△ABC 满足的条件,就能得到动点A 的轨迹方程.下表给出了一些条件及方程:A .C 3,C 1,C 2B .C 1,C 2,C 3 C .C 3,C 2,C 1D .C 1,C 3,C 26.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A .x 29+y 24=1 B .y 29+x 24=1 C .x 225+y 29=1D .y 225+x 29=17.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________.8.一条线段的长等于6,两端点A ,B 分别在x 轴和y 轴的正半轴上滑动,P 在线段AB 上且AP→=2PB →,则点P 的轨迹方程是________.9.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.10.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,求顶点A 的轨迹方程.11.如图,P 是圆x 2+y 2=4上的动点,点P 在x 轴上的射影是点D ,点M 满足DM→=12DP →.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形; (2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.能力提高1.(2020·宁城模拟)如图是房间壁灯照到墙上的光影的照片,壁灯轴线与墙面平行,则光影的边缘是( )A .抛物线B .双曲线一支C .椭圆D .抛物线或双曲线2.(2020·湖北八校二联)如图,AB 是与平面α交于点A 的斜线段,点C 满足|BC |=λ|AC |(λ>0),且在平面α内运动,给出以下几个命题:①当λ=1时,点C 的轨迹是抛物线;②当λ=1时,点C 的轨迹是一条直线;③当λ=2时,点C 的轨迹是圆;④当λ=2时,点C 的轨迹是椭圆;⑤当λ=2时,点C 的轨迹是双曲线.其中正确的命题是________(将所有正确命题的序号填到横线上).所以当λ=2时,点C 的轨迹是圆.故②③正确.]3.在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x,1),N (x ,-2),若实数λ使得λ2OM →·ON →=A 1P →·A 2P →(O 为坐标原点).求P 点的轨迹方程,并讨论P 点的轨迹类型.扩展应用1.(2020·浦东新区三模)数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C :(x 2+y 2)3=16x 2y 2为四叶玫瑰线,下列结论正确的有( )①方程(x 2+y 2)3=16x 2y 2(xy <0),表示的曲线在第二和第四象限; ②曲线C 上任一点到坐标原点O 的距离都不超过2; ③曲线C 构成的四叶玫瑰线面积大于4π;④曲线C 上有5个整点(横、纵坐标均为整数的点). A .①② B .①②③ C .①②④D .①③④2.(2020·宝山区模拟)如图,某野生保护区监测中心设置在点O 处,正西、正东、正北处有三个监测点A ,B ,C ,且|OA |=|OB |=|OC |=30 km ,一名野生动物观察员在保护区遇险,发出求救信号,三个监测点均收到求救信号,A 点接收到信号的时间比B 点接收到信号的时间早40V 0秒(注:信号每秒传播V 0千米).(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系,根据题设条件求观察员所有可能出现的位置的轨迹方程;(2)若已知C点与A点接收到信号的时间相同,求观察员遇险地点坐标,以及与监测中心O的距离;(3)若C点监测点信号失灵,现立即以监测点C为圆心进行“圆形”红外扫描,为保证有救援希望,扫描半径r至少是多少公里?曲线与方程1.若方程x 2+y 2a =1(a 是常数),则下列结论正确的是( )A .任意实数a 方程表示椭圆B .存在实数a 方程表示椭圆C .任意实数a 方程表示双曲线D .存在实数a 方程表示抛物线B [当a >0且a ≠1时,该方程表示椭圆;当a <0时,该方程表示双曲线;当a =1时,该方程表示圆.故选B.]2.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4xA [设点P (x ,y ),则Q (x ,-1).∵QP →·QF →=FP →·FQ →,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2),即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹C 的方程为x 2=4y .]3.(2020·静安区二模)方程2x 2-9xy +8y 2=0的曲线C 所满足的性质为( ) ①不经过第二、四象限;②关于x 轴对称;③关于原点对称;④关于直线y =x 对称.A .①③B .②③C .①④D .①②A [由题意,2x 2-9xy +8y 2=0化为:9xy =2x 2+8y 2≥0,说明x ,y 同号或同时为0,所以图形不经过第二、四象限,①正确;-y 换y ,方程发生改变,所以图形不关于x 轴对称,所以②不正确;以-x 代替x ,以-y 代替y ,方程不变,所以③正确;方程2x 2-9xy +8y 2=0,x ,y 互换,方程化为8x 2-9xy +2y 2=0,方程已经改变,所以④不正确.故选A.]4.(2020·成都模拟)设C 为椭圆x 2+y 25=1上任意一点,A (0,-2),B (0,2),延长AC 至点P ,使得|PC |=|BC |,则点P 的轨迹方程为( )A .x 2+(y -2)2=20B .x 2+(y +2)2=20C .x 2+(y -2)2=5D .x 2+(y +2)2=5B [如图,由椭圆方程x 2+y 25=1,得a 2=5,b 2=1,∴c =a 2-b 2=2,则A (0,-2),B (0,2)为椭圆两焦点,∴|CA |+|CB |=2a =25,∵|PC |=|BC |, ∴|P A |=|PC |+|CA |=|BC |+|CA |=2 5.∴点P 的轨迹是以A 为圆心,以25为半径的圆,其方程为x 2+(y +2)2=20.故选B.]5.在△ABC 中,B (-2,0),C (2,0),A (x ,y ),给出△ABC 满足的条件,就能得到动点A 的轨迹方程.下表给出了一些条件及方程:条件方程 ①△ABC 周长为10 C 1:y 2=25 ②△ABC 面积为10 C 2:x 2+y 2=4(y ≠0) ③△ABC 中,∠A =90°C 3:x 29+y 25=1(y ≠0)A .C 3,C 1,C 2B .C 1,C 2,C 3 C .C 3,C 2,C 1D .C 1,C 3,C 2A [①△ABC 的周长为10,即|AB |+|AC |+|BC |=10,又|BC |=4,所以|AB |+|AC |=6>|BC |,此时动点A 的轨迹为椭圆,与C 3对应;②△ABC 的面积为10,所以12|BC |·|y |=10,即|y |=5,与C 1对应;③因为∠A =90°,所以AB →·AC →= (-2-x ,-y )·(2-x ,-y )=x 2+y 2-4=0,与C 2对应.故选A.]6.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M的轨迹方程为( )A .x 29+y 24=1 B .y 29+x 24=1 C .x 225+y 29=1D .y 225+x 29=1A [设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0), 则⎩⎪⎨⎪⎧ x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.]7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________.(x -10)2+y 2=36(y ≠0) [设A (x ,y ), 则D ⎝ ⎛⎭⎪⎫x 2,y 2.∴|CD |=⎝ ⎛⎭⎪⎫x 2-52+y24=3, 化简得(x -10)2+y 2=36,由于A ,B ,C 三点构成三角形, ∴A 不能落在x 轴上, 即y ≠0.]8.一条线段的长等于6,两端点A ,B 分别在x 轴和y 轴的正半轴上滑动,P 在线段AB 上且AP→=2PB →,则点P 的轨迹方程是________.4x 2+y 2=16(x >0,y >0) [设P (x ,y ),A (a,0),B (0,b ), 则a 2+b 2=36.因为AP→=2PB →,所以(x -a ,y )=2(-x ,b -y ),所以⎩⎪⎨⎪⎧x =a 3,y =2b3,即⎩⎪⎨⎪⎧a =3x ,b =32y ,代入a 2+b 2=36,得9x 2+94y 2=36,即4x 2+y 2=16.]9.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.x 24+y 23=1(y ≠0) [设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,所以|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).]10.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,求顶点A 的轨迹方程.[解] 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |.所以|AB |-|AC |=22<4,所以点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2, 所以b =2,所以轨迹方程为x 22-y 22=1(x >2).11.如图,P 是圆x 2+y 2=4上的动点,点P 在x 轴上的射影是点D ,点M 满足DM→=12DP →.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形; (2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.[解] (1)设M (x ,y ),则D (x,0), 由DM→=12DP →知,P (x,2y ),∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 为椭圆. (2)设E (x ,y ),由题意知l 的斜率存在, 设l :y =k (x -3),代入x 24+y 2=1, 得(1+4k 2)x 2-24k 2x +36k 2-4=0,(*) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k1+4k 2.∵四边形OAEB 为平行四边形, ∴OE →=OA →+OB →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2,又OE →=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k 2,y =-6k1+4k 2,消去k ,得x 2+4y 2-6x =0,由(*)中Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0, 得k 2<15,∴0<x <83.∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝ ⎛⎭⎪⎫0<x <83.能力提高1.(2020·宁城模拟)如图是房间壁灯照到墙上的光影的照片,壁灯轴线与墙面平行,则光影的边缘是( )A .抛物线B .双曲线一支C .椭圆D .抛物线或双曲线B [房间壁灯向上照射,区域可理解为顶点在下面的圆锥,墙面不与圆锥面的母线平行,结果不是抛物线,又壁灯轴线与墙面平行,则不是椭圆,而墙面与圆锥侧面相交,且不过圆锥顶点,又与壁灯轴线平行,则结果为双曲线的一支.故选B.]2.(2020·湖北八校二联)如图,AB 是与平面α交于点A 的斜线段,点C 满足|BC |=λ|AC |(λ>0),且在平面α内运动,给出以下几个命题:①当λ=1时,点C 的轨迹是抛物线;②当λ=1时,点C 的轨迹是一条直线;③当λ=2时,点C 的轨迹是圆;④当λ=2时,点C 的轨迹是椭圆;⑤当λ=2时,点C 的轨迹是双曲线.其中正确的命题是________(将所有正确命题的序号填到横线上).②③ [在△ABC 中,|BC |=λ|AC |,当λ=1时,|BC |=|AC |,过AB 的中点作线段AB 的垂面β,则点C 在α与β的交线上,所以点C 的轨迹是一条直线.当λ=2时,|BC |=2|AC |,设B 在平面α内的射影为D ,连接BD ,CD ,AD (图略).设|BD |=h ,则|BC |=|CD |2+h 2.设|AD |=2a ,在平面α内,以AD 所在直线为x 轴,AD 的垂直平分线为y 轴,AD→的方向为x 轴正方向,建立平面直角坐标系(图略),设C (x ,y ),则A (-a,0),D (a,0),|CA |=(x +a )2+y 2,|CD |=(x -a )2+y 2,|CB |=|CD |2+h 2=(x -a )2+y 2+h 2,所以(x -a )2 +y 2+h 2=2(x +a )2+y 2,化简可得⎝ ⎛⎭⎪⎫x +53a 2+y 2=16a 29+h23,所以当λ=2时,点C 的轨迹是圆.故②③正确.]3.在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x,1),N (x ,-2),若实数λ使得λ2OM →·ON →=A 1P →·A 2P →(O 为坐标原点).求P 点的轨迹方程,并讨论P 点的轨迹类型.[解] OM →=(x,1),ON →=(x ,-2),A 1P →=(x +2,y ),A 2P →=(x -2,y ). ∵λ2OM →·ON →=A 1P →·A 2P →,∴(x 2-2)λ2=x 2-2+y 2,整理得(1-λ2)x 2+y 2=2(1-λ2).①当λ=±1时,方程为y =0,轨迹为一条直线;②当λ=0时,方程为x 2+y 2=2,轨迹为圆;③当λ∈(-1,0)∪(0,1)时,方程为x 22+y 22(1-λ2)=1,轨迹为中心在原点,焦点在x 轴上的椭圆;④当λ∈(-∞,-1)∪(1,+∞)时,方程为x 22-y 22(λ2-1)=1,轨迹为中心在原点,焦点在x 轴上的双曲线.扩展应用1.(2020·浦东新区三模)数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C :(x 2+y 2)3=16x 2y 2为四叶玫瑰线,下列结论正确的有( )①方程(x 2+y 2)3=16x 2y 2(xy <0),表示的曲线在第二和第四象限;②曲线C 上任一点到坐标原点O 的距离都不超过2;③曲线C 构成的四叶玫瑰线面积大于4π;④曲线C 上有5个整点(横、纵坐标均为整数的点).A .①②B .①②③C .①②④D .①③④A [对于①,因为xy <0,所以x 与y 异号,故图象在第二和第四象限,即①正确.对于②,因为x 2+y 2≥2xy (x >0,y >0),所以xy ≤x 2+y 22,所以(x 2+y 2)3=16x 2y 2≤16×(x 2+y 2)24=4(x 2+y 2)2, 所以x 2+y 2≤4,即②正确.对于③,以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即③错误.把x =2,y =2代入曲线C ,可知等号两边成立,所以曲线C在第一象限过点(2,2),由曲线的对称性可知,该点的位置是图中的点M,对于④,只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C的方程验证可知,等号不成立,所以曲线C在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线C只经过整点(0,0),即④错误.故选A.]2.(2020·宝山区模拟)如图,某野生保护区监测中心设置在点O处,正西、正东、正北处有三个监测点A,B,C,且|OA|=|OB|=|OC|=30 km,一名野生动物观察员在保护区遇险,发出求救信号,三个监测点均收到求救信号,A点接收到信号的时间比B点接收到信号的时间早40V0秒(注:信号每秒传播V0千米).(1)以O为原点,直线AB为x轴建立平面直角坐标系,根据题设条件求观察员所有可能出现的位置的轨迹方程;(2)若已知C点与A点接收到信号的时间相同,求观察员遇险地点坐标,以及与监测中心O的距离;(3)若C点监测点信号失灵,现立即以监测点C为圆心进行“圆形”红外扫描,为保证有救援希望,扫描半径r至少是多少公里?[解](1)以O为原点,直线AB为x轴建立平面直角坐标系,A点接收到信号的时间比B点接收到信号的时间早40V0秒,可知野生动物观察员在保护区遇险,发出求救信号的位置,在以AB为焦点的双曲线的左支,所以c=30,2a=40,所以a=20,则b=105,所以观察员所有可能出现的位置的轨迹方程为x2400-y2500=1,x<0.(2)已知C点与A点接收到信号的时间相同,则观察员遇险地点既在双曲线上,又在y=-x(x<0)上,所以⎩⎪⎨⎪⎧ y =-x ,x 2400-y 2500=1,可得x =-205,y =205,观察员遇险地点坐标(-205,205),观察员遇险地点与监测中心O 的距离为 2 000+2 000=2010.(3)由题意可得以监测点C 为圆心进行“圆形”红外扫描,可得x 2+(y -30)2=r 2,与x 2400-y 2500=1,x ≤0联立,消去x 可得9y 2-300y +6 500-5r 2=0, Δ=90 000-36(6 500-5r 2)≥0,解得r ≥20 2.为保证有救援希望,扫描半径r 至少是202公里.。
2019版数学一轮高中全程复习方略课时作业55曲线与方程+Word版含解析.docx

课时作业55曲线与方程[授课提示:对应学生用书第258页]一、选择题1.方程(x2+y2—4)yjx+y+1 =0的曲线形状是( )[x2+^2—4=0, 解析:由题意可得x+y+l= 0或,1兀十1刁0,它表示直线x+尹+1 = 0和圆x2-\~y2—4 = 0在直线x~\~y-\-1=0右上方的部分.答案:C2.设点/为圆(x-l)2+^2=l ±的动点,刃是圆的切线,且冋|=1,则P 点的轨迹方程为()A・y2 = 2x B. (x~l)2+y2=4C・y2=—2x D. (x—1 )2 +y2— 2解析:如图,设P(x, y),圆心为M(l,0)・连接MA,则胚4丄刊,且|胚4| =1.又・・・|冲|= _____・・・ | W =yf\MAf+\R4^=边,即|PA/|2=2, A(X-1)2+/=2.答案:D3.(2018-珠海模拟)己知点/(1,0),直线人y=2x~4,点7?是直线/上的一—►—►点,若RA=AP,则点P的轨迹方程为( )A. y= _2xB. y=2xC ・y=2x—8D ・y=2x+4―►—►解析:设P(x, y), R(X\, /),由RA=AP知,点A是线段RP的中点,"x+xi2 =1,[X!=2-X,・・・], 即Z±2L_n31 = —)人I 2 _山・・•点门)在直线y=2x~4上,••吵i=2x]—4, /. 一尹=2(2—x)一4,即y=2x.答案:B4.已知点弔,0),直线/:x=—点B是/上的动点.若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线解析:由已知^\MF\ = \MB\,根据抛物线的定义知,点M的轨迹是以点F 为焦点,直线Z为准线的抛物线.答案:D5・(2018-河北衡水六调,8)已知/(—1,0), B 是圆F:x2-2x+y2~\\=0(F 为圆心)上一动点,线段M的垂育平分线交貯于P,则动点P的轨迹方程为() 2 2 2 2A — 1 R U 1A.]?十][一1 匕6 35_,2 2 2 2C旨-牙=1 D. f+f = 1解析:由题意^\PA\=\PB\. :.\PA\+\PI^=\PB\+\PF]=r=2yl3>\AF]=29 :. 点P 的轨迹是以A. F为焦点的椭圆,且a=百,c=l, ・・・b=吊,・•・动点P的 2 7轨迹方程为〒+牙=1,故选D.答案:D―►6・已知/(一1,0), 5(1,0)两点,过动点M作x轴的垂线,垂足为N,若Ml/—► —►=MN・NB,当久V0时,动点M的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线—►—► —►解析:设M(JC, y),则N(x,0),所以MN2=y2,1,0)・(1 —x,0)2=久(1 —工),所以y2—A(1 —x2),即变形为X24~1.又因为久<0,所以动点M的轨迹为双曲线.答案:C二、填空题(ci}苗,0)(Q>0),且7・在厶/BC屮,力为动点,B, C为定点,㊁,满足条件sinC—sin5=|sirk4,则动点A的轨迹方程是 ___________解析:由正弦定理得噗1—劈二养1!肆,即\AB\~\AC\=^BC\,故动点/是以B, C为焦点,号为实轴长的双曲线右支.即动点A的轨迹方程为爭一豊_=l(x>0且尹工0)・答案:今4—豊■=l (x>0且尹工0)8. (2018-河南开封模拟)如图,已知圆E : (%+^3)2+/=16,点、F (书,0), P 是圆E 上任意一点.线段PF 的垂宜平分线和半径PE 相交于0.则动点Q 的轨 迹厂的方程为 ___________________ .解析:连接0F,因为0在线段PF 的垂直平分线上,所^\QP\ = \QF\,得|0E| + \QF\ = \QE\ + \QP\ = \PE\=4.又|釦=2^3<4,得0的轨迹是以E, F 为焦点,长轴长为4的椭圆为亍+r 2答案:j+r=i9. (2018-中原名校联考,16)已知双曲线牙一長=1的左、右顶点分别为力2,点P (xi ,刃),0(兀1,—yi )是双曲线上不同于Ml 、力2的两个不同的动点,则 直线AiP 与A 2Q 交点的轨迹方程为 _____ ・解析:由题设知kd>V2, AK —迄,0),缶(迈,0),则有直线A X P 的方程为尸点尹+Q'①・・.兀工0,且\x\<^2,因为点P (%i ,yi )在双曲线y —/=1 ±,所以号—卅=1・2将③代入上式,整理得所求轨迹的方程为牙+#=1(详0,且详皿)・ 答案:牙+尸=1(兀工0,且 三、解答题10. 在平面直角坐标系兀0尹中,点B 与点/(—1,1)关于原点O 对称,P 是动 点,且直线AP 与BP 的斜率之积等于一*・求动点P 的轨迹方程.解析:因为点B 与点昇(一1,1)关于原点O 对称. 所以点B 的坐标为(1, 一1)・设点P 的坐标为(x,力,由题设知直线/卩与的斜率存在且均不为零,则尹一ly+1 _1 x+1 x— 1 3’联立①②,解得化简得/+3J?=4(X H±1).故动点P的轨迹方程为x2+3y=4(x^±l)・11.如下图所示,从双曲线%2—y2=l ±一点0引直线x+y=2的垂线,垂足为N.求线段0N的中点P的轨迹方程.解析:设动点P的坐标为(兀,尹),点0的坐标为(X[, 口), 则N(2x—x\2y—yi)代入x+y=2,得2x—xi+2y—y\ =2@又P0垂直于直线x+y=2,故=即x—y+y\ —X] =0.②3 1由①②解方程组得X!拐x+匆一1 ,代入双曲线方程即可得尸点的轨迹方程是2x2-2y2—2x~l-2y— 1 =0.[能力挑战]12.(2017-新课标全国卷III)在直角坐标系xOy屮,曲线y=x2+mx—2与x 轴交于力,B两点,点C的坐标为(0,1).当加变化时,解答下列问题:(1)能否出现/C丄BC的情况?说明理由;(2)证明过力,B, C三点的圆在尹轴上截得的弦长为定值. 解析:⑴不能出现/C丄BC的情况.理由如下:设^(%1 0), 5(X2 0)»则兀1,兀2 满足x2 + wx —2 = 0, 所以X|X2=—2・又点C的坐标为(0,1),—1 — 1 1 故AC的斜率与BC的斜率之积为丁•二一=—刁X\ X2Z所以不能出现MC丄3C的情况.由(1)可得xi+^2 —~m,所以的中垂线方程为x=-岁.,可得BC的中垂线方程为y-|=X2又X22+mxi—2 = 0, 可得]1/=_2-/=*x+|y_l所以过力,B, C三点的圆的圆心坐标为故圆在歹轴上截得的弦长为2 yp~^=3, 即过B, C三点的圆在y轴上截得的弦长为定值.。
2018-2019学年人教A版选修2-1 2.1.1曲线与方程 课时作业

第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程A级基础巩固一、选择题1.下列选项中方程与其表示的曲线正确的是()解析:对于A,x2+y2=1表示一个整圆;对于B,x2-y2=(x+y)(x-y)=0,表示两条相交直线;对于D,由lg x+lg y=0知x>0,y>0.答案:C2.若方程x-2y-2k=0与2x-y-k=0所表示的两条曲线的交点在方程x2+y2=9的曲线上,则k=()A.±3B.0C.±2 D.一切实数解析:两曲线的交点为(0,-k),由已知点(0,-k)在曲线x2+y 2=9上,故可得k 2=9,所以k =±3.答案:A3.方程x 2+xy =x 表示的曲线是( )A .一个点B .一条直线C .两条直线D .一个点和一条直线解析:由x 2+xy =x ,得x (x +y -1)=0,即x =0或x +y -1=0. 由此知方程x 2+xy =x 表示两条直线.答案:C4.方程|y |-1=1-(x -1)2表示的曲线是( )A .两个半圆B .两个圆C .抛物线D .一个圆 解析:方程|y |-1=1-(x -1)2可化为(x -1)2+(|y |-1)2=1(|y |≥1),y ≤-1时,(x -1)2+(y +1)2=1;y ≥1时,(x -1)2+(y -1)2=1;所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆.答案:A5.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”,以下不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y 解析:因为M 到平面内两点A (-5,0),B (5,0)距离之差为8, 所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线的右支,方程为x 216-y 24=1(x ≥4). A :直线x +y =5过点(5,0),满足题意;B :x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C :x 225+y 29=1的右顶点为(5,0),满足题意; D :方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以y =3,满足题意.故选B.答案:B二、填空题6.已知点A (a ,2)既是曲线y =mx 2上的点,也是直线x -y =0上的点,则m =________.解析:根据点A 在曲线y =mx 2上,也在直线x -y =0上,则⎩⎨⎧2=ma 2,a -2=0,所以⎩⎪⎨⎪⎧a =2,m =12.答案:127.已知A (0,1),B (1,0),则线段AB 的垂直平分线的方程是________.解析:设点M (x ,y )是线段AB 的垂直平分线上任意一点,也就是点M 属于集合P ={M ||MA |=|MB |}, 由两点间距离公式得x 2+(y -1)2=(x -1)2+y 2,化简得,y =x .答案:y =x8.下列命题正确的是________(填序号).①方程x y -2=1表示斜率为1,在y 轴上的截距是2的直线; ②到x 轴距离为5的点的轨迹方程是y =5;③曲线2x 2-3y 2-2x +m =0通过原点的充要条件是m =0. 答案:③三、解答题9.方程x 2(x 2-1)=y 2(y 2-1)所表示的曲线C .若点M (m ,2)与点N ⎝ ⎛⎭⎪⎫32,n 在曲线C 上,求m ,n 的值. 解:将点M (m ,2)与点N ⎝ ⎛⎭⎪⎫32,n 代入方程 x 2(x 2-1)=y 2(y 2-1),得⎩⎪⎨⎪⎧m 2(m 2-1)=2×1,34×⎝ ⎛⎭⎪⎫-14=n 2(n 2-1),所以m =±2,n =±12或±32. 10.求方程(x +y -1)x -1=0所表示的曲线. 解:依题意可得⎩⎨⎧x +y -1=0,x -1≥0或x -1=0, 即x +y -1=0(x ≥1)或x =1.综上可知,原方程所表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.B 级 能力提升1.已知定点P (x 0,y 0)不在直线l :f (x ,y )=0上,则方程f (x ,y )-f (x 0,y 0)=0表示( )A .过点P 且垂直于l 的直线B .过点P 且平行于l 的直线C .不过点P 但垂直于l 的直线D .不过点P 但平行于l 的直线答案:B2.设平面点集A ={(x ,y )|(y -x )⎝ ⎛⎭⎪⎫y -1x ≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________.答案: π23.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ→=OM →+ON →,求动点Q 的轨迹方程.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0).因为OQ →=OM →+ON →,即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y 2. 又点M 在圆C 上,所以x 20+y 20=4,即x 2+y 24=4(y ≠0). 所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).。
金优课高中数学北师大选修课时作业: 曲线与方程 含解析

第三章 §4 课时作业34一、选择题1.已知直线l 的方程是f (x ,y )=0,点M (x 0,y 0)不在l 上,则方程f (x ,y )-f (x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线解析:方程f (x ,y )-f (x 0,y 0)=0表示过点M (x 0,y 0)且和直线l 平行的一条直线.故选C.答案:C2.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(x +32)2+y 2=1解析:设动点C 的坐标为(x 0,y 0), P 点坐标为(x ,y ),则由中点坐标公式可得x =x 0+32,y =y 0+02,即x 0=2x -3,y 0=2y .又动点C (x 0,y 0)在曲线x 2+y 2=1上, ∴(2x -3)2+4y 2=1. 答案:C3.在第四象限内,到原点的距离等于2的点的轨迹方程是( ) A .x 2+y 2=4 B .x 2+y 2=4(x >0) C .y =-4-x 2D .y =-4-x 2(0<x <2)解析:注意所求轨迹在第四象限内. 答案:D4.[2014·广东省珠海一中模考]点A (2,0),点B 在圆x 2+y 2=1上,点C 是∠AOB 的平分线与线段AB 的交点,则当点B 运动时,点C 的轨迹方程为( )A .(x -23)2+y 2=49B .(x +23)2+y 2=49C .(x -13)2+y 2=49D . (x +13)2+y 2=49解析:本题主要考查求曲线的方程.设B (x 0,y 0),C (x ,y )由|OA ||OB |=2,得AC →=2CB →,即(x -2,y )=2(x 0-x ,y 0-y )⇒⎩⎨⎧x 0=32x -1y 0=32y,因为点B (x 0,y 0)在圆x 2+y 2=1上,代入后化简得(x -23)2+y 2=49,故选A.答案:A 二、填空题5.动点P 到点(1,-2)的距离为4,则动点P 的轨迹方程为________. 解析:设P (x ,y ),由题意易知所求轨迹为圆,即(x -1)2+(y +2)2=16. 答案:(x -1)2+(y +2)2=166.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________. 解析:设圆C 的方程为:(x -a )2+(y -b )2=r 2, 圆心(a ,b )到直线x -y -1=0的距离 d =|a -b -1|2=r ,①又圆C 过A (4,1),B (2,1), ∴(4-a )2+(1-b )2=r 2, ② (2-a )2+(1-b )2=r 2,③由①②③,得a =3,b =0,r =2, ∴圆的方程为(x -3)2+y 2=2. 答案:(x -3)2+y 2=27.由动点P 向圆O :x 2+y 2=1引两条切线P A 、PB ,切点分别为A 、B ,∠APB =60°,则动点P 的轨迹方程为__________.解析:由题意得OP =2,为定长,所以点P 的轨迹是以定点O 为圆心,r =2的圆. ∴点P 的轨迹方程为x 2+y 2=4.答案:x 2+y 2=4 三、解答题8.已知点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任一动点,若F 2关于∠F 1PF 2的平分线的对称点H 在线段PF 1上,求点H 的轨迹方程.解:如图,设点P 在双曲线的右支上,且PQ 为∠F 1PF 2的平分线.∵F 2关于PQ 的对称点为H , ∴|PF 2|=|PH |,且H 在PF 1上. 又|PF 1|-|PF 2|=|PF 1|-|PH |=|F 1H |=2a .即H 在以F 1为圆心,半径为2a 的圆上,其方程为(x +c )2+y 2=4a 2.9.△ABC 的三边长分别为AC =3,BC =4,AB =5,点P 是△ABC 内切圆上一点,求|P A |2+|PB |2+|PC |2的最小值与最大值.解:以C 为原点O ,CB 、CA 所在直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,由于AC =3,BC =4,得C (0,0),A (0,3),B (4,0).设△ABC 内切圆的圆心为(r ,r ),由△ABC 的面积=12×3×4=12×3r+12×4r +12×5r ,得r =1, 于是内切圆的方程为(x -1)2+(y -1)2=1⇒x 2+y 2=2x +2y -1, 由(x -1)2≤1⇒0≤x ≤2.设P (x ,y ),那么|P A |2+|PB |2+|PC |2=x 2+(y -3)2+(x -4)2+y 2+x 2+y 2=3(x 2+y 2)-8x -6y +25=3(2x +2y -1)-8x -6y +25=22-2x ,那么当x =0时,|P A |2+|PB |2+|PC |2取最大值为22,当x =2时取最小值为18.。
高中数学 2.1曲线与方程课时作业 新人教A版选修21

高中数学 2.1曲线与方程课时作业 新人教A 版选修21课时目标 1.结合实例,了解曲线与方程的对应关系.2.了解求曲线方程的步骤.3.会求简单曲线的方程.1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x ,y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做______________;这条曲线叫做________________.2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x 0,y 0),则①点P 在曲线C 上⇔____________;②点P 不在曲线C 上⇔____________. 3.求曲线方程的一般步骤(1)建立适当的坐标系,用有序实数对________表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P =__________; (3)用________表示条件p(M),列出方程f(x ,y)=0; (4)化方程f(x ,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一、选择题1.方程x +|y -1|=0表示的曲线是( )2.已知直线l 的方程是f(x ,y)=0,点M(x 0,y 0)不在l 上,则方程f(x ,y)-f(x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线 3.下列各对方程中,表示相同曲线的一对方程是( ) A .y =x 与y 2=xB .y =x 与xy=1C .y 2-x 2=0与|y|=|x|D .y =lg x 2与y =2lg x4.已知点A(-2,0),B(2,0),C(0,3),则△ABC 底边AB 的中线的方程是( ) A .x =0 B .x =0(0≤y≤3) C .y =0 D .y =0(0≤x≤2)5.在第四象限内,到原点的距离等于2的点的轨迹方程是( ) A .x 2+y 2=4B .x 2+y 2=4 (x>0)C .y =-4-x 2D .y =-4-x 2 (0<x<2)6.如果曲线C 上的点的坐标满足方程F(x ,y)=0,则下列说法正确的是( )A .曲线C 的方程是F(x ,y)=0B .方程F(x ,y)=0的曲线是CC .坐标不满足方程F(x ,y)=0的点都不在曲线C 上D .坐标满足方程F(x ,y)=0的点都在曲线C 上题 号 1 2 3 4 5 6 答 案二、填空题7.若方程ax 2+by =4的曲线经过点A(0,2)和B ⎝ ⎛⎭⎪⎫12,3,则a =________,b =________.8.到直线4x +3y -5=0的距离为1的点的轨迹方程为 ______________________________.9.已知点O(0,0),A(1,-2),动点P 满足|PA|=3|PO|,则点P 的轨迹方程是________________. 三、解答题10.已知平面上两个定点A ,B 之间的距离为2a ,点M 到A ,B 两点的距离之比为2∶1,求动点M 的轨迹方程.11.动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,0)连线的中点为P ,求P 点的轨迹方程.能力提升12.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[]-1,1+22B .[]1-22,1+22C .[]1-22,3D .[]1-2,31.曲线C的方程是f(x,y)=0要具备两个条件:①曲线C上的点的坐标都是方程f(x,y)=0的解;②以方程f(x,y)=0的解为坐标的点都在曲线C上.2.求曲线的方程时,要将所求点的坐标设成(x,y),所得方程会随坐标系的不同而不同.3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.第二章圆锥曲线与方程§2.1曲线与方程知识梳理1.(2)曲线的方程方程的曲线2.①f(x0,y0)=0 ②f(x0,y0)≠03.(1)(x,y) (2){M|p(M)} (3)坐标作业设计1.B [可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.]2.C [方程f (x ,y )-f (x 0,y 0)=0表示过点M (x 0,y 0)且和直线l 平行的一条直线.故选C.]3.C [考虑x 、y 的范围.]4.B [直接法求解,注意△ABC 底边AB 的中线是线段,而不是直线.] 5.D [注意所求轨迹在第四象限内.] 6.C [直接法:原说法写成命题形式即“若点M (x ,y )是曲线C 上的点,则M 点的坐标适合方程F (x ,y )=0”,其逆否命题是“若M 点的坐标不适合方程F (x ,y )=0,则M 点不在曲线C 上”,此即说法C.特值方法:作如图所示的曲线C ,考查C 与方程F (x ,y )=x 2-1=0的关系,显然A 、B 、D 中的说法都不正确.] 7.16-8 3 28.4x +3y -10=0和4x +3y =0解析 设动点坐标为(x ,y ),则|4x +3y -5|5=1,即|4x +3y -5|=5.∴所求轨迹方程为4x +3y -10=0和4x +3y =0.9.8x 2+8y 2+2x -4y -5=0 10.解以两个定点A ,B 所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示). 由于|AB |=2a ,则设A (-a,0),B (a,0), 动点M (x ,y ).因为|MA |∶|MB |=2∶1, 所以x +a 2+y 2∶x -a 2+y 2=2∶1, 即x +a 2+y 2=2x -a 2+y 2,化简得⎝⎛⎭⎪⎫x -5a 32+y 2=169a 2.所以所求动点M 的轨迹方程为 ⎝⎛⎭⎪⎫x -5a 32+y 2=169a 2. 11.解 设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点,∴⎩⎪⎨⎪⎧x =x 0+32y =y2,即⎩⎪⎨⎪⎧x 0=2x -3y 0=2y,又∵M在曲线x2+y2=1上,∴(2x-3)2+4y2=1.∴点P的轨迹方程为(2x-3)2+4y2=1.12.C [曲线方程可化简为(x-2)2+(y-3)2=4 (1≤y≤3),即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b的距离等于2,解得b=1+22或b=1-22,因为是下半圆故可得b=1-22,当直线过(0,3)时,解得b=3,故1-22≤b≤3,所以C正确.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业55 曲线与方程时间:45分钟 分值:100分一、选择题(每小题5分,共30分) 1.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.∴⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.答案:C2.动点P (x ,y )满足5(x -1)2+(y -2)2=|3x +4y -11|,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线解析:设定点F (1,2),定直线l :3x +4y -11=0,则|PF |=(x -1)2+(y -2)2,点P 到直线l 的距离d =|3x +4y -11|5.由已知得|PF |d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直线.选D.答案:D3.已知点A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C .4x -3y +16=0或4x -3y +24=0D .4x -3y +16=0或4x -3y -24=0解析:∵AB 的方程为4x -3y +4=0,又|AB |=5,设点C (x ,y )由题意可知12×5×|4x -3y +4|5=10,∴4x -3y -16=0或4x -3y +24=0.答案:B4.动点P (x ,y )到定点A (3,4)的距离比P 到x 轴的距离多一个单位长度,则动点P 的轨迹方程为( )A .x 2-6x -10y +24=0B .x 2-6x -6y +24=0C .x 2-6x -10y +24=0或x 2-6x -6y =0D .x 2-8x -8y +24=0解析:本题满足条件|P A |=|y |+1,即(x -3)2+(y -4)2 =|y |+1,当y >0时,整理得x 2-6x -10y +24=0;当y ≤0时,整理得x 2-6x -6y +24=0,变为(x -3)2+15=6y ,此方程无轨迹.答案:A5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA→=AP →,则点P 的轨迹方程为( ) A .y =-2x B .y =2x C .y =2x -8D .y =2x +4解析:设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎨⎧x +x 12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4, ∴-y =2(2-x )-4,即y =2x . 答案:B6.设P 为圆x 2+y 2=1上的动点,过P 作x 轴的垂线,垂足为Q ,若PM→=λMQ →(其中λ为正常数),则点M 的轨迹为( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:设M (x ,y ),P (x 0,y 0),则Q (x 0,0),由PM→=λMQ →得 ⎩⎪⎨⎪⎧x -x 0=λ(x 0-x )y -y 0=λ(-y )(λ>0) ∴⎩⎪⎨⎪⎧x 0=x y 0=(λ+1)y ,由x 20+y 20=1, ∴x 2+(λ+1)2y 2=1(λ>0),∴点M 的轨迹为椭圆. 答案:B二、填空题(每小题5分,共15分)7.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是________.解析:AB →=(0,y 2)-(-2,y )=(2,-y 2),BC →=(x ,y )-(0,y 2)=(x ,y 2),∵AB →⊥BC →,∴AB →·BC →=0,∴(2,-y 2)·(x ,y 2)=0,即y 2=8x . ∴动点C 的轨迹方程为y 2=8x .答案:y 2=8x8.直线x a +y2-a =1与x 、y 轴交点的中点的轨迹方程是________.解析:设直线x a +y2-a =1与x 、y 轴交点为A (a,0)、B (0,2-a ),A 、B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1)9.P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.解析:由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →= -12(x ,y )=⎝ ⎛⎭⎪⎫-x 2,-y 2, 即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y 2,又P 在椭圆上, 则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1.答案:x 24a 2+y 24b 2=1三、解答题(共55分,解答应写出必要的文字说明、演算步骤或证明过程)10.(15分)已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足DQ →=23DP →. (1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的点M 、N ,使OE →=12(OM →+ON →)(O 是坐标原点).若存在,求出直线MN 的方程;若不存在,请说明理由.解:(1)设P (x 0,y 0),Q (x ,y ),依题意,则点D 的坐标为D (x 0,0),∴DQ →=(x -x 0,y ),DP →=(0,y 0),又DQ →=23DP →,∴⎩⎨⎧x -x 0=0y =23y 0,即⎩⎨⎧x 0=x y 0=32y.∵P 在圆O 上,故x 20+y 20=9,∴x 29+y 24=1.∴点Q 的轨迹方程为x 29+y 24=1.(2)存在.假设椭圆x 29+y 24=1上存在两个不重合的点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎨⎧x 1+x 22=1y 1+y 22=1,即⎩⎪⎨⎪⎧x 1+x 2=2y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,∴⎩⎪⎨⎪⎧x 219+y 214=1x 229+y 224=1,两式相减,得(x 1-x 2)(x 1+x 2)9+(y 1-y 2)(y 1+y 2)4=0. ∴k MN =y 1-y 2x 1-x 2=-49,∴直线MN 的方程为4x +9y -13=0.∴椭圆上存在点M 、N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.11.(20分)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度. 解:(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P =54y ,∵P 在圆上,∴x 2+(54y )2=25,即轨迹C 的方程为x 225+y216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2= (1+k 2)(x 1-x 2)2=4125×41=415.——创新应用——12.(20分)(2013·福建卷)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为A 1,A 2,…,A 9和B 1,B 2,…,B 9.连接OB i ,过A i 作x 轴的垂线与OB i 交于点P i (i ∈N *,1≤i ≤9).(1)求证:点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 作直线l 与抛物线E 交于不同的两点M ,N ,若△OCM 与△OCN 的面积比为,求直线l 的方程.解:解法1:(1)依题意,过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =i 10x .设P i 的坐标为(x ,y ),由⎩⎨⎧x =i ,y =i10x ,得y =110x 2,即x 2=10y .所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y .(2)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +10.由⎩⎪⎨⎪⎧y =kx +10,x 2=10y ,得x 2-10kx -100=0, 此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N .设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=10k , ①x 1·x 2=-100. ②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|.又x 1·x 2<0,所以x 1=-4x 2,分别代入①和②,得⎩⎪⎨⎪⎧-3x 2=10k ,-4x 22=-100,解得k =±32.所以直线l 的方程为y =±32x +10,即3x -2y +20=0或3x +2y -20=0.解法2:(1)点P i (i ∈N *,1≤i ≤9)都在抛物线E :x 2=10y 上. 证明如下:过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i .B i 的坐标为(10,i ),所以直线OB i 的方程为y =i 10x .由⎩⎨⎧x =i ,y =i10x ,解得P i 的坐标为(i ,i 210).因为点P i 的坐标都满足方程x 2=10y ,所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y .(2)同解法1.。