复数的三角形式
复数的三角形式与指数形式

复数的三角形式与指数形式复数是数学中的一种概念,可以用于表示实数范围之外的数。
复数由实部和虚部组成,其中虚部可以加上单位虚数单位i。
复数的表示有两种常用形式:三角形式和指数形式。
1. 三角形式复数可以用极坐标系表示,其中实部对应坐标轴上的横坐标,虚部对应坐标轴上的纵坐标。
三角形式将复数表示为模长和辐角的形式。
模长表示复数到原点的距离,辐角表示复数与正实轴的夹角。
设复数为z=a+bi,其中a为实部,b为虚部。
则复数z在极坐标系下的三角形式为z=r(cosθ+isinθ),其中r为模长,θ为辐角。
模长r可以通过勾股定理计算得到,即r=√(a^2+b^2)。
辐角θ可以通过反三角函数计算得到,即θ=arctan(b/a)。
三角形式的优点是直观且易于计算。
可以通过模长和辐角计算复数的加减乘除等运算,也可用于复数的求解和复数函数的分析。
2. 指数形式指数形式是将复数表示为自然指数的形式,也称为欧拉公式形式。
复数的指数形式为z=re^(iθ),其中r为模长,e为自然对数的底,i为虚数单位,θ为辐角。
指数形式的优点在于运算更加简便。
复数的加法和减法可以直接对实部和虚部进行计算,而无需使用三角函数。
复数的乘法和除法也可以通过指数形式的运算规则来进行计算,简化了复数运算的复杂度。
指数形式还有广泛的应用,例如在复数的幂运算中,指数形式可以简化计算;在解线性差分方程和傅里叶级数等数学问题中,指数形式可以提供更加简洁的解法。
综上所述,复数可以用三角形式和指数形式来表示。
三角形式直观易懂,适用于计算复数的模长和辐角等问题;指数形式简洁高效,适用于复数的加减乘除和复杂运算。
根据具体问题的需求,可以选择不同的表示形式来处理复数运算。
复数三角运算

复数三角运算复数三角运算主要涉及复数的三角形式,即z=r(cosθ+i sinθ),其中r是复数的模,θ是复数的辐角。
1.复数的模:对于复数z=a+bi,其模定义为r=∣z∣=a2+b2。
2.复数的辐角:辐角θ是复数在复平面上与正实轴之间的夹角,可以通过tanθ=ab来计算(其中a和b分别是复数的实部和虚部)。
注意,辐角不是唯一的,因为对于任何整数k,θ+2kπ也是z的一个辐角。
3.复数的三角形式:任何复数z都可以表示为z=∣z∣(cosθ+i sinθ),其中θ是z的一个辐角。
4.复数的三角运算:o加法:如果z1=r1(cosθ1+i sinθ1)和z2=r2(cosθ2+i sinθ2),则z1+z2=r1 (cosθ1+i sinθ1)+r2(cosθ2+i sinθ2)。
这通常通过转换为笛卡尔形式(z=a+bi)进行加法,然后再转换回三角形式。
o乘法:如果z1=r1(cosθ1+i sinθ1)和z2=r2(cosθ2+i sinθ2),则z1×z2=r1r2 (cos(θ1+θ2)+i sin(θ1+θ2))。
这里使用了三角恒等式cos(A+B)=cos A cos B−sin A sin B和sin(A+B)=sin A cos B+cos A sin B。
o除法:除法稍微复杂一些,通常也是通过转换为笛卡尔形式进行,然后再转换回三角形式。
5.复数的共轭:复数z=a+bi的共轭是z=a−bi。
在三角形式中,如果z=r(cosθ+i sinθ),则z=r(cosθ−i sinθ)。
6.复数的模的平方:对于复数z=a+bi,其模的平方∣z∣2=a2+b2。
在三角形式中,如果z=r(cosθ+i sinθ),则∣z∣2=r2。
这些规则使得在三角形式下进行复数运算变得相对简单和直观。
复数的三角形式

例 1、计算:
① 2 (cos +isin ) 3 (cos +isin ) 12 12 6 6
②3(cos75º+isin75º) 3 (cos15º+isin15º) ③(cos3A+isin3A) (cos2A-isin2A)
4 4 5 5 ④4(cos +isin )÷2(cos +isin ) 3 3 6 6
3 arg z 2 , 6、复数 z=a(1+2i)+(1-i),如果|z|>2 并且 2
求实数 a 的取值范围
则 M∩N 所围成的复平面是上的区域的面积是( (A) )
4
(B)
2
(C)
3 4
(D)
3、设 a∈(-1,0),复数 cos(arcsina)+isin(arcsina)的辐角主值为( ) (A) arcsina (B)2 + arcsina (C) -arcsina (D) + arcsina 4、复数 1+cos200º+isin200º的辐角主值为( ) (A) 200º (B) -100º (C) 100º (D) 280º
定理的推广:设 zn=rn(cos n+isin n),其中 rn≥0 于是:z1z2z3„zn=r1r2r3„rn[cos( 1+ 2+ 3+„+ n) +isin( 1+ 2+ 3+„+ n)]
复数乘法的几何意义:
⑴两个复数 z1、z2 相乘时,可以先画出分别与 z1、z2 对应的 向量 OZ1 、 OZ 2 ,然后把向量 OZ 2 按逆时针方向旋转 1 再把模变为原来的 r1 倍,所得的向量 OZ 就表示积 z1z2. 特征:旋转+伸缩变换 ⑵向量的旋转与伸缩可以转化为两个复数的乘积.
复数的三角形式

复数的三角形式1.复数的三角形式复数的幅角指的是复数Z=a+bi所对应的向量半轴为始边,向量以x轴正方向所在的射线(起点为O)为终边的角度θ,记作ArgZ。
其中,满足0≤θ<2π的辐角θ的值称为辐角的主值,记作argZ。
需要注意的是,不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍。
复数的三角形式指的是r(cosθ+isinθ),其中r为复数Z=a+bi的模,θ为Z的一个辐角。
任何一个复数Z=a+bi都可以表示成r(cosθ+isinθ)的形式。
2.复数的三角形式的运算设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),则:3.应用例1:求下列复数的模和辐角主值1)1+i解:对于1+i,有a=1,b=1,点(1,1)在第一象限,所以r=sqrt(2),tanθ=1,辐角主值为θ=π/4.2)4-3i解:对于4-3i,有a=4,b=-3,点(4,-3)在第四象限,所以r=5,tanθ=-3/4,辐角主值为θ=11π/6.想一想:如何求复数z=3-4i的辐角?解:对于3-4i,有a=3,b=-4,点(3,-4)在第四象限,所以r=5,tanθ=-4/3,辐角主值为θ=11π/6.复数的三角形式具有以下特征:形式为r(cosθ+isinθ),其中r为模,θ为一个辐角。
下列各式是否为复数的三角形式:1)isinθ+cosθ2)2(cos(π/4)+isin(π/4))3)5(cos(5π/6)+isin(π/6))解:(1)不是,(2)是,(3)是。
例2:把下列复数转化为三角形式1)-1解:-1=cosπ+isinπ,所以r=1,θ=π。
2)2i解:2i=2(cosπ/2+isinπ/2),所以r=2,θ=π/2.3)3-i解:3-i=2(cos(11π/6)+isin(π/6)),所以r=2,θ=11π/6.总结:将复数的代数形式z=a+bi转化为复数的三角形式的一般方法步骤是:①求复数的模:r=sqrt(a^2+b^2);②由tanθ=b/a求出复数的辐角主值θ;③将复数表示为r(cosθ+isinθ)的形式。
复数的三角形式与指数形式

复数的三角形式与指数形式复数是由实数和虚数组成的数,它具有形式 a + bi,其中 a 是实部,b 是虚部,i 是虚数单位,且i^2 = -1、复数可以表示为三角形式或指数形式。
下面将详细介绍这两种形式以及它们之间的转换关系。
一、三角形式模长 r 可以通过勾股定理计算得出:r = sqrt(a^2 + b^2)辐角θ 可以通过反三角函数计算得出:θ = atan(b/a)三角形式将复数表示成模长和辐角的形式,更直观地描述了复数的几何特征。
其中,模长表示复数到原点的距离,辐角表示复数在复平面上的偏转角度。
例如,对于复数 z = 2 + 2i,它的模长 r = sqrt(2^2 + 2^2) =sqrt(8) = 2sqrt(2),辐角θ = atan(2/2) = pi/4、因此,z 的三角形式为 z = 2sqrt(2)(cos(pi/4) + isin(pi/4))。
二、指数形式复数的指数形式表示为z = re^(iθ),其中 r 是模长,θ 是辐角。
与三角形式相似,指数形式也将复数表示为模长和辐角的形式,但是以指数的形式更方便进行乘法、除法和求幂等运算。
例如,对于复数 z = 2 + 2i,它的模长 r = sqrt(2^2 + 2^2) =sqrt(8) = 2sqrt(2),辐角θ = atan(2/2) = pi/4、因此,z 的指数形式为 z = 2sqrt(2)e^(i(pi/4))。
三、三角形式与指数形式的转换三角形式与指数形式之间的转换可以通过欧拉公式来实现:e^(iθ) = cosθ + isinθcosθ = (e^(iθ) + e^(-iθ))/2sinθ = (e^(iθ) - e^(-iθ))/(2i)对于一个复数 z = a + bi,它的模长 r 和辐角θ 可以通过以下公式计算:r = sqrt(a^2 + b^2)θ = atan(b/a)当给定模长r和辐角θ时,可以通过以下公式计算复数:a = rcosθb = rsinθ例如,对于模长为 2sqrt(2)、辐角为 pi/4 的复数,可以通过上述公式计算出实部 a = 2,虚部 b = 2、因此,这个复数的三角形式为2sqrt(2)(cos(pi/4) + isin(pi/4)),指数形式为 2sqrt(2)e^(i(pi/4))。
复数的三角形式

复数的三角形式1、复数的三角形式(1)复数的幅角:设复数Z=a+bi对应向量,以x轴的正半轴为始边,向量所在的射线(起点为O)为终边的角θ,叫做复数Z的辐角,记作ArgZ,其中适合0≤θ<2π的辐角θ的值,叫做辐角的主值,记作argZ.说明:不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍.(2)复数的三角形式:r(cosθ+isinθ)叫做复数Z=a+bi的三角形式,其中.说明:任何一个复数Z=a+bi均可表示成r(cosθ+isinθ)的形式.其中r为Z的模,θ为Z的一个辐角.2、复数的三角形式的运算:设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2).则3、应用例1求下列复数的模和辐角主值 (1)i +1 (2)i -3解:(1)211122=+=+i又a b tan =θ=1,点(1,1)在第一象限。
所以41πθ=+=)(i arg(2)213322=-+=-)()(i有31-=θtan ,点(13-,)在第四象限,所以611623πππθ=-=-=)(i arg想一想:怎样求复数i z 43-=的辐角?想一想:复数的三角形式有哪些特征?下列各式是复数的三角形式吗?(1)θθcos sin i + (2)[])()(︒-+︒-30302sin i cos(3))(6655ππsin i cos+例2 把下列复数转化为三角形式 (1)-1;(2)i 2; (3) i -3解:(1)2201+-=)(r =1,辐角主值为θ=π=-)(1arg,所以-1=ππsin i cos +(2)22022=+=r 辐角主值为θ=()22π=i arg ,所以i2=)(222ππsin i cos+(3)21322=-+=)()(r ,由3331-=-=θtan 和点),(13-在第四象限,得611623πππθ=-=-=)(i arg ,所以i -3=)(6116112ππsin i cos+总结:复数的代数形式bi a z +=化为复数的三角形式一般方法步骤是:①求复数的模:22b a r +=;②由a btan =θ及点)(b ,a 所在象限求出复数的一个辐角(一般情况下,只须求出复数的辐角主值即可);③写出复数的三角形式。
复数的三角形式和欧拉公式

复数是数学中一个重要的概念,它可以用来表示实数以外的数。
复数有两种常见的表示方法,一种是常规的代数形式,即a+bi,其中a和b都是实数,i是虚数单位;另一种是三角形式,即r(cosθ+isinθ),其中r是复数的模,θ是复数的幅角。
复数的三角形式是由欧拉公式推导而来的。
欧拉公式是数学中非常重要而优美的公式之一,它将自然对数的底e、虚数单位i和余弦函数、正弦函数之间建立了一种神奇的关系:e^(iθ)=cosθ+isinθ。
通过欧拉公式,我们可以将复数用指数形式表示为r×e^(iθ),其中r是复数的模,θ是复数的幅角。
这样的表示形式更加简洁而且直观,方便于进行复数的运算。
复数的三角形式有许多重要的性质。
首先,复数的三角形式可以用于求解复数的乘法和除法。
当两个复数相乘时,只需要将它们的模相乘,幅角相加即可;而当两个复数相除时,只需要将被除数的模除以除数的模,被除数的幅角减去除数的幅角即可。
这使得复数的乘除运算变得简单而直观。
此外,复数的三角形式还可以用于求解复数的幂运算。
由于指数运算具有幂相乘的性质,我们可以将复数的幂表示为(r×e^(iθ))^n=r^n×e^(inθ),其中n是正整数。
这样,我们可以通过对模进行乘方,对幅角进行n倍来求解复数的幂,从而进一步简化了运算过程。
最后,复数的三角形式还可以用于求解复数的根。
通过将复数表示为r×e^(iθ),我们可以利用欧拉公式求解复数的n次根。
具体的方法是通过将模开n次根号,幅角除以n来求解。
这样,我们可以方便地找到复数的根,并且我们可以得到全部n个根。
综上所述,复数的三角形式是一种非常有用的表示方法,它简化了复数的运算和求解过程。
欧拉公式的推导和应用,使得我们在处理复数时更加方便、直观,并且可以通过几何的方法来理解复数的运算和性质。
因此,对于学习和应用复数的人来说,掌握复数的三角形式和欧拉公式是十分重要而有价值的。
复数的三角表示形式

复数的三角表示形式
复数是由实数和虚数组成的数,一般表示成 a+bi 的形式,其中a 为实数部分,b 为虚数部分,i 为虚数单位。
除此之外,复数还可以用三角形式表示,即:
z = r(cosθ + i sinθ)
其中,r 表示复数 z 的模,θ表示 z 的幅角。
模 r 的计算公式为:
r = |z| = √(a + b)
幅角θ的计算公式为:
θ = arg(z) = tan(b/a) + kπ (k∈Z)
在三角形式中,复数可以看作是平面直角坐标系中一个点的极坐标,其中实部和虚部分别对应该点在 x 轴和 y 轴上的投影长度。
使用三角形式表示复数有以下几个优点:
1. 易于计算复数的乘法和除法,只需按照平面向量的乘法和倒数公式进行计算。
2. 易于用欧拉公式表示复数,即 e^(iθ) = cosθ + i sinθ,可以方便地进行复杂的数学推导。
3. 易于理解复数在复平面上的几何意义,可以通过旋转和缩放的方式进行操作。
因此,三角形式是复数的重要表示形式之一,对于深入理解复数的性质和应用具有重要意义。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这说明,两个复数相乘等于它们的模相乘而幅角相加 这个运算在几何上可以用下面的方法进行: 将向量z1的模扩大为原来的r2倍,然后再将它绕原点逆时 针旋转角θ2,就得到z1z2。
复数的三角形式
二、复数三角形式的运算法则 2、复数的除法
r1 (cos 1 i sin 1 ) z1 z2 r2 (cos 2 i sin 2 )
例3.求复Z=1+cosθ+isinθ(π<θ<2π)的模与辐角主值. 分析:式子中多3个“1”,只有将“1”消去,才能更 接近三角形式,因此可利用三角公式消“1”.
∵
解:Z=1+cosθ+isinθ=1+(2cos2
<
-1)+2i· sin
cos
=2cos (cos +isin ∵ π<θ<2π ∴
r1 [cos(1 2 ) i sin(1 2 )] r2
复数的三角形式 二、复数三角形式的运算法则
2、复数的除法 即
z1 r1 [cos(1 2 ) i sin(1 2 )] z2 r2
这说明,两个复数相除等于它们的模相除而幅角相减
这个运算在几何上可以用下面的方法进行: 将向量z1的模缩小为原来的r2分之一,然后再将它绕原点 顺时针旋转角θ2,就得到z1÷z2。 3、复数的乘方。
k r (cos
n
2k
n
i sin
2k
n
), ( k 0,1, 2,
, n 1)
从求根公式可以看出,相邻两个根之间幅角相差 n
所以复数z的n个n次方根均匀地分布在以原点为圆心, 以它的模的n次算术根为半径的圆周上。 因此,求一个复数z的全部n次方根,可以用下面的几何手 段进行: z r (cos i sin ) n 先作出圆心在原点,半径为 r 的圆,然后作出角 的终边 n 以这条终边与圆的交点为分点,将圆周n等分,那么,每 个等分点对应的复数就是复数z的n次方根。
乘除法保持“模相乘除、幅角相加减”、乘方保持“模的 n次方、幅角的n倍”的本质特征
z a bi r (cos i sin ) re i
从复数的模与幅角的角度看,复数的指数形式其实是三角 形式的简略化
复数的指数形式
由复数的三角形式与指数形式,我们很容易得到下面的 两个公式: i cos i sin e i cos i sin e e i e i e i e i cos , sin 2 2i 这两个公式被统称为欧拉公式 在复数的指数形式中,令r=1,θ=π,就得到下面的等式
9 9 2 Cos iSin ① 2 Cos iSin 5 5 5 5 7 7 3 3 2 Cos iSin 2 Sin iCos ② 4 4 4 4 1 4 4 iSin Cos 1 Cos iSin 2 3 3 ③ 2 3 3 4 4 2 Cos iSin Cos iSin 5 5 ④ 2 5 5
1 i对应的点在第四 2 而
1 i
1 2 7 2 4 2 7 7 2 Cos iSin 4 4
想一想:代数式化三角式的步骤
(1)先求复数的模 (2)决定辐角所在的象限 (3)根据象限求出辐角 (4)求出复数三角式。
小结:一般在复数三角式中的辐角,常取它的主值这既使 表达式简便,又便于运算,但三角形式辐角不一定要主值。
)........(1)
< <π, ∴cos
)=-2cos [cos(π+ ∴ π<π+
<0
)]+isin(π+ )]
)式右端=-2cos (-cos -isin
∴ r=-2cos < <π
<2π, ∴argZ=π+
例 4.设 =z+ai(a∈ R),
| | 2 ,求 的辐角主值的取值范围. 分析与解答:
2
,
1 (a 1) 2 2 , 解得 0≤a≤2,
又 tg=a-1, ∴ -1≤tg≤1,
7 [ 0 , ] [ , 2 ) . ∴ 的辐角主值 4 4
此题首先要算对了,还要会算模以及辐角.其中,最容 易出问题的是的范围的确定.仅有-1≤tg≤1 是不够的,还 应当注意到 =1+(a-1)i 的实部为 1,虚部 a-1 在[-1,1]内, 所以 所对的辐角只能在第一和第四象限.
复数的三角形式
这样,我们把 r (cos i sin ) 叫做复数a+bi的三角形式
a bi r cos ir sin r (cos i sin )
二、复数三角形式的运算法则 引入复数三角形式的一个重要原因在于用三角形式进行乘 除法、乘方、开方相对于代数形式较为简单。 所以这里只介绍三角形式的乘法、除法、乘方与开方的运 算法则。 1、复数的乘法
例2:将下列复数化为三角形式;
(四)练习:
把下列复数化成三角形式: (1)6 (2)-5 (3)2i (4)-I (5)-2+2i
解 (1)6(cos0+isin 0)
(2)5(cosπ +isinπ )
32 Cos iSin 2 2
3 3 4 Cos iSin 2 2 3 3 52 2 Cos iSin 4 4
(二)复数的三角形式:
Y
当a=rCosθ b=rSinθ
·
r
Z(aபைடு நூலகம்b)
b
∴a+bi=rCosθ+iSinθ = r(Cosθ+iSin θ)
θ
O
a
X
则z=r(Cosθ+Sinθ)为复数的三角形式。
复数的三角形式条件:
Z= r ( Cosθ + i Sin θ)
①r≥0。 ②加号连接。
③Cos在前,Sin在后。
复数的指数形式 再重新观察下面的等式
z1z2 r1r2 [cos(1 2 ) i sin(1 2 )]
(b1a ) (b2a ) (b1b2 ) a
x y
x y
x y a 首先,显然模r应该占据 中系数y的位置, x y a 其次,幅角θ应该占据 中指数x的位置,
r1 (cos 1 i sin 1 )(cos 2 i sin 2 ) r2 (cos 2 i sin 2 )(cos 2 i sin 2 ) r1 [(cos 1 cos 2 sin 1 sin 2 ) r2
i (sin 1 cos 2 cos 1 sin 2 )]
(1 4i )(1 i ) 2 4i z 3 4i 5 3i 2 4i 3 4i 7i 1 i. 3 4i
(1 4i )(1 i ) 2 4i z 3 4i
且
∵ ∴
=z+ai=1-i+ai=1+(a-1)i 且| |
i
cos i sin
i i 一方面,由于 a a a
如果写成 a 的形式 ( ir ) a 与 的形式差别不是很大,
其次
(a i )n a ni n
在复数的乘方法则中,应该仅是幅角的n倍而没有虚数单 位也要n倍,所以虚数单位与幅角不应该是相加关系,而 应该是相乘关系
z1z2 r1r2 [cos(1 2 ) i sin(1 2 )]
(b1a ) (b2a ) (b1b2 ) a
x y
x y
复数的指数形式
根据这个特点,复数 z r (cos i sin ) 应该可以表示成 某种指数形式 x y a 即复数应该可以表示成 的形式 这里有三个问题需要解决: (1)反映复数本质特征的三个因素:模r、幅角θ、虚数 单位i应各自摆放在什么位置? (2)在这些位置上它们应呈现什么形态? (3)作为指数形式的底应该用什么常数? 先来研究第一个问题.
r1r2 (cos 1 cos 2 sin 1 sin 2 ) ir1r2 (sin 1 cos 2 cos 1 sin 2 ) r1r2 [cos(1 2 ) i sin(1 2 )]
即
z1z2 r1r2 [cos(1 2 ) i sin(1 2 )]
z n r n (cos n i sin n )
这个运算在几何上可以用下面的方法进行: 将向量z1的模变为原来的n次方,然后再将它绕原点逆时针 旋转角nθ,就得到zn。
4、复数的开方
设 z r (cos i sin ) 的一个n次方根为 (cos i sin )
显然,当k从0依次取到n-1,所得到的角的终边互不相同, 但k从n开始取值后,前面的终边又周期性出现。 因此,复数z的n个n次方根为
k r (cos
n
2k
n
i sin
2k
n
), ( k 0,1, 2,
, n 1)
复数的三角形式 二、复数三角形式的运算法则 4、复数的开方
④θ前后一致,可任意值。
例1:把下列复数代数式化成三角式:
1
解r
3 i
3 1 2
3 i对应的点在第一象限
cos
2 1 i
cos
3 即 2 6 3 i 2 Co s iSin 6 6
解 r 1 1
设
z1 r1 (cos1 i sin1 ) z2 r2 (cos2 i sin2 )