有机化学基础知识点整理烯烃的立体化学和反应特点

合集下载

有机化学【烯烃】

有机化学【烯烃】

H3C C=C CH2CH3
H
CH3
(Z)-3-甲基-2-戊烯 (反-3-甲基-2-戊烯)
H C=C CH2CH3
H3C
CH3
(E)-3-甲基-2-戊烯 (顺-3-甲基-2-戊烯)
H3C C=C CH2CH2CH2CH3
CH3CH2
CH2CH2CH3
(E)-3-甲基-4-丙基-3-辛烯
当烯烃主链的碳原子数多于十个时,命名时 汉字数字与烯字之间应加一个“碳”字(烷烃不 加碳字),称为“某碳烯”,例如:
个褪色反应非常迅速,容易观察,它是验证碳碳 双键是否存在的一个特征反应。
例:
(CH3)2CHCH=CHCH3 + Br2 CCl4 (CH3)2CHCHBrCHBrCH3 (CH3)3CCH=CH2 + Cl2 CCl4 (CH3)3CCHClCH2Cl
反应历程:
第一步
第二步 1. 反应分两步,第一步慢,第二步快 2. 经过环状溴鎓离子中间体 3. 反式(anti-)加成,无重排产物。
CH2 = CH2 CH3CH=CH2
乙烯 ethylene 丙烯 propene
CH3CH2CH=CH2 (CH3) 2o-butene
例:
H3C H
C=C
CH2CH3 H
顺-2-戊烯或(Z)-2-戊烯
H C=C CH2CH3
H3C
H
反-2-戊烯或(E)-2-戊烯
(4)与水加成
例:
CH2=CH2+HOH
H3PO4 280~300℃,7~8Mpa
CH3-CH2-OH
烯烃的直接水合:
在酸(常用硫酸或磷酸)的催化作用下, 烯烃与水直接加成生成醇。反应必须在高温、 高压下才能进行,所以这是醇的工业制法之一。

有机化学 第三章 烯烃全

有机化学 第三章 烯烃全

KOH
Br
C2H5OH
+ HBr
17
3-4 烯烃的物理性质
物质状态 C2~C4 气体,C5~C18液体 ,C19~固体
沸点、熔点和相对密度 均随相对分子量的增加而上升;直链烯烃的沸 点略高于支链烯烃;末端烯烃(α-烯烃)的沸点 略低于双键位于碳链中间的异构体。
溶解性 不溶于水,易溶于有机溶剂。
HCl CF3CH2CH2 Cl
Cl
CF3CH2CH2
(主)
HCl CF3CHCH3
Cl
Cl
CF3CHCH3
35
烯烃的亲电加成反应
HX反应活性 HI > HBr > HCl > HF
H2C CH2
HBr HAc
CH2 Br
CH2 H
HCl H2C CH2 AlCl3
H2C CH3 Cl
36
与硫酸的加成 ——间接水合
H3C C
H
CH3 C
H
H C
H3C
CH3 C
H
顺式
反式
7
3-2 烯烃的异构和命名
系统命名法
选主链:选择含双键的最长碳链作主链, 称 “某烯”, 若碳原子数大于10, 则称为“某碳 烯”;
编号:从靠近双键的一端开始编号,确定双键 (两双键碳原子中编号小的数字)及其它取代 基的位次;
其它同烷烃的命名。
18
顺 反 异 构 体 的 差 异
极性较大, b.p. 较高 极性较小, b.p. 较低
对称性较差,m.p. 较低
对称性较好,m.p. 较高19
3-5 烯烃的化学性质(重点)
• 反应:加成、氧化、卤代
α HCCC

有机化学第4章 烯烃

有机化学第4章  烯烃

4.1.3 烯烃的异构和Z/E标记法
•构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象 例1:丁烯有三个同分异构体 丁烯有三个同分异构体 (1) CH3-CH2-CH=CH2 1-丁烯 丁烯 (2) CH3-CH=CH-CH3 2-丁烯 丁烯 (3) CH3-C=CH2 2-甲基丙烯 异丁烯 甲基丙烯(异丁烯 甲基丙烯 异丁烯) CH3
HX=HCl,HBr,HI 烯烃 卤烷
加成反应历程 + 第一步: -C=C- + H X → -C-C- + X第一步 •生成碳正离子 H 生成碳正离子 第二步:碳正离子迅速与 结合生成卤烷. 第二步 碳正离子迅速与 X- 结合生成卤烷 -C-C- + X- → -C-C+ H HX
σ+ → σ-
4.2 烯烃的物理性质

学!!
4.3 烯烃的化学性质 •碳碳双键 碳碳双键 •断裂乙烷 断裂乙烷C-C σ 单键需要 单键需要347kJ/mol 断裂乙烷 •断裂双键需要 断裂双键需要611kJ/mol; 断裂双键需要 •说明碳碳 π 键断裂需要 说明碳碳 键断裂需要264kJ/mol •双键使烯烃有较大的活性 双键使烯烃有较大的活性. 双键使烯烃有较大的活性 • 烯烃的加成反应 --- 烯烃在起化学反应时往往 随着π 键的断裂又生成两个新的 σ 键,即在双键 即在双键 碳上各加一个原子或基团. 碳上各加一个原子或基团 >C=C< + Y-Z → -C-C(σ sp2) σ
4.1.1 烯烃的命名 命名规则(系统命名 命名规则 系统命名): 系统命名 • • • • (1)选择含碳碳双键的最长碳链为主链 母体 选择含碳碳双键的最长碳链为主链(母体 选择含碳碳双键的最长碳链为主链 母体); (2)碳链编号时 应从靠近双键的一端开始 碳链编号时,应从靠近双键的一端开始 碳链编号时 应从靠近双键的一端开始; (3)烯前要冠以官能团位置的数字 编号最小 烯前要冠以官能团位置的数字(编号最小 烯前要冠以官能团位置的数字 编号最小); (4)其它同烷烃的命名规则 其它同烷烃的命名规则. 其它同烷烃的命名规则 CH2﹦ –CH2CH3 C ︱ CH2CH2CH3

有机化学——烯烃的反应

有机化学——烯烃的反应

C H 2 = = C H 2H 2 S O 4
C H 3 C H 2 O S O 2 O H 9 H 0 2 o O CC H 3 C H 2 O H
不对称烯烃与硫酸加成也遵守马氏规则。
(CH3)2C==CH2( (2 1) )H H 2 2 S O O4
(CH3)2CCH3 OH
(3)与有机酸的加成:
RCHCH2BrHBr RCH2CH2Br Br
RHC C2H+Br
HBr RC2H BC r H RC 2CH 2B Hr+Br RC2H( C 不 稳 H 定 ) Br
二、自由基加成反应
注意:不对称烯烃与氢溴酸加成的反应取向刚好 是反马氏规则的。但对HCl,HI加成反应的取 向没有影响。为什么?
C H 3 C H = C H 2C H 3 C O O H H 2 S O 4 C H 3 C O O C H ( C H 3 ) 2
一、亲电加成
2、与卤素的加成:
C=C X2
CC
XX
(1)溴的四氯化碳溶液与烯烃加成时,溴的颜色会消失,实验室
里常用这个反应来鉴别烯烃。
(2)卤素活性: 氟>氯>溴>碘 氟与烯烃反应太激烈,会使碳链断裂;碘与烯烃难以反应。
C H 为3 C 什H 2 C 么H = 会= C 有H 2 这样C 的l 2 结5 0 0 果6 ?0 0 o CC H 3 C C H l C H = = C H 2
可以用下面的结果来解释:
C H 3 C H 2 C HC H 2
伯氢 烯丙乙氢烯氢
乙烯氢难以反应,烯丙氢容易反应,其它氢处于 中间状态,原因是离解能不同。
原因:H-CI键的解离能比H-Br键的大,产生自由 基比较困难,而H-I键虽然解离能小,较易产生 I.,但I.的活泼性差,难与烯烃迅速加成,容易自 相结合成碘分子(I2).

有机化学基础知识点整理立体化学的基本概念和应用

有机化学基础知识点整理立体化学的基本概念和应用

有机化学基础知识点整理立体化学的基本概念和应用有机化学基础知识点整理立体化学的基本概念和应用引言有机化学是研究有机物的组成、性质、结构和变化规律的学科。

其中,立体化学是有机化学的重要组成部分,掌握立体化学的基本概念和应用对于理解有机物的结构和反应机理至关重要。

本文将对立体化学的基本概念进行整理,并探讨其在有机化学中的应用。

一、立体化学的基本概念1. 手性与非手性有机化合物可以分为手性和非手性两种。

手性化合物是指其分子与其镜像立体异构体不重合的分子,如天然氨基酸。

而非手性化合物则是镜像立体异构体可以重合的分子,如甲烷。

2. 手性中心手性中心是指有机分子中一个原子接有四个不同的基团,导致分子不重合的点。

手性中心通常由手性碳原子构成,但也可以是其他原子,如氮、硫等。

3. 立体异构体立体异构体是指具有相同分子式但立体结构上不同的化合物。

根据立体异构体的排列方式,可以分为构象异构体和对映异构体。

4. 构象异构体构象异构体是指分子的空间构型在旋转或振动下发生改变而不形成新键的异构体。

常见的构象异构体有旋转异构体、振动异构体等。

5. 对映异构体对映异构体是指分子的镜像立体异构体,它们之间无法通过旋转或振动互相转变。

对映异构体的存在常常导致手性化合物的产生。

二、立体化学的应用1. 对映选择性反应对映选择性反应是指在反应过程中,手性底物与手性催化剂相互作用,选择生成特定手性的产物。

例如,用手性催化剂进行不对称催化反应,可以有效地控制手性产物的生成。

2. 立体效应立体效应是指由于分子空间取向的限制而引起的反应速率或选择性的变化。

立体效应在有机合成中被广泛应用,可以实现对特定官能团的选择性引入或合成目标分子的构建。

3. 立体导向反应立体导向反应是指化学反应中特定基团的偏好取向。

在有机合成中,通过控制反应条件和底物结构,可以实现立体导向反应,以获得所需结构和立体化合物。

4. 立体隔离立体隔离是指通过改变有机分子的立体结构来改变其性质和应用。

有机化学基础知识点整理立体化学的基本概念与表示方法

有机化学基础知识点整理立体化学的基本概念与表示方法

有机化学基础知识点整理立体化学的基本概念与表示方法有机化学基础知识点整理——立体化学的基本概念与表示方法立体化学是有机化学中的重要分支,研究有机化合物中分子空间结构和立体异构体的性质与反应规律。

本文将对立体化学的基本概念与表示方法进行整理与介绍。

一、立体化学的基本概念1. 立体异构体:指在化学式相同、分子式相同的情况下,分子结构排列不同而具有不同性质的化合物,称为立体异构体。

立体异构体分为构象异构体和对映异构体两大类。

2. 立体异构体的原因:分子由于碳原子的四个价键都可以自由旋转,导致构象异构体的产生。

对映异构体则由于分子内部存在不对称碳原子或手性中心,使得它们的镜像体不能重合。

3. 立体异构体的性质:立体异构体在物理性质和化学性质上有所区别,例如物理性质如熔点、沸点、密度等差异明显,化学性质如对外界的反应、催化剂的选择等也有较大差异。

二、立体化学的表示方法1. 立体表示法:主要有盘状投影式、锥面式、楔面式和Fischer式等。

a. 盘状投影式:将分子按水平投影在纸面上,使用实线表示平面内的键,棱柱形状表示键在平面之上,圆圈表示键在平面之下。

b. 锥面式:将分子沿轴线向外投影,用三角形表示键在轴线上方,用带状表示键在轴线下方。

c. 楔面式:将分子通过楔形物理模型或立体图形展示,用楔形箭头表示键在垂直于纸面的方向上,用缺口箭头表示键在纸面下方。

d. Fischer式:以垂直于纸面的轴线为支架,将分子垂直展示,左右的羰基或羟基用垂直于轴线的线条表示。

2. 立体描述法:包括立体描述词、R/S命名法、E/Z命名法和Fukui-Liontelli规则等。

a. 立体描述词:用于描述分子中的任意一个手性中心或不对称碳原子的构型,一般为S、R两个字母的组合。

b. R/S命名法:适用于手性中心为单一物种构成的有机分子,根据规定的优先级顺序(按原子序数决定),通过相互对应的方式命名为R(草莓糖)或S(山梨糖)。

c. E/Z命名法:适用于存在双键的有机分子,根据优先级顺序,通过相互对应命名为E(德恩斯烯)或Z(沙通烯)。

有机化学学习笔记:第四章烯烃

有机化学学习笔记:第四章烯烃

H C H H
Cl给电子的共轭效应(+C)稳定 C 中间体,-I>+C,加成产物 是符合“ 马氏规则” 的。
卤素原子虽然是吸电子基团,但加成产物仍然是符 合“马氏规则”的,其原因-I>+C
D. 正碳离子的反应

a. 加成反应
CH3CHCH3 Br Br CH3CHCH3 CH3CHCH2CHCH3 CH3
含氢多的双键碳原子上, 称为“马氏规则”,说明 加成方向是有选择性的; 还有一种情况,卤化氢中 的氢原子全部加成到含氢 多的双键碳原子上,这种 情况称为加成方向具有专 一性。
C.反应机理——正碳离子
反应1:CH2=CH2 + HBr CH3CH2Br
CH2=CH2 H - Br
- Br
H
H C H C H H H - Br
CH3 CH3-C-CH2CH3 Br
30 > 20 > 10
CH3 CH3 - C - CH - CH=CH2 H - Br - BrH H
CH3 CH3 - C - CH - CH2CH3 H
CH3 CH3 - C - CH - CHCH3 H H
CH3 CH3 - C - CH2CH2CH3 Br
Hg(OOCCH3) H 2O NaBH4 CH CH - CH + 3 2
-H
OH
OH CH3 D H (dl)

D H
CH3 1. Hg(OAc) 2 D
2. NaBH4/CH3OH
OCH3 CH3 (dl)
特点:无正碳离 子重排,反式共 平面,按照马氏 规则加水
B. 与硫酸加成——间接水合法 C. 酸催化与水加成——直接水合法

有机化学基础知识点烯烃的命名和结构

有机化学基础知识点烯烃的命名和结构

有机化学基础知识点烯烃的命名和结构烯烃是有机化合物中的一类重要结构,它们的命名和结构对于有机化学的学习和理解至关重要。

本文将介绍烯烃的常见命名方法和结构特点。

一、命名方法1. 简单烯烃的命名对于含有一个双键的烯烃,根据双键所处的碳原子位置不同,可以分为内烯烃和外烯烃。

内烯烃的命名方法为:取双键两侧的最长碳链作为主链,不包括双键碳原子,双键位置由数字表示,并在主链的前面加上“内”,表示双键在内部。

例如,1,3-内戊二烯。

外烯烃的命名方法为:取双键两侧的最长碳链作为主链,包括双键碳原子,双键位置由数字表示。

例如,3-戊烯。

2. 多烯烃的命名对于含有多个双键的烯烃,需要根据双键的位置和个数来进行命名。

双键位置相邻的烯烃,采用数字表示双键位置,不同双键之间用逗号隔开。

例如,1,3-丁二烯。

双键位置不相邻的烯烃,先找到离主链最近的双键,以该双键为起点,遇到其他双键时,按顺序编号。

例如,3,5-戊二烯。

二、结构特点烯烃由于含有双键,其结构特点与饱和烃有所不同。

1. 双键的存在使得烯烃能够发生加成反应,即通过在双键上添加其他原子或基团来形成新的化合物。

2. 双键的存在使得烯烃具有比饱和烃更高的反应活性,易于与其他物质发生反应。

3. 双键的存在决定了烯烃的空间构型,使得烯烃具有不同于饱和烃的立体异构体。

4. 烯烃由于双键的存在,存在平面结构和扭曲结构两种可能性。

平面结构下,双键处于同一平面上;扭曲结构下,双键处于不同的平面上。

三、实例分析以丁烯为例,它是最简单的内烯烃,由于双键在内部,根据命名规则,可称为1-丁烯。

其结构式为CH3-CH=CH2,其中,CH3表示甲基基团,CH=CH2表示双键。

再以戊二烯为例,它是一种多烯烃,由于有两个双键,分别位于第1碳和第3碳,根据命名规则,可称为1,3-戊二烯。

其结构式为CH2=CH-CH=CH2,其中,CH2=CH-表示第1碳和第2碳之间的双键,CH=CH2表示第3碳和第4碳之间的双键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机化学基础知识点整理烯烃的立体化学和
反应特点
有机化学基础知识点整理—烯烃的立体化学和反应特点
烯烃是有机化合物中的一类重要物质,具有丰富的立体化学和反应
特点。

本文将对烯烃的立体化学以及常见反应特点进行整理和讨论。

一、立体化学
烯烃分子中的碳碳双键使得分子具有了不同的构象和异构体。

在烯
烃分子中,双键的两个碳原子之间可以存在三种不同的空间排列方式:顺式、反式和手性。

其中,顺式和反式的构象是由于碳原子平面上的
官能团取向相同或相反而形成的。

而手性是指碳原子平面上的官能团
存在非对称性,导致分子无法与其镜像重叠。

在顺式和反式烯烃中,由于碳原子平面上的官能团分布相对简单,
因此它们的物理性质和化学性质也有所不同。

例如,顺式烯烃的空间
位阻较小,分子间的相互作用较强,会导致其沸点和熔点较高。

而反
式烯烃的空间位阻较大,分子间的相互作用较弱,相对较稳定。

手性烯烃则具有非对称性,它们的立体异构体在物理性质和化学性
质上都有较大的差异。

手性烯烃的存在使得其具有旋光性和手性识别
能力等特点,这些特性在药物合成、天然产物研究等领域中具有重要
应用。

二、反应特点
烯烃作为有机化合物中的重要类别,具有丰富的反应特点。

下面将就一些常见的烯烃反应进行介绍。

1. 加成反应
在加成反应中,烯烃双键上的π电子云与其他化合物的原子或原子团发生连接,形成新的化学键。

加成反应可分为电子云中心加成和双键骨架中心加成两种。

(1)电子云中心加成
电子云中心加成是指双键上的π电子云直接参与反应。

常见的例子包括卤素和烯烃的加成反应,如溴与乙烯加成生成1,2-二溴乙烷。

(2)双键骨架中心加成
双键骨架中心加成是指烯烃分子中的碳碳双键上的原子或原子团被其他物质取代或连接。

常见的例子包括烯烃与卤代烷反应、烯烃与酸酐反应等。

2. 消旋反应
消旋反应是指手性烯烃的旋光性在反应过程中发生改变。

烯烃分子的非对称性导致其旋光性,而消旋反应使得手性烯烃失去旋光性或旋光性发生改变。

常见的消旋反应包括光学异构化和化学异构化等。

3. 环化反应
烯烃分子中的碳碳双键具有自由旋转性,因此可以通过环化反应形成新的环状结构。

环化反应是有机合成中非常重要的一类反应,可以合成具有不同环结构的化合物。

4. 质子化反应
质子化反应是指烯烃分子中的碳碳双键上发生质子化反应,使得双键上的π电子云成为阳离子中的孤对电子。

质子化反应是烯烃分子中常见的反应,可以通过质子酸的作用使双键上的电子云发生重排,形成新的化学键。

总结:
烯烃作为有机化学中重要的一类物质,具有丰富的立体化学和反应特点。

研究烯烃的立体化学可以帮助我们更好地理解烯烃分子的结构和性质,为有机合成和天然产物研究提供理论基础。

对烯烃的反应特点的研究则对有机化学合成和材料科学等领域有着重要意义。

通过对烯烃反应的了解,可以指导我们在实践中准确、高效地合成和应用烯烃化合物,推动有机化学的研究和应用进程。

相关文档
最新文档