人教版高中数学必修第一册四种命题1

合集下载

高中数学第一章 1.1.2_1.1.3四种命题四种命题间的相互关系讲义(含解析)新人教A版选修1_1

高中数学第一章 1.1.2_1.1.3四种命题四种命题间的相互关系讲义(含解析)新人教A版选修1_1

1.1.2 & 1.1.3 四种命题四种命题间的相互关系预习课本P4~8,思考并完成以下问题1.一个命题的四种形式分别是什么?它们之间的相互关系分别是什么?2.什么样的两个命题有相同的真假性?3.两个互逆命题或互否命题,它们之间的真假性有没有关系?[新知初探]1.原命题与逆命题2.原命题与否命题3.原命题与逆否命题4.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)一个命题的否命题和逆命题有相同的真假性( )(2)原命题与逆命题之间的真假性没有关系( )答案:(1)√(2)√2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数答案:B3.命题“若x2>y2,则x>y”的否命题是________________________________________________________________________.答案:若x2≤y2,则x≤y4.命题p:若a=1,则a2=1;命题q:若a2≠1,则a≠1,则命题p与q的关系是________.答案:互为逆否命题四种命题的概念[典例]命题.(1)对顶角相等;(2)全等三角形的对应边相等.[解] (1)原命题:如果两个角是对顶角,则它们相等;逆命题:如果两个角相等,则它们是对顶角;否命题:如果两个角不是对顶角,则它们不相等;逆否命题:如果两个角不相等,则它们不是对顶角.(2)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.四种命题的转换方法(1)逆命题:互换原命题的条件和结论,所得命题是原命题的逆命题.(2)否命题:同时否定原命题的条件和结论,所得命题是原命题的否命题.(3)逆否命题:互换原命题的条件和结论,并且同时否定,所得命题是原命题的逆否命题.[注意] 四种命题转换时关键是把命题写成“若……则……”的形式. 写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面; (2)当x =2时,x 2-3x +2=0.解:(1)逆命题:如果一条直线垂直于平面,那么这条直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么这条直线不垂直于平面; 逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线. (2)逆命题:若x 2-3x +2=0,则x =2; 否命题:若x ≠2,则x 2-3x +2≠0; 逆否命题:若x 2-3x +2≠0,则x ≠2.四种命题真假的判断[典例] (1)“正三角形都相似”的逆命题.(2)“若x 2+y 2≠0,则x ,y 不全为零”的否命题. (3)“若m >0,则x 2+x -m =0有实根”的逆否命题.[解] (1)原命题的逆命题为“若三角形相似,则这些三角形是正三角形”.假命题. (2)原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题.(3)原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”.因为方程x 2+x -m =0无实根,所以判别式Δ=1+4m <0,解得m <-14,故m ≤0,为真命题. [一题多变]1.[变设问]若本例(3)改为判断“若m >0,则x 2+x -m =0有实根”的逆命题的真假,则结果如何?解:原命题的逆命题为“若x 2+x -m =0有实根,则m >0”.因为方程x 2+x -m =0有实根,所以判别式Δ=1+4m ≥0,所以m ≥-14,故逆命题为假命题.2.[变条件]若本例(3)改为判断“若m >0,则mx 2+x -1=0有实根”的逆否命题的真假,则结论如何?解:原命题的逆否命题为“若mx 2+x -1=0无实根,则m ≤0”.因为方程mx 2+x -1=0无实根,则m ≠0,所以判别式Δ=1+4m <0,则m <-14,故m ≤0,为真命题.解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可.等价命题的应用[典例] 证明:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.[证明] 法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.法二:假设a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ). ∴f (a )+f (b )<f (-a )+f (-b ).这与已知条件f (a )+f (b )≥f (-a )+f (-b )相矛盾. 因此假设不成立,故a +b ≥0.“正难则反”的处理原则(1)当原命题的真假不易判断,而逆否命题较容易判断真假时,可通过判断其逆否命题的真假来判断原命题的真假.(2)在证明某一个命题的真假性有困难时,可以证明它的逆否命题为真(假)命题,来间接地证明原命题为真(假)命题.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.层级一 学业水平达标1.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( ) A .若a ≠-b ,则|a |≠|b | B .若a =-b ,则|a |≠|b | C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b解析:选D 条件“a =-b ”和结论“|a |=|b |”互换后得到逆命题:若|a |=|b |,则a =-b .故选D.2.“在△ABC 中,若C =90°,则A ,B 全是锐角”的否命题为( ) A .在△ABC 中,若C ≠90°,则A ,B 全不是锐角 B .在△ABC 中,若C ≠90°,则A ,B 不全是锐角 C .在△ABC 中,若C ≠90°,则A ,B 中必有一个是钝角 D .以上都不对解析:选 B “全是”的否定是“不全是”,故该命题的否命题为“在△ABC 中,若C ≠90°,则A ,B 不全是锐角”.3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C “若a >-3,则a >-6”为真命题,所以其逆否命题亦为真命题.又逆命题、否命题为假命题,所以真命题的个数为2.故选C.4.若命题p 的逆命题为q ,命题q 的否命题为r ,则命题p 是命题r 的( ) A .逆命题 B .否命题 C .逆否命题D .以上都不对解析:选C 由四种命题的关系,知命题p 与命题r 互为逆否命题. 5.在下列四个命题中,为真命题的是( ) A .“x =2时,x 2-5x +6=0”的否命题 B .“若b =3,则b 2=9”的逆命题 C .若ac >bc ,则a >bD .“相似三角形的对应角相等”的逆否命题解析:选D A 中命题的否命题为“x ≠2时,x 2-5x +6≠0”,是假命题;B 中命题的逆命题为“若b 2=9,则b =3”,是假命题;C 中当c <0时,为假命题;D 中原命题与其逆否命题等价,都是真命题.6.命题“若x ≠1,则x 2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x 2-1=0,则x =1”,因为x 2-1=0,x =±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2.∴1≤m ≤2.答案:[1,2] 8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有_______;互为否命题的有________;互为逆否命题的有________. 解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤9.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)正数a 的立方根不等于0;(2)在同一平面内,平行于同一条直线的两条直线平行.解:(1)原命题:若a 是正数,则a 的立方根不等于0,是真命题. 逆命题:若a 的立方根不等于0,则a 是正数,是假命题. 否命题:若a 不是正数,则a 的立方根等于0,是假命题. 逆否命题:若a 的立方根等于0,则a 不是正数,是真命题.(2)原命题:在同一平面内,若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:在同一平面内,若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:在同一平面内,若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:在同一平面内,若两条直线不平行,则这两条直线不平行于同一条直线.10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x +a2+2≤0的解集为空集”.判断其真假如下:抛物线y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0.即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真命题.层级二应试能力达标1.命题“设a,b,c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个 D.4个解析:选C 若c=0,则ac2>bc2不成立,故原命题为假命题.由等价命题同真同假,知其逆否命题也为假命题.逆命题“设a,b,c∈R,若ac2>bc2,则a>b”为真命题,由等价命题同真同假,知原命题的否命题也为真命题,所以共有2个真命题,故选C.2.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的( )A.逆命题 B.否命题C.逆否命题 D.无关命题解析:选A 由于这两个命题的关系是一个命题的条件和结论分别是另一个命题的结论和条件,所以互为逆命题,故选A.3.命题“若x,y都是奇数,则x+y也是奇数”的逆否命题是( )A.若x+y是奇数,则x与y不都是奇数B.若x+y是奇数,则x与y都不是奇数C.若x+y不是奇数,则x与y不都是奇数D.若x+y不是奇数,则x与y都不是奇数解析:选C 由于“x,y都是奇数”的否定表达是“x,y不都是奇数”,“x+y是奇数”的否定表达是“x+y不是奇数”,故原命题的逆否命题为若x+y不是奇数,则x,y不都是奇数,故选C.4.有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中,为真命题的是( )A .①②B .②③C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不全等”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B={4,5},显然A ⊆B 是错误的.5.在原命题“若A ∪B ≠B ,则A ∩B ≠A ”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:逆命题为“若A ∩B ≠A ,则A ∪B ≠B ”; 否命题为“若A ∪B =B ,则A ∩B =A ”; 逆否命题为“若A ∩B =A ,则A ∪B =B ”; 全为真命题. 答案:46.若命题“若x <m -1或x >m +1,则x 2-2x -3>0”的逆命题为真、逆否命题为假,则实数m 的取值范围是________________________________________________________________________.解析:由已知,易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1}.又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.答案:[0,2]7.已知a ,b ,c ∈R ,证明:若a +b +c <1,则a ,b ,c 中至少有一个小于13.证明:原命题的逆否命题为:已知a ,b ,c ∈R ,若a ,b ,c 都不小于13,则a +b +c ≥1.由条件a ≥13,b ≥13,c ≥13,三式相加得a +b +c ≥1,显然逆否命题为真命题.所以原命题也为真命题.即已知a ,b ,c ∈R ,若a +b +c <1,则a ,b ,c 中至少有一个小于13.8.a,b,c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.解:能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.。

【鼎尖教案】人教版高中数学必修系列:1.7四种命题(第一课时)

【鼎尖教案】人教版高中数学必修系列:1.7四种命题(第一课时)

§1.7 四种命题●课时安排3课时●从容说课命题是逻辑学中最基本的概念.本小节首先从初中数学的命题知识出发,结合学生较熟悉的简单几何命题给出四种命题的概念,接着讲述了四种命题的关系。

最后介绍了反证法.通过本节的教学,要使学生初步理解四种命题(即原命题、逆命题、否命题、逆否命题)及四种命题间的关系.对于给出的原命题要能够准确写出它的逆命题、否命题与逆否命题,并判断它们的真假.然后使学生通过实例归纳总结四种命题之间的相互关系及一个命题的真假与其他三个命题的真假之间的关系,从而使学生理解掌握互为逆否命题的等价性及这种等价性在判断命题真假时的灵活应用.本节教材介绍了“若p则q”形式的命题也是一种复合命题.其中p与q可以是命题,也可以不是命题.而教材中这种形式的命题中的p与q均基本上都不是命题.例如:“x≥2,则x2≥4”命题中“x≥2”和“x2≥4”都不是命题.在教学中只要求学生能分清命题“若p 则q”中的条件与结论即可.再者,在教学中应使学生掌握逻辑联结词“非”的含义的理解与应用.特别是对于复合命题“p或q”和“p且q”的否定的掌握是必要的.通过实例使学生掌握“p或q”的否定是“非p且非q”.“p且q”的否定是“非p或非q”这一结论在判断命题真假时的应用.对于反证法的内容主要是让学生更进一步熟悉反证法,而对反证法的掌握还需随着学习的深入逐步提高。

第一课时●课题§1.7.1 四种命题的概念●教学目标(一)教学知识点1.四种命题的概念.2.四种命题形式的表示.(二)能力训练要求1.理解四种命题的概念.2.掌握四种命题形式的表示.3.培养学生简单推理的逻辑思维能力.(三)德育渗透目标1.培养发展学生的思维品质.2.通过本节教学,使学生充分认识理解四种命题的概念及相互关系中进一步认识与加强辩证统一思想的理解.●教学重点1.四种命题的概念及表示形式.2.由原命题准确写出另外三种命题.●教学难点由原命题写出另外三种命题.●教学方法读、议、讲、练结合教学.1.在教师指导下,通过学生自学,在掌握初中学过的“原命题”与“逆命题”的基础上进一步理解掌握“否命题”与“逆否命题”的概念.并使学生体验“成功”的乐趣.2.在学生掌握命题概念的基础上,结合实例,使培养学生理论联系实际,解决实际问题的能力.●教具准备多媒体课件或幻灯片一张.●教学过程Ⅰ.复习回顾[师]初中已学习过命题与逆命题的知识,请一位同学回答:什么叫做命题的逆命题?[生]在两个命题中,如第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题.[师]回答正确,本书将进一步研究命题与其有关的命题的概念.Ⅱ.讲授新课§1.7.1 四种命题的概念,并思考下列问题:[师]请同学们阅读课本P20~30(1)原命题、逆命题、否命题、逆否命题的定义分别是什么?(2)若原命题的形式表示为“若p则q”,则其他三种命题的形式如何表示?(学生阅读时,师在黑板上写出下列三个命题):(1)两直线平行,同位角相等.(2)负数的平方是正数.(3)四边相等的四边形是正方形.[师]请同学回答:什么叫做原命题?原命题的形式可如何表示?[生]通常把所给定的一个命题叫做原命题,如果用p和q分别表示原命题的条件和结论,则原命题可表示为:若p则q.[师]什么叫做逆命题?原命题的逆命题的形式如何表示?[生]在两个命题中,如果第一个命题.即原命题的条件是第二个命题的结论,且原命题的结论是第二个命题的条件,那么第二个命题就叫做原命题的逆命题.原命题的逆命题的形式可表示为:若q则p.[师]两位同学回答正确.下面请同学回答黑板上第(1)个命题的逆命题.[生]同位角相等,两直线平行.[师]什么叫做原命题的否命题?其形式如何表示?[生]如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题.这个命题叫做原命题的否命题.否命题的形式可表示为:若非p则非q.[师]回答正确.但应注意:“若非p则非q”,可书写为:“若⌝p则⌝q”符号“⌝”叫做否定符号,“⌝p”表示p的否定,即“非p”.请一同学写出命题(1)的否命题.[生]两直线不平行,同位角不相等.[师]什么叫做原命题的逆否命题?形式可如何表示?[生]如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题.这个命题叫做原命题的逆否命题.逆否命题的形式可表示为:若⌝q则⌝p.[师]写出命题(1)的逆否命题.[生]同位角不相等,两直线不平行.[师]上述讨论了原命题的逆命题、否命题、逆否命题的概念.请同学们写出命题(2)、(3)的表示形式,并写出它们的逆命题、否命题、逆否命题.注:教师应强调:关键是找出原命题的条件p与结论q.[生]命题(2)的条件是p:“一个数是负数”;结论是q:“它的平方是正数”.命题(3)的条件是p:“一个四边形的四条边相等”;结论是q:“这个四边形是正方形.”[生]命题(2)的逆命题是:若一个数的平方是正数,则它是负数”.否命题是:若一个数不是负数,则它的平方不是正数.逆否命题是:若一个数的平方不是正数,则它不是负数.[生]命题(3)的逆命题是:若一个四边形是正方形,则它的四条边相等.否命题是:若一个四边形的四条边不相等,则它不是正方形.逆否命题是:若一个四边形不是正方形,则它的四条边不相等.Ⅲ.课堂练习1、2课本P31学生口答,教学评述(略)Ⅳ.课时小结幻灯片习题1.7 1,2.(一)书面作业:P33(二)1.预习内容:下节内容.2.预习提纲(1)四种命题之间的关系是什么?(2)一个命题与其他三个命题之间的真假关系如何?●板书设计。

高中数学第一章常用逻辑用语1.1.1四种命题12111数学

高中数学第一章常用逻辑用语1.1.1四种命题12111数学
样的两个命题就叫做互否命题,若把其中一个命
题叫做原命题,则另一个就叫做原命题的否命题.
例如: 原命题是:同位角相等,两直线平行。 否命题(mìng tí)是:同位角不相等,两直线不平行。
第七页,共二十一页。
课中共(zhōnɡ ɡò①nɡ)学如果两个三角形全等,那么它们的面积相等;
④如果两个三角形的面积不相等,那么它们不全等。
逆否命题,并判断各命题的真假。
解 原命题(mìng tí):若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题(mìng tí);
否命题:若a 0,则ab 0 ”是假命题;
逆否命题:若ab 0,则a 0”是真命题;
原命题为真,它的否命题不一定为真;
原命题为真,它的逆否命题一定为真.
逆否命题 是:两直线不平行,同位角不相等。
第八页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)
探究 活动: (tànjiū)
1.探求(tànqiú)四种命题之间的关系,为 什么存在这种关系?
第九页,共二十一页。
课中共学
四种命题间的相互(xiānghù)关系:
原命题(mìng tí) 若p则q
互 否
例如:
原命题(mìng tí)是:同位角相等,两直线平行。 逆命题就是:两直线(zhíxiàn)平行,同位角相等。
第六页,共二十一页。
课中共(zhōnɡ ɡ①ònɡ如)学果两个三角形全等,那么它们的面积相等;
③如果两个三角形不全等,那么它们的面积不相等;
2.在两个命题中,一个命题的条件和结论分别 (fēnbié)是另一个命题的条件的否定和结论的否定,这
第十三页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)

四种命题课件-人教版高中数学

四种命题课件-人教版高中数学

把下列命题改写成“若p则q”的形式,并
判定真假。
(1) 负数的平方是正数.
真命题
(2) 正方形的四条边相等.
真命题
(3) 等腰三角形两腰的中线相等 真命题
(4) 面积相等的两个三角形全等. 假命题
(5)偶函数的图象关于y轴对称 真命题
(6)垂直于同一个平面的两个平面 假命题
平行
(7)对顶角相等
真命题
命题:语句都是陈述句,并且可以判断真假。 真命题:判断为真的语句。 假命题:判断为假的语句。
例1.判断下列语句是不是命题?是真命题还是假命题
1) 空集是任何集合的子集
真命题
2) 若整数a是素数,则a是奇数. 3) 指数函数是增函数吗?
假命题 疑问句
4) 若空间中两条直线不相交,则这两条直线平行.假命题
1.1 命题及其关系
1.1.1 命题
学好要领
下列句子中,你能判断它们的真假吗?
⑴若直线a∥b,则直线a和直线b无公共点 能源自⑵画一个角等于已知角; 不能
⑶刘翔是世界冠军;

⑷垂直于同一条直线的两个平面平行 能
⑸请借我一枝钢笔。不能
⑹玫瑰花是动物。 能
⑺熊猫没有翅膀。

⑻若a2= b2,则a=b。 能
题是D( )
A. a,b都不是奇数,则a+b是偶数 B. a+b是偶数 ,则a,b都是奇数 C. a+b是偶数 ,则a,b都不是奇数 D. a+b不是偶数,则a,b不都是奇数;
作业:写出下列各命题的逆命题,否命题,逆 否命题,并判断各命题的真假:
(1)菱形的四条边都相等
(2)若 x2 x 2 0 ,则x 1 且 x 2

【人教版】高一数学上册四种命题知识点

【人教版】高一数学上册四种命题知识点

【人教版】高一数学上册四种命题知识点学习是一个边学新知识边巩固的过程,对学知识一定要多加计划,这样才能进步。

因此,为大家整理了高一数学上册四种命题知识点,供大家参考。

【人教版】高一数学上册四种命题知识点【《四种命题》知识点】四种命题包括原命题、逆命题、否命题和逆否命题。

1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系1、四种命题的相互关系:原命题与逆命题互逆,逆命题与逆否命题互否,逆否命题与否命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否。

2、四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。

【同步练习题】1.命题“若A∩B=A,则A∪B=B”的否命题是( )A.若A∪B=B,则A∩B=A B.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠A D.若A∪B≠B,则A∩B=A 答案:B解析:条件与结论要同时否定.2.关于命题“平行四边形的两组对边分别相等”,下列论述中,正确的是( )A.逆命题是假命题 B.否命题是假命题C.逆否命题是真命题 D.以上答案都不对答案:C解析:原命题为真命题,所以逆否命题为真命题.3.命题:“若a、b都是偶数,则a+b是偶数”的逆否命题是( )A.若a+b是偶数,则a、b都不是偶数B.若a+b是偶数,则a、b不都是偶数C.若a+b不是偶数,则a、b都不是偶数D.若a+b不是偶数,则a、b不都是偶数答案:D解析:注意“都是”的否定为“不都是”.4.用反证法证明“如果a b 0,那么”假设的内容应是( )A. = B. C. ≤ D. 且 =答案:C解析:“ ”的反面为“≤”.5.“相似三角形的周长相等”写成“若p则q”的形式为_________________.答案:若两三角形相似,则它们的周长相等解析:条件p:若两三角形相似,结论q:它们的周长相等.6.用反证法证明:“任何三角形至少有两个锐角”时,应假设_____________________.答案:三角形至多有一个锐角解析:即假设三角形只有一个锐角或一个锐角也没有.7.给定命题:已知a、b为实数,若x2+ax+b≤0的解集是空集,则a2-4b≤0,写出它的逆命题、否命题、逆否命题,并判断四个命题的真假.解:原命题:是假命题.逆命题:已知a、b为实数,若a2-4b≤0,则x2+ax+b≤0的解集是空集.假命题.否命题:已知a、b为实数,若x2+ax+b≤0的解集不是空集,则a2-4b 0.假命题.逆否命题:已知a、b为实数,若a2-4b 0,则x2+ax+b≤0的解集不是空集.假命题.能力提升踮起脚,抓得住!8.一个命题与它的逆命题、否命题、逆否命题这四个命题中( )A.真命题的个数一定是奇数B.真命题的个数一定是偶数C.真命题的个数可能是奇数也可能是偶数D.以上判断都不正确答案:B解析:原命题与逆否命题同真同假,逆命题与否命题同真同假.9.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的( )A.逆否命题 B.逆命题C.否命题 D.原命题答案:C解析:由题知s是p的逆否命题,而t是p的逆命题,所以s是t的否命题.10.命题“若a b,则ac bc(a、b、c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为__________________.答案:0解析:注意c∈R.知识点是同学们提高总体学习成绩的重要途径,高一数学上册四种命题知识点为大家巩固相关重点,让我们一起学习,一起进步吧!。

高一数学四种命题课件

高一数学四种命题课件

真 逆命题:若ac2>bc2,则a>b 假 否命题:若四边形对角线不相等,则四边形不是平行四边形。
假 逆命题:若四边形是平行四边形,则四边形对角线相等。


4
逆命题和否命题
总是同真同假
练习
1、分别写出下列命题,并判断真假。 原命题: 逆命题: 否命题: 三边对应相等的两个三角形全等。 全等的两个三角形三边对应相等。
1、互逆命题
一个命题的条件和结论,分别是另一个命题的结论
和条件,这两个命题就叫做互逆命题。把其中一个叫
做原命题,则另一个叫做原命题的逆命题。
例如: 原命题: 同位角相等,两直线平行
逆命题: 两直线平行,同位角相等 总结: 原命题: 若p则q
逆命题: 若q则p
2、互否命题
一个命题的条件和结论,分别是另一个命题的条件 的否定和结论的否定,这两个命题就叫做互否命题。把 其中一个叫做原命题,则另一个叫做原命题的否命题。
(2)原命题: 若四边形是正方形,则四边形两对角线垂直。 逆命题: 若四边形两对角线垂直,则四边形是正方形。 否命题: 若四边形不是正方形,则 四边形两对角线不垂直。
逆否命题:若四边形两对角线不垂直,则四边形不是正方形。
(3)原命题: 若a>b,则ac2>bc2. 逆命题: 若ac2>bc2,则a>b.
(2)正方形的四条边相等
原命题:若一个四边形是正方形,则它的四条边相等; 逆命题:
若一个四边形的四条边相等,则它是正方形; 若一个四边形不是正方形,则它的四条边不相等;
否命题: 逆否命题:
若一个四边形的四条边不相等,则它不是正方形;
例2、写出命题 “若 xy= 0 则 x = 0或 y = 0” 的逆命题、否命题、逆否命题

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

人教版高中数学必修第一册同步讲义第一章 1.7 四种命题

1.7 四种命题①课文三点专讲重点:(1)四种命题及其关系.原命题:若p 则q 逆命题:若p 则q否命题:若⌝p 则⌝q 逆否命题:若⌝q 则⌝p(2)四种命题的关系.四种命题的关系如下表所示:(3)命题真假的判定.互为逆否命题具有相同的真假性.(4)反证法.要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法难点:反证法反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论考点:(1)考察逆命题、否命题与逆否命题.(2)四种命题的相互关系.应用四个重要结论解题.(3)反证法.该方法较为适用的题型为:①命题简单明了,没有更多的公理概念等依据可供论证的命题; ②结论本身是以否定形式出现的一类命题; ③有关结论是以“至多……”或“至少……”的形式出现的一类命题; ④关于惟一性、存在性的命题; ⑤结论的反面比原结论更具体、更容易研究和掌握.②练功篇典型试题分析例1. 写出命题“在△ABC 中,若∠C =90°,则c 2=a 2+b 2”的逆命题,否命题和逆否命题,并指出它们的真假.分析:此题的原命题中“在△ABC 中”是前提,在写这类命题的逆命题、否命题和逆否命题时一般保持不变.解析:原命题是真命题.逆命题为“在△ABC 中,若c 2=a 2+b 2,则∠C =90°.为真命题.否命题为:“在△ABC 中,若∠C ≠90°,则c 2≠a 2+b 2”,是真命题.逆否命题为:“在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°,是真命题.例2. 判断下列命题的真假,并说明理由.(1)设a ,b ∈N *,如果a +b 是偶数,那么a 、b 都是偶数.(2)如果A ⊆B ,B ⊆C ,那么A ⊆C.(3)如果一元二次方程ax 2+bx +c =0满足ac <0那么这个方程有实数根.(4)相似三角形一定是全等三角形.(5)合数必定是偶数.分析:在判断命题的真假时,应注意运用有关的概念、定理、公式等基本理论,对命题的条件和结论仔细分析,认真思考.并注意反例的运用. (1)取反例:a =1,b =3,(2)由集合的性质,可判定,(3)由ac <0⇒b 2-4ac ≥0,(4)相似三角形的对应边不一定相等,(5)反例:9是合数,但不是偶数.解析:(1)假命题.例如a =1,b =3,a +b =4为偶数.但a 、b 不是偶数.(2)真命题.设任x 0∈A ,∵A ⊆B .∴x 0∈B .又 ∵B ⊆C ,则x 0∈C .故A ⊆C 成立.(3)真命题.因方程中由ac <0⇒Δ=b 2-4ac ≥0.故一元二次方程ax 2+bx +c =0有实数根.(4)假命题.因相似三角形的对应边不一定相等.则不一定是全等三角形.(5)假命题.例如9是合数,但不是偶数.基础知识巩固1.有以下5个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;(5)所有男生都爱踢足球.其中命题(5)的否命题是 ( )A .(1)B .(2)C .(3)D .(4)2.下面三个命题:(1)“若3=b ,则92=b ”的逆命题;(2)“全等三角形的面积相等”的否命题;(3)“若1≤c ,则022=++c x x 有实根”的逆否命题.其中真命题的个数是 ( )A . 0B . 1C . 2 D..33.命题“能被4整除的数一定是偶数”,等价命题是()A.偶数一定能被4整除B.不能被4整除的数一定不是偶数C.不能被4整除的数不一定是偶数D.4.下列命题中,正确的是( )①“若x2+y2 =0,则x , y全是0”的否命题②“全等三角形是相似三角形”的否命题③“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题④若“a+5是无理数,则a是无理数”的逆否命题A.①②③B.①④C.②③④D.①③④5.用反证法证明命题的第二步中,得出的矛盾可以是与下列哪些内容产生的( )①命题已知②数学定义③定理,公理④推理、演算的规律A.①B.①③C.②D.①②③④6.用反证法证明命题“2+3是无理数”时,假设正确的是( )A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数7.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②“若a>b,则a+c>b+c”的否命题;③“矩形的对角线相等”的逆命题;④“若xy=0,则x、y中至少有一个为0”的否命题.其中真命题的序号是______.8.写出命题p:“若m>0,则关于x的方程x2+x-m=0有实数根”的逆命题,否命题和逆命题,并分别判断它的真假.9.写出下列命题的否命题(1)有些三角形是直角三角形;(2)所有的质数都是奇数 .10.若x、y∈R+,且x+y>2,求证:y x+1<2与x y+1<2中,至少有一个成立.③升级篇典型试题分析例3:写出命题“若x≥2且y≥3,则x+y≥5”的逆命题、否命题,逆否命题.并判断其真假.分析:应注意分析清楚原命题的条件与结论,并充分利用四种命题的定义,还要注意条件和结论中“或”“且”“非”的否定的语句表述的准确性. 本题应注意理解掌握“p且q”的否定为“⌝p 或⌝q ”,“p 或q ”的否定为“⌝p 且⌝q ”.解析:原命题:“若x ≥2且y ≥3则x +y ≥5”为真命题.逆命题为:“若x +y ≥5,则x ≥2且y ≥3”,为假命题.否命题是:“若x <2或y <3,则x +y <5.”其为假命题.逆否命题是:“若x +y <5,则x <2或y <3”其为真命题.例4. 写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果x >-3,那么x +8>0(2)如果一个三角形的三边都相等,那么这个三角形的三角都相等.(3)矩形的对角线互相平分且相等.(4)相似三角形一定是全等三角形.分析:将原命题的条件和结论同时加以否定,便得到其否命题. 一个命题的否定应当包含除了本身以外的所有情况.如:“都相等”的否定应为“不都相等”,即至少有两个元素不相等;“p 或q ”与“⌝p 且⌝q ”互为否定;“一定是”的否定是“一定不是”.解析:(1)否命题是:“如果 x ≤-3,那么x +8≤0”原命题为真命题,否命题为假命题.(2)否命题是:“如果一个三角形的三边不都相等,那么这个三角形的三角不都相等. 原命题为真命题,否命题也为真命题.(3)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等”.原命题是真命题,否命题也是真命题.(4)否命题是“不相似的三角形一定不是全等三角形.”原命题是假命题,否命题是真命题.知识应用与提升11. 给出以下四个命题:其中真命题是( )①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.A .①②B .②③C .①③D .③④ 12. 命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为A.a +b 不是偶数,则a 、b 不都是偶数B.a +b 不是偶数,则a 、b 都不是偶数C.a 、b 不都是偶数,则a +b 不是偶数D.a 、b 都不是偶数,则a +b 不是偶数13. 用反证法证明命题“若整数n 的立方是偶数,则n 也是偶数”如下:假设n 是奇数,则n =2k +1(k 是整数),n 3=(2k +1)3=______,与已知n 3是偶数矛盾,所以n 是偶数.14. 用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A. a ,b 都能被5整除B. a ,b 都不能被5整除C. a ,b 不都能被5整除D. a 不能被5整除15. 给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题②命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题③命题“若a >b >0,则3a >3b >0”的逆否命题其中真命题的序号为__________.16. 写出下列命题的逆命题,并判断原命题和逆命题的真假.(1)若x 2=1,则x =1.(2)对顶角相等.(3)等腰三角形的两腰相等.(4)x 2+2x +8>0的解集为空集.④闯关篇典型试题分析例5:若a 、b 、c 均为实数,且2222,2,2236a x y b y z c z x πππ=-+=-+=-+,求证:a 、b 、c 中至少有一个大于0.分析: 反证法是一种常用的数学方法,属于一种间接证法.当待证命题中出现“不可能”、“一定”、“至多”、“唯一”等词语时,常可考虑运用反证法.运用反证法时常见词语的否定方式有:“在”⇒“不在”;“是”⇒“不是”;“都是”⇒“不都是”;“大于”⇒“不大于”;“所有的…”⇒“至少有一个不…”;“至少一个” ⇒“一个也没有”;“任意一个”⇒“存在某个不…”,等等.证明: (用反证法)假设a 、b 、c 都不大于0,即0a ≤,0,0b c ≤≤,则有0a b c ++≤. 而222222236a b c x y y z z x πππ⎛⎫⎛⎫⎛⎫++=-++-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()222222x x y y z z π=-+-+-+()()()()2221113x y z π=-+-+-+-,所以 0a b c ++>,此与0a b c ++≤矛盾.故假设错误,从而原命题正确.评述:本题亦可直接转化为证明等价命题:0a b c ++>..例6.若()22f x x ax a a =++-在[-1,1]上至少存在一点C 使()0f C >,求实数a 的取值范围.分析: 利用否命题来求解这一类问题,可以简化运算步骤,回避分类讨论.解析:该题可利用其否命题来解.该命题的否命题是: ()22f x x ax a a =++-在[-1,1]不存在点C 使()0f C >即对任意x ∈[-1,1], ()f x ≤0 .∴有()()1010f f ≤⎧⎪⎨-≤⎪⎩解之得11a a ≥≤-或故实数a的取值范围为()1a ∈- ... 知识拔高与创新17. 否定结论“至多有两个解”的说法中,正确的是( )A.有一解B.有两解C.有三解D.至少有两解18. 已知两函数:2222132,3)31(2a x x y a ax x y ++=+--+=.求证:不论a 取怎样的实数,这两函数的图象至少有一个位于x 轴的上方.19. 已知a 、b 、c 是一组勾股数(即a 2+b 2=c 2),求证:a 、b 、c 不可能都是奇数.20. 假设p 、q 都是奇数,求证:关于x 的方程x 2+px +q =0无整数根.⑤行侠篇高考试题点击21.(2005江苏) 命题“若a >b ,则2a >2b -1”的否命题为 .22. (2004江苏)若命题p 的否命题为r ,命题r 的逆命题为s ,则s 是p 的逆命题t 的( )A.逆否命题 B.逆命题 C.否命题 D.原命题⑥娱乐广场开阔视野、趣味学习反证法小游戏三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了这时一个爱开玩笑的人用炭涂黑了他们的前额三个人醒来以后,彼此看了看,都笑了起来但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我由此可知,我的脸也给涂黑了这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了因此这是一种间接的证明方法显然这种证明方法也是不可缺少的像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“参考答案:1.7 四种命题1. C 解析:“所有”的否定是“至少有一个不”.2. B解析:(3)“若1≤c ,则022=++c x x 有实根”的逆否命题为真命题.3. D 解析:其逆否命题为“不是偶数一定不能被4整除”.4. B 解析:“若x 2+y 2 =0,则x , y 全是0”的否命题与若“a +5是无理数,则a 是无理数”的逆否命题为真命题.5. D 解析:反证法证明命题的第二步中,得出的矛盾的可以是所有的条件或相关的结论.6. D 解析: “2+3是无理数”的否定是“2+3是有理数”.7. ①②④ 解析 ①Δ=4-4(-k )=4+4k >0 ∴是真命题 ;②否命题为“若a ≤b ,则a +b ≤b +b ”是真命题;③逆命题“对角线相等的四边形是矩形”是假命题;④否命题:“若xy ≠0,则x 、y 都不为零”是真命题.8. 逆命题:“若关于x 的方程x 2+x -m=0有实数根,则m >0”;否命题:“m ≤0,则关于x 的方程x 2+x -m=0没有实数根”;逆否命题:“若关于x 的方程x 2+x -m=0没有实数根,则m ≤0”.当m >0时,△=1+4m >0,方程x 2+x -m=0必有两个不等实根,故原命题及逆否命题是真命题.当方程x 2+x -m=0,有实数根时,△=1+4m ≥0,m ≥-41,而不一定要>0,故逆命题及否命题是假命题.9. 解析:(1)这是一个存在性命题,存在量词“有些”可以用“存在一个、至少有一个、某个”等词代替,故该命题的否命题为“所有三角形都不是直角三角形”.本题还可以写出它的逆否命题来判断原命题与否命题的真假.(2)这是一个全称命题,全称量词“所有的”可以用“任意的、对于一切、每一个”等词代替,故该命题的否命题为“存在一个质数不是奇数”或“所有的奇数不都是奇数”.10. 证明:假设都不成立,即yx +1≥2,x y +1≥2成立 ∵x ,y ∈R +,∴1+x ≥2y ,1+y ≥2x ,∴2+x +y ≥2x +2y ,∴x +y ≤2与已知x +y >2矛盾, ∴假设不成立,∴原结论成立.11. C 解析: “全等三角形的面积相等”的否命题;“不等边三角形的三内角相等”的逆否命题都是假命题.12. A 解析:命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为“a +b 不是偶数,则a 、b不都是偶数”13. 2(4k3+6k2+3k)+1解析: (2k+1)3=8k3+12k2+6k+1=2(4k3+6k2+3k)+114. B解析:“a,b中至少有一个能被5整除”的否定是“a,b都不能被5整除”15. ①②③以上均为真命题.16. 分析:应先将原命题改写成“如果……,那么……的形式”然后再构造它的逆命题. 解析:(1)逆命题是“若x=1,则x2=1.”原命题为假命题,逆命题是真命题.(2)逆命题是“如果两个角相等,那么这两个角是对顶角”.原命题为真命题,逆命题为假命题.(3)逆命题是“如果一个三角形有两边相等,那么这个三角形是等腰三角形.”原命题是真命题,逆命题也是真命题.(4)逆命题是“空集是x2+2x+8>0的解集”.原命题和逆命题都是假命题.17. C 解析: “至多有两个解”包括了无解、有一解、有两解三种情形,其否定可以选有三解.18.证明:假设这两函数的图象没有一个位于x轴的上方,则有22144(10,4120,a aa aa a⎧≤-≥⎧+-⎪⎪⇒⎨⎨-≥≤≤⎪⎪⎩⎩或此不等式组的解集为∅,所以假设不成立.故这两函数的图象至少有一个位于x轴的上方.19. 证明假设a、b、c都是奇数∵a、b、c是一组勾股数,∴a2+b2=c2 ①∵a、b、c都是奇数,∴a2、b2、c2也都是奇数 ∴a2+b2是偶数这样①式的左边是偶数,右边却是奇数,得出自相矛盾的结论.∴a、b、b不可能都是奇数.20. 分析:此题中含有否定用“无”,可考虑用反证法,另外关于有无整数根,可从已知方程的判别式与根和系数的关系入手分析证明之.证法一:只有在Δ=p2-4q=(p-m)2时((p-m)2表示完全平方数,其中由-4q=-2pm +m2可知m应为偶数)才可能有整数根.化简上式得出p与q的关系:q=p·2m-(2m)2,因p是奇数,不论2m是怎样的整数,都可得q为偶数,这与已知q为奇数相矛盾,则判别式Δ的值不会是一个完全平方数,故方程无整数根.证法二:假设方程有整数根α,无论α是奇数还是偶数,都必有α2+pα+q为奇数,这与α2+pα+q=0矛盾.故方程无整数根.21. 若122,-≤≤baba则解析:由题意原命题的否命题为“若122,-≤≤baba则”.22. B解析设p为“若A则B”,则r、s、t分别为“若﹁A则﹁B”“若﹁B则﹁A”“若B 则A”,故s是t的否命题.。

高一数学四种命题1

高一数学四种命题1
2
(2)若xy 0, 则x 0或y 0.
否定形式: 若xy 0, 则x 0且y 0. 否命题: 若xy 0, 则x 0且y 0.
(3)对一切实数 x, 总有 x x 1 0.
2
否定形式: 对一切实数x,不总有x x 1 0.
2
(或存在实数x0 , 使 x0 x0 1 0)
2
若 x 3或 x 2, 则 x x 6 0
2
若x x 6 0,则x 3且x 2.
2
若 x 3且 x 2, 则 x x 6 0
2
(5)若 x R , 则 x x 1 0
2
若 x x 1 0, 则 x R .
; / 太阳能路灯 太阳能路灯厂家 太阳能路灯价格 ; 2019.1 ;
数.李小克原本希望来个一箭三雕,即:第一,把霍姆尼奇打下来.第二,打一下德军715师.第三,伏击公路,再袭击一下敌人运输队. 现在它条公路要有大量战俘走过,袭击运输队的计划必须要改,变更为救援行动,那里面的事可就复杂了. 在会议上,李小克初步了阐述原来的方案. "我们要拿下霍姆尼奇,但并不是解放她.我们能很容易攻克,之后我们重兵袭击那件事就会暴露,就俘虏亨舍尔的说法,他们的师很希望解决掉公路两侧的游击队,尤其是还比较神秘的我们." "所以你准备怎么干呢?你的意思,言外之意就是说敌人会疯狂反扑?"耶夫洛夫冷静问道. "没错,我相信敌人会反扑的,那样才符合我的计划,也符合敌人大部队的希望."说到那儿,李小克透露出胸有成竹的微笑.(未完待续.) ------------ 第一百九十九章 两路并进 耶夫洛夫不怎么懂兵事,他缓缓问道:"敌人会反扑,那也是你希望的.( 求书网)如果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题
教学目标
1.理解四种命题之间的相互关系.
2.理解一个命题的真假与其它三个命题真假间的关系.
3.培养学生逻辑推理能力.
教学重点
四种命题的关系及真假判断方法.
教学难点
理解命题间的关系.
教学方法
讲、义、练结合教学.
教具准备
投影片3张
教学过程
(I)复习回顾
师:什么叫做原命题的逆命题、否命题、逆否命
题?
生:(略).
师:本节将进一步研究四种命题之间的关系及它
们的真假判断.
(II)讲授新课
四种命题之间的相互关系及真假判断.
1.四种命题之间的相互关系
(黑板上列出四个命题:也可用投影片1)
师:请同学们讨论后回答下列问题:
(1)哪些之间是互逆关系?
(2)哪些之间是互否关系?
(3)哪些之间是互为逆否关系?
生(略)
(学生回答时,教师在黑板上填出关系之图.)
师:我们已明确了四种命题之间的相互关系,下面讨论:(板书)
ab=0,则a=0为假命题.
师:原命题与逆命题的真假关系如何?
生:原命题为真,它的逆命题不一定为真.
师:它的否命题呢?
生:它的否命题是:a≠0,则ab≠0为假命题.
师:你认为原命题与它的否命题的真假关系如何?
生:原命题为真,它的否命题不一定为真.
师:它的逆否命题呢?
生:它的逆否命题是:若ab≠0,则a≠0为真命题.
师:原命题与它的逆否命题的真假关系如何?
(学生充分讨论,例证后回答.)
生:原命题为真,它的逆否命题一定为真.
师:原命题的否命题与它的逆命题之间的真假关系如休?
生:因原命题的否命题与它的逆命题之间是互为逆否关系,所以若原命题的否命题为真,则原命题的逆命题也一定为真.
师:由上述讨论情况,请一学生归纳.
(学生归纳时,师板书)
生:1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
师:由上述归纳可知:两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.
3)
结论是ac<bc.)
生:逆命题:当c>0时,若ac>bc,则a>b.逆命题为真.
否命题:当c>0时,若a≤b,则ac≤bc.否命题为真.
逆否命题:当c<0时,若ac≤bc,则a≤b.逆否命题为真。

(III)课堂练习:课本P32,1、2 略
(IV)课时小结
本节课重点讨论研究了四种命题之间的关系及真假判断,即:
四种命题之间的关系.(投影片)
四种命题的真假关系:原命题为真
(V)课后作业
书面作业
二、预习:预习提纲:反证法证明命题的一般步骤是什么?
四种命题的概念
教学目标
1.理解四种命题的概念,掌握命题形式的表示.
2.培养学生简单推理的思维能力.
教学重点
四种命题的概念.
教学难点
由原命题写出另外三种命题.
教学方法
读、议、讲、练结合教学.
教具准备
投影片1张
教学过程
(I)复习回顾
师:初中已学习过命题与逆命题的知识,请一位同学回答:什么叫做命题的逆命题?
生:在两个命题中,如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题.
师:本节将进一步研究命题与其有关的命题的概念.
(II)讲授新课
§1.7.1 四种命题的概念
师:阅读课本P20—30,思考下列问题:
(1)原命题、逆命题、否命题、逆否命题的定义分别是什么?
(2)原命题的形式表示为“若p则q”,则其它三种命题的形式如何表示?
教师在黑板上写出下列三个命题:
(1)两直线平行,同位角相等;
(2)负数的平方是正数;
(3)四边相等的四边形是正方形.
师:请同学回答:什么叫做原命题?原命题的形式可如何表示?
生:通常把所给的一个命题叫做原命题.如果用p和q分别表示原命题的条件和结论,则原命题可表示:若p则q.
师:什么叫做逆命题初中已学过,那么原命题的逆命题的形式如何表示?
生:原命题的逆命题的形式可表示为:若q则p.
师:请写出黑板上第(1)个命题的逆命题.
生:同位角相等,两直线平.
师:什么叫做否命题?形式可如何表示?
生:如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题.
否命题的形式可表示为:若非p则非q.
(注:教师强调,可书写为:若┐p则┐q.)
师:写出黑板上命题(1)的否命题.
生:两直线不平行,同位角不相等.
师:什么叫做逆否命题?形式可如何表示?
生:如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题.
逆否命题的形式可表示为:若┐q则┐p.
师:写出命题(1)的逆否命题.
生:同位角不相等,两直线不平行.
师:由上述逆命题、否命题、逆否命题的概念写出命题(2)、(3)的表示形式,并写出它们的逆命题、否命题、逆否命题.
注:教师应强调,关键是找出所给原命题的条件p与结论q.
生:命题(2)的条件是:p:“一个数是负数”;结论是q:“它的平方是正数”.
命题(3)的条件是:p:“一个四边形的四条边相等”;结论是q:“这个四边形是正方形”. 生:命题(2)的逆命题是:若一个数的平方是正数,则它是负数.
否命题:若一个数不是负数,则它的平方不是正数.
逆否命题:若一个数的平方不是正数,则它不是负数.
生:命题(3)的逆命题是:若一个四边形是正方形,则它的四条边相等.
否命题:若一个四边形的四条边不相等,则它不是正方形.
逆否命题:若一个四边形不是正方形,则它的四条边不相等.
(III)课堂练习:(课本P31:1、2.)略
一、书面作业:P33,习题1.7:1、2题.
二、预习:下节内容,预习提纲:
(1)四种命题之间的关系是什么?
(2)一个命题与其它三个命题之间的真假关系如何?。

相关文档
最新文档