高二数学上:选修2-1答案
高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。
高二数学(人教B版)选修2-1全册同步练习:1-3-1推出与充分条件、必要条件

1.3.1推出与充分条件、必要条件一、选择题1.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查任意角的三角函数值. “α=π6+2k π(k ∈Z )”⇒“cos2α=12,“cos2α=12”“α=π6+2k π”(k ∈Z )因为α还可以等于2k π-π6(k ∈Z ),∴选A.2.(2009·湖南)对于非零向量a 、b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 考查平面向量平行的条件. ∵a +b =0,∴a =-b .∴a ∥b .反之,a =3b 时也有a ∥b ,但a +b ≠0.故选A.3.(2009·福建,7)设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2[答案] B[解析] 本小题主要考查线面平行、面面平行、充要条件等基础知识.易知选项A 、C 、D 推不出α∥β,只有B 可推出α∥β,且α∥β不一定推出B , B 项为α∥β的一个充分而不必要条件,选B.4.(2009·浙江,2)已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件C .充分必要条件D .既不充分也不必要条件 [答案] C[解析] 本小题主要考查不等式的性质及充要条件. 当a >0且b >0时, a +b >0且ab >0; 当ab >0时,a ,b 同号,又a +b >0, ∴a >0,且b >0.故选C.5.若集合P ={1,2,3,4},Q ={x |0<x <5,x ∈R },则( ) A .“x ∈P ”是“x ∈Q ”的充分条件但不是必要条件 B .“x ∈P ”是“x ∈Q ”的必要条件但不是充分条件 C .“x ∈P ”是“x ∈Q ”的充要条件D .“x ∈P ”既不是“x ∈Q ”的充分条件也不是“x ∈Q ”的必要条件 [答案] A[解析] P ={1,2,3,4},Q ={x |0<x <5,x ∈R }, x ∈P ⇒x ∈Q .但x ∈Qx ∈p ,∴x ∈P 是x ∈Q 的充分不必要条件.故选A.6..(2010·福建文,8)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查充分必要条件问题. 当x =4时,|a |=42+32=5 当|a |=x 2+9=5时,解得x =±4.所以“x =4”是“|a |=5”的充分而不必要条件.7.(2010·广东理,5)“m <14”是“一元二次方程x 2+x +m =0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件[答案] A[解析] 一元二次方程式x 2+x +m =0有实数解,则Δ=1-4m ≥0,∴m ≤14,故“m <14”是“一元二次方程x 2+x +m =0”有实数解的充分不必要条件.8.a <0是方程ax 2+1=0有一个负数根的( )B .充分必要条件C .充分不必要条件D .既不充分也不必要条件 [答案] B[解析] ①∵a <0,ax 2+1=0⇒x 2=-1a >0.∴ax 2+1=0有一个负根. ∴充分性成立.②若ax 2+1=0有一个负根, 那么x 2=-1a >0,可是a <0.∴必要性成立.故选B.9.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 [答案] C[解析] 充分性:当a =1时,直线x +y =0和直线x -y =0垂直;必要性:若直线x +y =0和x -ay =0垂直,由-1·1a=-1,∴a =1,故选C.10.(2009·山东)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] 本小题主要考查空间线面的垂直关系和应用充要条件解题的能力. 由已知m ⊂α,若α⊥β则有m ⊥β,或m ∥β或m 与β相交;反之,若m ⊥β, ∵m ⊂α,∴由面面垂直的判定定理知α⊥β. ∴α⊥β是l ⊥β的必要不充分条件.故选B. 二、填空题11.条件甲:“a >1”是条件乙:“a >a ”的__________条件.[答案] 充要[解析] a >1⇒a >a 成立反之:a >a 时即a 2-a >0解得a >1.12.“lg x >lg y ”是“x >y ”的______________条件. [答案] 充分不必要[解析] 由lgx >lgy ⇒x >y >0⇒x >y 充分条件成立.又由x >y 成立,当y =0时,lgx >lgy 不成立,必要条件不成立.13.不等式ax 2+ax +a +3>0对一切实数x 恒成立的充要条件是________. [答案] a ≥0[解析] ①当a =0时,原不等式为3>0,恒成立; ②当a ≠0时,用数形结合的方法则有⎩⎨⎧a >0Δ=a 2-4a (a +3)<0⇒a >0. ∴由①②得a ≥0.14.函数y =x 2+bx +c ,x ∈[0,+∞)是单调函数的充要条件为________. [答案] b ≥0[解析] 对称轴为x =-b2,要使y =x 2+bx +c 在x ∈[0,+∞)上单调, 只需满足-b2≤0,即b ≥0.三、解答题15.是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围.[解析] x 2-x -2>0的解是x >2或x <-1,由4x +p <0得x <-p4.要想使x <-p 4时x >2或x <-1成立,必须有-p 4≤-1,即p ≥4,所以当p ≥4时,-p4≤-1⇒x <-1⇒x 2-x -2>0.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.16.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0.若p 是q 的充分不必要条件,求正实数a 的取值范围.[解析] 解不等式x 2-8x -20>0,得p :A ={x |x >10或x <-2}. 解不等式x 2-2x +1-a 2>0得 q :B ={x |x >1+a 或x <1-a ,a >0}依题意:p ⇒q ,但是q 不能推出p ,说明A B .于是有⎩⎪⎨⎪⎧a >01+a ≤101-a ≥-2(说明“1+a ≤10”与“1-a ≥-2”中等号不能同时取到)解得0<a ≤3.∴正实数a 的取值范围是0<a ≤3.17.设a ,b ,c 为△ABC 的三边,求证:x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.[解析] 充分性:∵∠A =90°,∴a 2=b 2+c 2,于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0, 即x 2+2ax +(a +c )(a -c )=0, ∴[x +(a +c )][x +(a -c )]=0,∴该方程有两个根x 1=-(a +c ),x 2=-(a -c ), 同样,另一方程x 2+2cx -b 2=0也可化为 x 2+2cx -(a 2-c 2)=0, 即x 2+2cx -(a -c )(a +c )=0, ∴[x +(c +a )][x +(c -a )]=0,∴该方程有两个根x 3=-(a +c ),x 4=-(c -a ), 可以发现x 1=x 3, ∴这两个方程有公共根.必要性:设β是两方程的公共根,则⎩⎪⎨⎪⎧β2+2aβ+b 2=0 ①β2+2cβ-b 2=0 ②, 由①+②得:β=-(a +c )或β=0(舍去), 将β=-(a +c )代入①并整理可得:a 2=b 2+c 2, ∴∠A =90°.18.求ax 2+2x +1=0至少有一个负实根的充要条件.[解析] 由于二次项系数是字母,因此,首先要对方程ax 2+2x +1=0判定是一元一次方程还是一元二次方程.(1)当a =0时,为一元一次方程,其根为x =-12,符合要求;(2)当a ≠0时,为一元二次方程,它有实根的充要条件是判别式Δ≥0即4-4a ≥0从而a ≤1;又设方程ax 2+2x +1=0的根为x 1·x 2,则x 1+x 2=-2a x 1·x 2=1a.①因而方程ax 2+2x +1=0有一个正根、一个负根的充要条件是⎩⎪⎨⎪⎧a ≤11a <0⇒a <0;②方程ax 2+2x +1=0有两个负根的充要条件是⎩⎪⎨⎪⎧a ≤1-2a1a >0⇒0<a ≤1,综上所述,ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.。
高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词课时规范训练 新人教A版高二选修2-1数学

1.4 全称量词与存在量词基础练习1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 【答案】D【解析】原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数. 2.给出下列几个命题:①至少有一个x 0,使x 20+2x 0+1=0成立; ②对任意的x ,都有x 2+2x +1=0成立; ③对任意的x ,都有x 2+2x +1=0不成立; ④存在x 0,使x 20+2x 0+1=0成立. 其中是全称命题的个数为( ) A .1 B .2 C .3 D .0【答案】B【解析】命题②③都含有全称量词“任意的”,故②③是全称命题. 3.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2【答案】B【解析】选项A 中锐角三角形的内角是锐角或钝角是全称命题;选项B 中x =0时,x 2=0,所以选项B 既是特称命题又是真命题;选项C 中因为3+(-3)=0,所以选项C 是假命题;D 中对于任一个负数x ,都有1x<0,所以选项D 是假命题.4.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )【答案】B【解析】因为x =-1时,2-1>3-1,所以命题p :“∀x ∈R,2x <3x”为假命题,则¬p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0,所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :“∃x 0∈R ,x 30=1-x 20”为真命题.则(¬p )∧q 为真命题.故选B .5.命题“∃x 0∈R ,x 20-x 0+3=0”的否定是__________. 【答案】∀x ∈R ,x 2-x +3≠0【解析】∵命题“∃x ∈R ,x 2-x +3=0”是特称命题,∴其否定命题为“∀x ∈R ,x 2-x +3≠0”.6.给出下列命题: ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.其中是全称命题的是________;是特称命题的是________.(填序号) 【答案】①②③④【解析】①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.7.判断下列命题的真假,并写出这些命题的否定. (1)∀x ∈N ,x 3>x 2;(2)所有可以被5整除的整数,末位数字都是0; (3)∃x ∈R ,x 2-x +1≤0;(4)存在一个四边形,它的对角线互相垂直且平分.解:(1)当x =1时,13=12,∴x =1时,x 3>x 2不成立,即此命题是假命题. 命题的否定:∃x 0∈N ,x 30≤x 20.(2)15可以被5整除,但15的末位数字不是0, ∴此命题是假命题.命题的否定:有些可以被5整除的整数,末位数字不是0.(3)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,∴此命题是假命题.命题的否定:∀x ∈R ,x 2-x +1>0.(4)菱形的对角线互相垂直且平分,∴此命题是真命题.命题的否定:任何一个四边形,它的对角线不互相垂直或不互相平分.8.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,某某数a的取值X围.解:若命题p:“∀x∈[1,2],x2-a≥0”为真命题,则a≤x2在区间[1,2]恒成立,所以a≤(x2)min=1.若命题q:“∃x∈R,x2+2ax+2-a=0”为真命题,则Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.命题“p且q”为真命题,即命题p,q都为真命题,所以取两个X围的交集,实数a的取值X围为a≤-2或a=1.能力提升9.(2019年某某某某模拟)已知函数f(x)的定义域为(a,b),若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则f(a+b)的值为( )A.-1 B.0C.1 D.2【答案】B【解析】若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.10.(2019年某某某某期中)下列关于函数f(x)=x2与函数g(x)=2x的描述,正确的是( )A.∃a0∈R,当x>a0时,总有f(x)<g(x)B.∀x∈R,f(x)<g(x)C.∀x<0,f(x)≠g(x)D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解【答案】A【解析】在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),选项A正确,选项B,C,D均错误.11.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0.则m的取值X围是________.【答案】(-4,-2)【解析】由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则f (x )必须开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x 1>x 2,即m >-1时,必须大根x 1=2m <1,即m <12;(2)当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4;(3)当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值X 围为-4<m <0.若∃x ∈(-∞,-4),f (x )g (x )<0,则满足方程f (x )=0的小根小于-4.(1)当m >-1时,小根x 2=-m -3<-4且m <0,无解;(2)当m <-1时,小根x 1=2m <-4且m <0,解得m <-2;(3)当m =-1时,f (x )=-(x +2)2≤0恒成立,∴不满足②.∴满足①②的m 的取值X 围是-4<m <-2.12.已知命题p :∃x ∈R ,使得x 2-2ax +2a 2-5a +4=0;命题q :∀x ∈[0,1],都有(a 2-4a +3)x -3<0.若“p 或q ”为真命题,“p 且q ”为假命题,某某数a 的取值X 围.解:若p 为真命题,则Δ=4a 2-4(2a 2-5a +4)≥0, 解得1≤a ≤4.对于q ,令f (x )=(a 2-4a +3)x -3,若q 为真命题,则f (0)<0且f (1)<0,即⎩⎪⎨⎪⎧-3<0,a 2-4a <0,解得0<a <4.由“p 或q ”为真命题,“p 且q ”为假命题,知p ,q 一真一假,所以⎩⎪⎨⎪⎧1≤a ≤4,a ≤0或a ≥4或⎩⎪⎨⎪⎧a <1或a >4,0<a <4.解得0<a <1 或a =4.故a 的取值X 围是{a |0<a <1 或a =4}.。
高中数学 选修2-1椭圆导学案加课后作业及参考答案

椭圆及其标准方程(一)导学案【学习要求】1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.【学法指导】1.通过自己亲自动手尝试画图,发现椭圆的形成过程进而归纳出椭圆的定义,培养观察、辨析、归纳问题的能力.2.通过经历椭圆方程的化简,增强战胜困难的意志并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性,养成扎实严谨的科学态度【知识要点】1.椭圆:平面内与两个定点F 1,F 2的 的点的轨迹叫做椭圆(ellipse).这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 . 2.探究点一 椭圆的定义问题1 给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?问题2 动点P 到两定点A 、B 的距离之和|P A |+|PB |=2a (a >0且a 为常数)的轨迹一定是椭圆吗?探究点二 椭圆的标准方程问题1 观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.问题2 建系时如果焦点在y 轴上会得到何种形式的椭圆方程?怎样判定给定的椭圆焦点在哪个坐标轴上?问题3 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程; (2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.跟踪训练1 (1)已知中心在原点,以坐标轴为对称轴,椭圆过点Q (2,1)且与椭圆x 29+y 24=1有公共的焦点,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过P 1(6,1),P 2(-3,-2)两点,求椭圆的标准方程.例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是 ( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积.跟踪训练3 已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________【当堂检测】1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为 ( )A .5B .6C .7D .82.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是 ( )A .-9<m <25B .8<m <25C .16<m <25D .m >83.椭圆x 216+y 232=1的焦距为________.4.已知椭圆经过点(3,0)且与椭圆x 24+y 29=1的焦点相同,则这个椭圆的标准方程为____________【课堂小结】1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解. 3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.【拓展提高】1.已知P 是椭圆13422=+y x 上的点,21F F 、分别是椭圆的左、右焦点,21=,则21PF F ∆的面积为( ) A .33B .3C .32D .33 2.已知椭圆的两焦点为P F F ),0,1()0,1(21、-为椭圆上一点,且21212PF PF F F += (1)求此椭圆方程(2)若点P 在第二象限,21012,120F PF PF F ∆=∠求的面积3.如果点),(y x M 在运动过程中总满足关系10)3()3(2222=+++-+y x y x ,点M 的轨迹是 ,它的方程是 4. 椭圆22194x y +=的焦点为F 1、F 2,点P 为其上的动点,当21PF F ∠为钝角时,求P 点横坐标的取值范围。
高二数学(人教B版)选修2-1全册同步练习:3-2-3直线与平面的夹角

3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,P A =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833 C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A.⎣⎡⎦⎤0,2π3 B.⎣⎡⎦⎤π3,2π3 C.⎣⎡π2,2π3D.⎣⎡π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1,又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ. sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan ∠SCA =22,故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝⎛⎭⎫32,2,4,设P (3,0,z ),则BD →=⎝⎛⎭⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝⎛⎭⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan ∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝⎛⎭⎫32,2,4=⎝⎛⎭⎫32,-2,-4, ∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝⎛⎭⎫322+(-2)2+(-4)2=892, ∴cos 〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-y z =0, 令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt △ABC 中,∠ABC =60°,∴BC =12.∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝⎛⎭⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝⎛⎭⎫-14a ,34a ,12,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面P AC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
高二数学选修2-1综合测试题(带答案)

高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
人教新课标版数学高二选修2-1讲义 2.1曲线与方程

2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。
高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
假。
7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。
10.略。
11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。
改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
这是错误的。
7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。
10.略。
11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。
选修2-1 §1.1.3 四种命题间的相互关系1.C2.A3.C4.D5.⑴没有关系⑵相同⑶相同6.若 $a^2-2a+10$,则方程 $x^2+x+a=0$ 没有实数根” 是错误的;逆否命题:“若方程 $x^2+x+a$ 没有实数根,则$a>0$” 是正确的。
10.可以用“原命题与逆否命题的等价性”来证明。
11.只需证明其逆否命题:“若 $p,q\in R$ 且 $p+q>2$,则$p^3+q^3>2$”。
改写:选修2-1 §1.1.3 四种命题间的相互关系1.C2.A3.C4.D5.⑴没有关系⑵相同⑶相同6.若 $a^2-2a+10$,则方程 $x^2+x+a=0$ 没有实数根” 是错误的;逆否命题:“若方程 $x^2+x+a$ 没有实数根,则$a>0$” 是正确的。
10.可以用“原命题与逆否命题的等价性”来证明。
11.只需证明其逆否命题:“若 $p,q\in R$ 且 $p+q>2$,则$p^3+q^3>2$”。
选修2-1 §1.2.1 充分条件与必要条件1.B2.A3.B4.D5.⑴$\Rightarrow$⑵$\Rightarrow$⑶$\Rightarrow$⑷$\Rightarro w$6.充分不必要条件7.必要不充分8.②③⑤;①③④⑥9.⑴错误⑵正确⑶错误 10.⑴必要,必要⑵B$\Rightarrow$A,$\therefore \neg A\Rightarrow \neg B$ ⑶方法一:“$\tan\alpha\neq\tan\beta\Rightarrow \alpha\neq\beta$” 的逆否命题为“$\tan\alpha,\tan\beta$ 有意义,$\alpha=\beta\Rightarrow \tan\alpha=\tan\beta$”;方法二:假设 $\alpha=\beta$,则$\tan\alpha,\tan\beta$ 有意义,$\therefore \tan\alpha=\tan\beta$,矛盾。
11.$a\geq 9$。
改写:选修2-1 §1.2.1 充分条件与必要条件1.B2.A3.B4.D5.⑴$\Rightarrow$⑵$\Rightarrow$⑶$\Rightarrow$⑷$\Rightarro w$6.充分不必要条件7.必要不充分8.②③⑤;①③④⑥9.⑴错误⑵正确⑶错误 10.⑴必要,必要⑵B$\Rightarrow$A,$\therefore \neg A\Rightarrow \neg B$ ⑶方法一:“$\tan\alpha\neq\tan\beta\Rightarrow \alpha\neq\beta$” 的逆否命题为“$\tan\alpha,\tan\beta$ 有意义,$\alpha=\beta\Rightarrow \tan\alpha=\tan\beta$”;方法二:假设 $\alpha=\beta$,则$\tan\alpha,\tan\beta$ 有意义,$\therefore \tan\alpha=\tan\beta$,矛盾。
11.$a\geq 9$。
选修2-1 §1.2.2 充要条件1.A2.B3.C4.B5.⑴$\Rightarrow$,$\Leftarrow$,$\Leftrightarrow$,$\Rightarrow$,$\Rightarrow$;⑵充分不必要 6.⑴$\sqrt{}$ ⑵$\times$ ⑶$\times$ 7.⑴既不充分又不必要⑵必要不充分⑶必要不充分⑷充要改写:选修2-1 §1.2.2 充要条件1.A2.B3.C4.B5.⑴$\Rightarrow$,$\Leftarrow$,$\Leftrightarrow$,$\Rightarrow$,$\Rightarrow$;⑵充分不必要 6.⑴$\sqrt{}$ ⑵$\times$ ⑶$\times$ 7.⑴既不充分又不必要⑵必要不充分⑶必要不充分⑷充要8.对于不等式-4≤a≤29,我们知道这是一个充要条件,即只有当a在-4和29之间时,不等式才成立。
但是这个条件是必要不充分的,因为如果a在-4和29之间,不等式就成立,但如果a不在这个范围内,不等式并不一定不成立。
另外,这个条件是充分不必要的,因为如果不等式成立,a必然在-4和29之间,但如果a在这个范围内,不等式并不一定成立。
10.根据提示,我们可以将不等式a³+b³+ab-a²-b²化简为(a+b-1)(a²-ab+b²)。
又因为9513≤x<a²-ab+b²=(a-b)²+b²≠0(因为ab≠0),所以x的取值范围是9513≤x<(a-b)²+b²。
13.对于不等式13-55,我们可以将其分为两个条件:(1)x≤a<a²+2x;(2)-9≤a≤4.提示条件B是集合{a|-9≤a≤4},而条件A则是集合{a|x≤a<a²+2x}。
所以我们需要求出这两个集合的交集,即A∩B。
11.对于命题“所有正方形的对角线互相垂直”,其否命题是“存在一个正方形的对角线不互相垂直”。
而对于命题“所有四边形的对角线互相垂直”,其否命题是“存在一个四边形的对角线不互相垂直”。
所以,命题的否定应该是“存在一个菱形的对角线不互相垂直”。
16.对于条件语句“若x+y>0,则x>0且y>0”,其逆命题是“若x>0且y>0,则x+y>0”。
这个命题是假的,因为当x=-1,y=-2时,x+y=-30.而对于条件语句的逆否命题“若x+y≤0,则x≤0或y≤0”,其是真的。
17.根据p真q假,我们得到4a²-161,化简得-2<a<2.而根据XXX真,我们得到4a²-16<0且5-2a≤1,化简得a≤-2或a≥3.综合这两个条件,得到a≤-2.18.对于不等式a≥3,我们可以将其转化为集合{a|a≥3}。
对于不等式ax-ax+1>0(a≠0),我们可以将其化简为x>x+1,即x>-1.所以,我们需要找到一个集合B,使得集合B中的元素使得不等式x>-1和a≥3同时成立。
因此,集合B为{a|x>1}∩{a|a≥3},即B={a|a>3}。
20.这个集合可以表示为(-∞,-1)∪(-1,6)。
七、选修2-1 §2.2.1 椭圆及其标准方程1.D。
2.B。
3.B。
4.C。
5.D。
6.87/439.椭圆:x^2/16 + y^2/9 = 111.(1) x^2/169 + y^2/144 = 1 (2) x^2/144 + y^2/169 = 1 (3) x^2/169 - y^2/144 = 112.取AB边所在直线为x轴,线段AB的中垂线为y轴,则M(x,y),A(-3,0),B(3,0),因此点M的轨迹方程为x^2/9 + y^2/16 = 1 (x≠±3)13.(1) x = ±4/3 (2) (0,8)或(0,-8)八、选修2-1 §2.2.2 椭圆的简单几何性质1.A。
2.A。
3.B。
4.C。
5.C。
6.4或17/89.(81-y^2)/49 + x^2/16 = 110.(1) x^2/25 + y^2/9 = 1 (2) -5<m<5 (3) 证明略11.(1) x^2/169 - y^2/144 = 1 (2) y^2/169 - x^2/144 = 1 (3) y^2/169 + x^2/169 = 112.12,提示:(一)用两点间距离公式求AF,CF代入,化简求y,较烦;(二)用补充知识的第二定义求之,较简。
13.(1) x^2/25 - y^2/36 = 1九、选修2-1 §2.3.1 双曲线及其标准方程1.D。
2.D。
3.B。
4.D。
5.C。
6.-2/39.双曲线:x^2/16 - y^2/36 = 111.(1) x^2/169 - y^2/16 = 1 (2) x^2/16 - y^2/169 = 1 (3)x^2/16 + y^2/9 = 112.12,提示:(一)用两点间距离公式求AF,CF代入,化简求y,较烦;(二)用补充知识的第二定义求之,较简。