八年级数学上册第五章二元一次方程组知识整理北师大版
北师大版八年级数学上册第五章二元一次方程组-单元复习课件

题目大意是:甲、乙两人各带了若干钱. 如果甲得到乙所有
2
钱的一半,那么甲共有钱50.如果乙得到甲所有钱的 ,那
3
么乙也共有钱50.甲、乙两人各带了多少钱?
提示:分别设甲、乙分别带钱x和y,列二元一次方程组
x+
y=50
x+y=50
北师大版八年级《数学》上册
考考你:
方程组
单元复习
4x-2y=-6
单元复习
作业:复习题10-17
北师大版八年级《数学》上册
单元复习
(4)解方程组:求出方程组的解或确定方程组没有
解的过程叫做解方程组.
(5)解一元二次方程组的基本方法
加减消元法
是
和 代入消元法
(6)列二元一次方程组解应用题的步
骤 找等量关系-设未知数-列方程组-解答
.
.
北师大版八年级《数学》上册
单元复习
概念
二(三)元一次方程
组
成方程(组)组.
北师大版八年级《数学》上册
单元复习
知识梳理:
(1)二元一次方程:含有 2 个未知数,并且所含
未知数的项数的次数都是一次的 方程 .二元一
次方程的一个解:合适二元一次方程的
一 组未知数的值叫做这个二元一次方程的一个解.
二元一次方程的解集:由这个二元一次方程的 公共解
成的集合叫做这个二元一次方程的解集.
提示:分别将 =1,2,3代入代数式后
得到三个关于a、b、c的方程,列出三
元一次方程组并解出a、b、c的值即可.
北师大版八年级《数学》上册
单元复习
1
y
9.如图,直线l,l,的交点
坐标可以看做哪个方程组
北师大数学八年级上册第五章5.1认识二元一次方程

5.1认识二元一次方程组(解析)知识精讲定义含有两个未知数,并且所含未知数项的次数都是1的方程.判定1.方程两边的代数式都是整式——分母中不能含有字母;2.有两个未知数——“二元”;3.含有未知数的项的最高次数为1——“一次”.4.未知数的系数不为0解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.定义由几个一次方程组成并且一共含有两个未知数的方程组叫做二元一次方程组.解二元一次方程组中所有方程(一般为两个)的公共解叫做二元一次方程组的解.三.易错点1.134xy x+=⎧⎨-=⎩和31xy=⎧⎨=-⎩也是二元一次方程组.2.二元一次方程左右两边必须都是整式,如:1=3yx+不是二元一次方程3.二元一次方程组的解一定要写成联立的形式4.二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.5.组成二元一次方程组的两个一次方程,不一定都是二元一次方程,但两个方程必须一共含有两个未知数三点剖析一.考点:二元一次方程的概念和解,二元一次方程组的概念和解.二.重难点:判断是否为二元一次方程,注意一定满足三个条件.三.易错点:1.134xy x+=⎧⎨-=⎩和31xy=⎧⎨=-⎩也是二元一次方程组.2.二元一次方程组的解一定要写成联立的形式,如方程组2397x yx y-=⎧⎨+=⎩的解是61xy=⎧⎨=⎩.3.二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.二元一次方程的概念和解例题1、若方程(a﹣2)x|a|﹣1+y=1是关于x、y的二元一次方程,则a的值是()A.﹣1B.﹣2C.1D.2【答案】 B【解析】 ∵方程(a ﹣2)x |a|﹣1+y=1是关于x 、y 的二元一次方程,∴a ﹣2≠0且|a|﹣1=1,解得:a=﹣2。
例题2、 下列各组值中,哪组是二元一次方程2x -y =5的解( )A.26x y =-⎧⎨=⎩B.34x y =⎧⎨=⎩C.43x y =⎧⎨=⎩D.62x y =⎧⎨=⎩【答案】 C【解析】 A 、x =-2、y =6时,左边=-4-6=-10≠5,此选项不符合题意;B 、x =3、y =4时,左边=6-4=2≠5,不符合题意;C 、x =4、y =3时,左边=8-3=5=右边,此选项符合题意;D 、x =6、y =2时,左边=12-2=10≠5,不符合题意.随练1、 已知方程()21320m n m x y ---+=是关于x 、y 的二元一次方程,则m =______,n =______【答案】 1;2【解析】 注意考虑未知数x 的系数,需满足30m -≠随练2、 下列方程中,是二元一次方程的是( )A.xy ﹣1=0B.x 2+y=3C.4x =3y ﹣1D.x ﹣1y=2 【答案】 C【解析】 A 、未知数的项的最高次数是2,不符合二元一次方程的定义;B 、未知数的项的最高次数是2,不符合二元一次方程的定义;C 、符合二元一次方程的定义;D 、是分式方程,不符合二元一次方程的定义.随练3、 在二元一次方程x +4y =13中,当x =5时,y =________.【答案】 2【解析】 方程x +4y =13,当x =5时,5+4y =13,解得:y =2,二元一次方程组的概念和解例题1、 下列方程组中,是二元一次方程组的有( )①⎩⎨⎧-==-1z 2y 37y x 2②⎩⎨⎧==+2xy 3y x ③⎩⎨⎧==-3y 3y x 2④⎪⎩⎪⎨⎧=+=-5y 3x 2213y 2x ⑤⎪⎪⎩⎪⎪⎨⎧=+=+1x1632y x ⑥⎩⎨⎧=+=+7y 5x 24y 3x 2 A.①③⑤B.①③④C.①②③D.③④ 【答案】 D【解析】 ①⎩⎨⎧-==-1z 2y 37y x 2中有3个未知数x ,y ,z 。
北师大出版社初中八年级数学上册--第五章 认识二元一次方程组

根据二元一次方程的定义求字母的值
方法小结:由方程是二元一次方程可知: (1)未知数的系数不为0; (2)未知数的次数都是1.
1.若x2m-1+5y3n-2m =7是二元一次方程,则m=____,n=___.
2m-1=1
1
3n-2m=1
1
2.如果 是二元一次方程,那么k的值是 ( ) A. 2 B. 3 C. 1 D. 0
作业内容
教材作业
从课后习题中选取
自主安排
配套练习册练习
不是
例1 判断下列方程是否为二元一次方程:
(7) 4x+ π =0
(8) 2x=1-3y
不是
是
二元一次方程的判断
判断一个方程是否为二元一次方程的方法: 一看原方程是否是整式方程且只含有两个未知数;二看整理化简后的方程是否具备两个未知数的系数都不为0,且含未知数的项的次数都是1.
(8)4xy+5=0
都是一次方程
观察思考
x-y=2
x+1=2(y-1)
x+y=8
5x+3y=34
只含有1个未知数(元),未知数的次数为1;
x + y = 45.
x + 15 = 60
含有2个未知数(元),未知数的次数为1.
一元一次方程
都是含未知数的等式方程
二元一次方程
观察比较
(3)
是
不是
不是
不是
不是
根据实际问题列二元一次方程组
分析:第一道工序的人数+ _______________ =总人数;第一道工序的件数=________________.设安排第一道工序x人,第二道工序y人,用方程把这些条件表示出来: ___________.
第五章 二元一次方程组易错剖析+重难点突破训练(含答案) 2024-2025-北师大版数学八年级上册

第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底【例1】下列方程中,是二元一次方程的是().A. 3x−2y=4zB. 6xy+9=0C. 1x +4y=6 D. 4x=y−24本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.跟踪练习1. 下列方程中,是二元一次方程的是().A. xy=2B. 3x+4y=0C. x+1y=2 D. x2+2y=4易错点二解方程组时不注意项的符号导致错误【例2】解方程组:{x−2y=2,①x−y=−2.②用加减消元法中减法消元时,易出现符号错误,所以要特别细心.跟踪练习2. 解方程组:{2x−5y=−3,①2x−3y=−1.②易错点三不理解待定系数法而出错【例3】已知一次函数图象经过点(0,3),(3,0),写出它的表达式: .本题容易把待定的系数与变量混为一谈,直接误认为k=3,b=3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.跟踪练习3. 已知一次函数的图象经过点(1,3)和点(−2,−3),则此一次函数的表达式是 .易错点四列方程组解应用题时不能正确理解题意【例4】现有食盐水两种,一种含盐12%,另一种含盐20%,分别取这两种盐水a kg和b kg,将其混合成18%的盐水100kg,求a,b的值.在列方程时,对背景不熟而出错,如:列方程12%a+20%b=100×18 %,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.跟踪练习4. 今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.重难点突破重难点一 二元一次方程(组)的有关概念注意理解定义中“元”是指未知数,“二元”就是指方程中有且只有两个未知数,且“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.1. 下列四个方程中是二元一次方程的是( ).A. 4x−1=xB. x +1x =2C. 2x−3y =1D. xy =82. 已知2x 3−k +y =0是二元一次方程,那么k 的值为( ).A. 3 B. 0 C. 2 D. 43. 在下列方程组:①{x +y =5,3y−x =1,②{xy =1,x +2y =3,③{1x +1y =1,x +y =1,④{x =1,y =3中,是二元一次方程组的是( ).A. ①③B. ①④C. ①②D. 只有①4. 已知3x a−1−5y b +2=1是关于x ,y 的二元一次方程,则a +b = .5. 若方程组{x +y ∣a∣−2=0,(a−3)x +9=0是二元一次方程组,求a 的值.重难点二 求解二元一次方程组解二元一次方程组的基本方法:代入消元法和加减消元法,核心思想是“消元”.6. 方程组{x +y =5,x−y =1的解是( ).A. {x =3,y =2 B. {x =−2,y =−3 C. {x =4,y =1 D. {x =4,y =37. 方程组{x +y =10,2x +y =16的解是( ).A. {x =7,y =3B. {x =6,y =4C. {x =5,y =5D. {x =1,y =98. [2023·深圳期末]解方程组:(1) {y =2x ,x +y =12;(2) {3x +5y =21,2x−5y =−11.重难点三 二元一次方程组的应用利用二元一次方程(组)解决实际问题的一般步骤:(1)审,(2)设,(3)找,(4)列,(5)解,(6)答.9. 某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为().A. {0.3x+0.6y=21,0.7x+0.4y=40 B. {0.6x+0.3y=21, 0.4x+0.7y=40C. {0.3x+0.7y=21,0.6x+0.4y=40 D. {0.3x+0.7y=40, 0.6x+0.4y=2110. [2023·东莞校考]某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设分配x 人生产螺母,y人生产螺栓,依题意列方程组为某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物65 1 140第二次购物37 1 110第三次购物98 1 062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A,B的标价.12. 某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.重难点四二元一次方程与一次函数的综合一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.13. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y 的二元一次方程组{kx−y=−b,y−x=2的解是().A. {x=3,y=4 B. {x=2,y=4 C.{x=1.8,y=4 D.{x=2.4,y=414. 若关于x,y的二元一次方程组{y=kx+b,y=mx+n的解为{x=2,y=5,则一次函数y=kx+b与y=mx+n的图象的交点坐标为().A. (2,5)B. (5,2)C. (−2,−5)D. (1,5)15. 如图是函数y=−x+4与y=x+2的图象,则方程组{y=−x+4,y=x+2的解是 .16. 如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),分别与x 轴交于A,B两点.(1)求b,m的值,并结合图象写出关于x,y的方程组{2x−y=−1,mx−y=−4的解;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD的长为2,直接写出a的值.第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底跟踪练习1.B本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.【例1】 D易错点二解方程组时不注意项的符号导致错误跟踪练习2.解:①−②,得−2y=−2,解得y=1,把y=1代入②,得2x −3=−1,解得x=1,所以原方程组的解为{x=1,y=1.用加减消元法中减法消元时,易出现符号错误,所以要特别细心.【例2】解:①−②,得−y=4,∴y=−4.把y=−4代入②,得x −(−4)=−2,解得x=−6,所以原方程组的解为{x=−6,y=−4.易错点三不理解待定系数法而出错跟踪练习3.y=2x+1本题容易把待定的系数与变量混为一谈,直接误认为k=3,b= 3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.【例3】y=−x+3易错点四列方程组解应用题时不能正确理解题意跟踪练习4.解:设去年外来旅游的人数为x万人,外出旅游的人数为y万人,由题意得{x−y=20,(1+30%)x+(1+20%)y=226,解得{x=100, y=80,所以(1+30%)x=(1+30%)×100=130,(1+20%)y=(1+20%)×80=96.答:该市今年外来和外出旅游的人数分别是130万人和96万人.在列方程时,对背景不熟而出错,如:列方程12%a+20%b= 100×18%,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.【例4】解:根据题意得{a+b=100,12%a+20%b=100×18%,解得{a=25, b=75.答:a,b的值分别为25,75.重难点突破重难点一二元一次方程(组)的有关概念1.C2.C3.B4.15.解:∵方程组{x+y∣a∣−2=0,(a−3)x+9=0是二元一次方程组,∴|a|−2=1且a−3≠0,∴a=−3.重难点二求解二元一次方程组6.A7.B8.(1)解:{y=2x①,x+y=12②,将①代入②,得3x=12,解得x=4.将x=4代入①,得y=8,∴原方程组的解为{x=4,y=8.(2){3x+5y=21①,2x−5y=−11②,①+②,得5x=10,解得x=2,将x=2代入①,得6+5y=21,∴5y=15,解得y=3,∴原方程组的解为{x=2,y=3.重难点三二元一次方程组的应用9.C10.{x+y=60,20x=2×14y11.(1)三解:∵第三次购买的数量最多,总费用最少,∴小明以折扣价购买商品A,B是第三次购物.故答案为三.(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得{6x+5y=1140,3x+7y=1110,解得{x=90,y=120.答:商品A的标价为90元,商品B的标价为120元.12.(1)解:设A,B两种型号的汽车每辆进价分别为x万元,y万元.依题意,得{2x+3y=80,3x+2y=95,解得{x=25, y=10,答:A,B两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得25m+10n=200,∴m=8−25n.∵m,n均为正整数,∴n为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意,舍去,∴共有2种购买方案.方案一:购进A型汽车4辆,B型汽车10辆;方案二:购进A型汽车2辆,B型汽车15辆.重难点四二元一次方程与一次函数的综合13.B14.A15.{x=1,y=316.(1)解:把点P(1,b)的坐标代入y=2x+1,得b=2+1= 3,把点P(1,3)的坐标代入y=mx+4,得m+4=3,∴m=−1.∵直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,3),∴关于x,y的方程组{2x−y=−1,mx−y=−4的解为{x=1, y=3.(2)∵l1:y=2x+1,l2:y=−x+4,∴A (−12,0),B(4,0),∴AB=4−(−12)=92.设点P到x轴的距离为ℎ,则ℎ=3,∴S △ABP =12AB ⋅ℎ=12×92×3=274.(3) 直线x =a 与直线l 1 的交点C 的坐标为(a ,2a +1),与直线l 2 的交点D 的坐标为(a,−a +4).∵CD =2,∴|2a +1−(−a +4)|=2,即|3a−3|=2,∴3a−3=2 或3a−3=−2,∴a =53或a =13.。
八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版八年级数学上册第五章 二元一次方程组 求解二元一次方程组(第1课时)

5.2 求解二元一次方程组 (第1课时)
导入新知
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,
负1场得1分.某队在10场比赛中得到16分,那么这个队胜负场
数分别是多少? (1)如果设胜的场数是x ,则负的场数是10-x,
可得一元一次方程 2x 10 x 16 ;
2
解得:x=20000
把x=20000代入③得:y=50000
所以
x 20000
y
50000
探究新知 方法点拨
用代入消元法解二元一次方程组时,尽量选取未知 数系数的绝对值是1的方程进行变形;若未知数系数的绝 对值都不是1,则选取系数的绝对值较小的方程变形.
巩固练习
变式训练
x y 2
①
解方程组:2(x 1) y 1 ②
连接中考
解方程组: xx
y 1 3y 9
解:
x x
y 1 3y 9
①, ②
由①得,x=y+1 ③ ,
把③代入②得,y+1+3y=9,解得y=2,
把y=2代入x=y+1得x=3.
故原方程组的解为
x 3
y
2
.
课堂检测
基础巩固题
1.二元一次方程组
x y 4, x y 2
的解是( D )
解:由② ,得 x=13 - 4y ③
还能直接代入吗? 变形
将③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16,
代入求解
-5y= -10, y=2.
再代求解
将y=2代入③ ,得x=5. x=5
所以原方程组的解是 y=2
北师大版八年级数学上册第五章5.3应用二元一次方程组-鸡兔同笼

3×(井深+5)=绳长 或绳长÷3-5=井深
或绳长÷3-井深=5
4×(井深+1)=绳长 或绳长÷4-1=井深 或绳长÷4-井深=1
3×(井深+5)=绳长
4×(井深+1)=绳长
解:设绳长x尺,井深y尺,由题意,得
解得 x =48,y=11. 答:所以绳长48尺,井深11尺.
1.今有牛五、羊二,直金十两.牛二、羊五, 直金八两.牛、羊各直金几何?
舍住6人,则有3人住不下;若每间宿舍住8人,
则有一间只住3人,且空一间宿舍。求该年级
寄宿人数及宿舍间数? 解:设该年级寄宿人数是x,宿舍y间
6y x 3 8( y 1) 3 x
解得x=27, y=4 答该年级寄宿人数是27,宿舍4间
4.4辆小卡车和5辆大卡车一次共可以运货物 27吨,6辆小卡车和10辆大卡车一次共可以运货 物51吨,问小卡车
B. 鸡11兔13
C. 鸡12兔12
D. 鸡13兔11
2.一队敌人一队狗,两队并成一队走,脑
袋共有八十个,却有二百条腿走,请君仔
细数一数,多少敌军多少狗? 解:设敌人x,狗y只
x y 80 2x 4 y 200 解得x=60 , y= 20 答:敌人有60个,狗有20只
3.某校为初一年级学生安排宿舍,若每间宿
不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今
有人合伙买羊,若每人出 5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱,
问合伙人数、羊价各是多少?设合伙人数为 x 人,羊价为 y 钱,根据题
意,可列方程组为( A )
y=5x+45
y=5x-45
y=5x+45
y=5x-45
北师大数学八年级上册第五章二元一次方程组解法(一)--代入法(提高)

二元一次方程组解法—代入法(提高)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x 用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解. 【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.2.(2016春•九台市期末)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用3.(2015春•临清市期末)如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay =-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2. 【巩固练习】 一、选择题 1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. (2015•张店区一模)若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ). A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a的值是( ).A .3B .2C .7D .6 6.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩ D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.(2015•丹东模拟)若方程组的解为,则点P (a ,b )在第 象限.9.(2016•永州)方程组的解是 .10.若532y xab +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ .12.关于,x y 的二元一次方程组1353x y mx y m+=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m的值为 . 三、解答题13.用代入法解方程组: (1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数: (1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.(2015•沧州一模)若方程组的解是,求(a+b )2﹣(a ﹣b )(a+b ).16.(2016春•万州区校级期中)甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c ,解得,求原方程组中a 、b 、c 的值.【答案与解析】 一、选择题1. 【答案】C ;2.【答案】A .【解析】把x=a ,y=b 代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=.3. 【答案】A ; 【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-.4. 【答案】B ; 【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ; 【解析】由方程组可得,代入方程,即可求得.6. 【答案】D. 二、填空题7. 【答案】151x y =-+; 8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P (2,﹣3)在第四象限. 9.【答案】;【解析】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4, 解得:y=0,将y=0代入①,得:x=2, 故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案. 11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-.三、解答题 13.【解析】 解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①②把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩.14.【解析】 解:(1)无解; (2)唯一一组解; (3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2); 当两个一次方程对应项系数成比例时,方程组有无数组解,如(3); 当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1). 15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 二元一次方程组一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组)知识点5:实际问题与二元一次方程组 二、各知识点分类讲解知识点1:二元一次方程(组)的定义 1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。
(2)含有未知数的项的次数都是1。
(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x+1y=1 C .3x —52y=6D .4xy=32、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程. 例:下列方程组中,是二元一次方程组的是( )A 、228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1B 。
2C . 3D . 42、若753313=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。
知识点2:二元一次方程组的解定义一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
类型题1 根据定义判断例:方程组⎩⎨⎧=+=-422y x y x 的解是( ) A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==2y x D .⎩⎨⎧==02y x 【巩固练习】1、当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.2、下面几个数组中,哪个是方程7x+2y=19的一个解( )。
A 、31x y =⎧⎨=-⎩B 、 31x y =⎧⎨=⎩C 、 31x y =-⎧⎨=⎩D 、31x y =-⎧⎨=-⎩ 类型题2 已知方程组的解,而求待定系数.此类题型只需将解代入到方程中,求出相应系数的值,从而求代数式的值例1:已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.例2: 若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【巩固练习】 1、若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
2、若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a= ,b= 。
类型3 列方程组求待定字母系数是常用的解题方法. 例:若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程ax +by =6的解,则a +b 的值为例: 关于x ,y 的二元一次方程ax +b =y的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是【巩固练习】如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是 ( )A 、a +4c =2 B 、4a +c =2 C 、a +4c+2=0 D 、4a +c +2=0 知识点3:二元一次方程组的解法 方法一:代入消元法 【典型例题】 例27838100x y x y -=⎧⎨--=⎩我们通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 【巩固练习】1、方程x 4y 15-+=-用含y 的代数式表示,x 是( )A .x 4y 15-=-B .x 154y =-+C .x 4y 15=+D .x 4y 15=-+2、把方程7x 2y 15-=写成用含x 的代数式表示y 的形式,得( )A .x=215152715157 (7722)x x y x xB xC yD y ----===3、 用代入法解方程组252138x y x y +=-⎧⎨+=⎩较为简便的方法是( )A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形方法二:加减消元法 例:对于方程组:20240x y x y +=⎧⎨+=⎩分析:这个方程组的两个方程中,y 的系数有什么关系?•利用这种关系你能发现新的消元方法吗?解:②-①得,()()2x y x y 4022+-+=- 即x 18=, 把x 18=代入①得y 4=。
所以4y ⎧⎨=⎩x=18 定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法 ,简称加减法。
例1、方程组231534m n m n +=⎧⎨+=⎩中,n的系数的特点是 ,所以我们只要将两式 ,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.例2、用加减法解341236x y x y +=⎧⎨-=⎩时,将方程①两边乘以 ,•把方程②两边乘以 ,可以比较简便地消去未知数 . 【方法掌握要诀】用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须相同或互为相反数,•即它们的绝对值相等.当未知数的系数的符号相同时,用两式相减;当未知数的系数的符号相反时,用两式相加。
①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等;•②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解. 【巩固练习】1、用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩ A .(1)(2) B .(2)(3) C .(3)(4) D .(4)(1)2、对于方程组2353433x y x y -=⎧⎨+=⎩而言,你能设法让两个方程中x 的系数相等吗?你的方法是 ;若让两个方程中y 的系数互为相反数,你的方法是 .3、用加减消元法解方程组23537x y x y -=⎧⎨=+⎩正确的方法是( ) A .2x 5+=①②得 B .3x 12+=①②得 C.3x 75++=①②得D .x 3y 7x 2-=-=-先将②变为③,再①③得以下教科书中没有的几种解法 (可以作为培优学生的拓展) (一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)—(1)得x—y=—1 x=y-1 (3)把(3)代入(1)得13(y—1)+14y=4113y—13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y—4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
(三)另类换元 例3, x:y=1:45x+6y=29令x=t , y=4t方程2可写为:5t+6*4t=2929t=29t=1 所以x=1,y=4知识点4:一次函数与二元一次方程(组) 从数的角度看从形的角度看:例1.已知二元一次方程 x +y =3 与 3x -y =5 有一组公共解⎩⎨⎧==12y x ,那么一次函数 y =3-x 与 y =3x -5 的图象的交点坐标为( )A .(1,2) B .(2,1) C .(-1,2) D .(-2,1)例2、二元一次方程2x +y =4有_______个解,以它的解为坐标的点都在函数______的图象上. 【巩固练习】1、已知点(3,-2)是两直线y 1=-2x +a 与y 2=x +b 的交点,则a =______ ,b =______.2、已知关于x ,y 的二元一次方程3ax +2by =0和5ax -3by =19化成的两个一次函数的图象的交点坐标为(1,-1),则a =________,b =________。
例3、如图,直线l 1:y =x +1与l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?说明理由.练习:在直角坐标系中有两条直线:3955y x =+和362y x =-+,它们的交点为P ,第一条直线与x 轴交于点A ,第二条直线与x 轴交于点B .(1)求A ,B 两点的坐标.(2)求△PAB 的面积.知识点5:实际问题与二元一次方程组列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析。