DDS波形发生器电路原理及功能
基于DDS的基本原理设计的低频信号发生器

基于DDS的基本原理设计的低频信号发生器基于DDS(Direct Digital Synthesis,直接数字合成)的低频信号发生器是一种高精度、灵活性高的信号发生器,可以产生各种低频信号。
本文将从DDS的基本原理、低频信号发生器的设计和实现等方面展开论述。
一、DDS的基本原理DDS是一种通过数字计算产生连续、离散或混合信号的方法。
它将频率和相位信息编码为数字信号,通过数字计算来生成输出信号。
DDS的基本原理如下:1.预存储波形数据:DDS使用查表法将波形数据存储在一个固定的存储器中,例如RAM或ROM中。
每个存储地址对应一个波形振幅值。
2.相位累加器:DDS通过一个相位累加器来产生实时的相位信息。
相位累加器是一个计数器,每个时钟周期增加一个固定的值,该值称为相位增量。
相位累加器产生的相位信息表示了所需输出的信号的相位。
3.数字到模拟转换:相位累加器输出的相位信息经过数字到模拟转换,即将相位信息转换为模拟信号。
这一步可以通过查表法,将相位信息作为地址,从查表的波形存储器中读取波形振幅值,然后通过D/A转换器将波形振幅值转换为模拟信号。
二、低频信号发生器的设计1.频率控制:低频信号发生器需要具备广泛的频率覆盖范围,并能够精确地调节频率。
为了实现这一点,可以使用一个可编程的数字控制单元,比如微控制器或FPGA来控制DDS的相位增量。
通过改变相位增量的大小,可以控制DDS的输出频率。
2.模拟输出滤波:DDS输出的信号是由一串数字零、一和正负极性组成的脉冲串,需要通过模拟输出滤波器进行滤波,以获取平滑的模拟输出信号。
滤波器可以选择低通滤波器或带通滤波器,以滤除高频噪声和杂散成分。
3.波形选择:DDS可以通过选择合适的波形数据来生成多种形状的输出波形,包括正弦、方波、锯齿波等。
在波形存储器中存储不同的波形数据,并通过用户界面或外部接口控制波形的选择。
三、低频信号发生器的实现低频信号发生器的实现可以采用数字电路、模拟电路或数字电路与模拟电路的组合。
基于DDS技术的信号发生器的设计与实现

基于DDS技术的信号发生器的设计与实现DDS(Direct Digital Synthesis)技术是一种基于数字信号处理的频率合成技术,通过数字方式生成正弦波信号。
DDS信号发生器可以用于科学实验、通信系统中的频率合成、音频处理等应用领域。
通过DDS技术,可以实现高精度、稳定性好、频率范围广的信号发生器。
DDS信号发生器的基本原理是:通过一个相位累加器、一个频率累加器和一个波表,来生成一个时域上的正弦波信号,并将其转换为模拟电压信号输出。
相位累加器用来控制波表中的每个周期的采样点,频率累加器用来控制相位累加器的步进。
波表中存储了一个完整的正弦波周期的数值,波表的长度决定了信号发生器的频率分辨率。
DDS信号发生器的主要模块包括:时钟模块、相位累加器、频率累加器、波表和数模转换器。
时钟模块是DDS信号发生器的产生步进信号的时钟源,可以采用稳定的晶振或者时钟信号源。
时钟信号的频率决定了DDS信号发生器的输出信号的频率精度。
相位累加器是DDS信号发生器的核心模块,它接收时钟信号,并根据频率累加器的输入生成一个相位累加信号。
相位累加器可以采用简化的模数累加器,根据时钟信号的周期计算脉冲个数,每当相位累加信号增加一个固定的脉冲数时,波表就输出一个采样点。
频率累加器实时地改变相位累加器的步进,从而改变信号发生器的输出频率。
频率累加器可以通过输入一个控制信号来改变频率累加器的增加或减少的步进大小,从而实现更精细的频率调节。
波表是DDS信号发生器的存储波形数据的模块。
它包含了一个完整的正弦波周期的采样点的数值,波表的长度决定了信号发生器的输出信号的频率分辨率。
波表的数据可以事先存储在ROM中,也可以动态生成。
数模转换器将生成的波形数据转换为模拟电压信号输出。
数模转换器的位宽决定了输出信号的精度,位宽越大,精度越高。
除了上述基本模块,DDS信号发生器还可以添加比较器、滤波器等模块,以实现输出电平调节、滤波等功能。
dds原理

dds原理DDS(Direct Digital Synthesis)原理。
DDS(Direct Digital Synthesis)是一种用于产生数字信号的技术,它可以通过数字方式直接产生任意波形的信号。
DDS技术已经被广泛应用于信号发生器、通信系统、医疗设备等领域。
DDS的原理是通过数字控制方式来产生信号,相比于传统的模拟方式,DDS具有精度高、稳定性好、频率范围广等优点。
在DDS中,有三个主要的部分,相位累加器、频率控制字和DAC(数字模拟转换器)。
相位累加器用于累加相位控制字,从而产生一个连续的相位变化;频率控制字用于控制相位累加器的增量,从而控制输出信号的频率;DAC用于将数字信号转换为模拟信号输出。
通过这三个部分的协作,DDS可以产生高精度、稳定的信号输出。
DDS的原理基于数字信号处理技术,它可以实现对信号频率、相位、幅度等参数的精确控制。
相比于传统的模拟信号发生器,DDS可以实现更高的频率分辨率和更好的频率稳定性。
另外,DDS还可以实现频率和相位的快速切换,这对于一些需要频率跳变或相位调制的应用非常重要。
在DDS中,最关键的部分是相位累加器。
相位累加器通过累加相位控制字来产生一个连续的相位变化,从而实现信号的频率控制。
相位累加器的位宽决定了相位的分辨率,位宽越大,相位分辨率越高,输出信号的频率分辨率也就越高。
因此,在设计DDS时,需要充分考虑相位累加器的位宽和累加速率,以满足不同应用对频率分辨率的要求。
另外,频率控制字的精度和稳定性也对DDS的性能有很大影响。
频率控制字决定了相位累加器的增量,从而直接影响输出信号的频率。
因此,在设计DDS时,需要考虑频率控制字的精度和稳定性,以确保输出信号的频率精度和稳定性。
总的来说,DDS是一种基于数字信号处理技术的信号发生器,它具有高精度、稳定性好、频率范围广等优点。
在实际应用中,DDS可以满足对信号频率、相位、幅度等参数精确控制的需求,因此被广泛应用于信号发生器、通信系统、医疗设备等领域。
dds信号发生器

dds信号发生器
DDS信号发生器是一种基于直接数字合成(DDS)技术的
仪器,用于产生各种类型的电信号。
DDS技术通过数字控
制振荡器的频率和相位,可以产生高精度、稳定的频率和
相位可调的信号。
DDS信号发生器通常具有以下特点:
1. 高频率分辨率:DDS技术能够实现非常细小的频率调整,通常在数千分之一赫兹的范围内进行微调。
2. 高精度和稳定性:DDS信号发生器具有很高的频率精度
和稳定性,可以在长时间内保持非常准确的信号输出。
3. 多种波形选择:DDS信号发生器通常可以产生不同类型
的波形,如正弦波、方波、三角波、锯齿波等。
4. 调制功能:DDS信号发生器可以进行幅度调制(AM)、频率调制(FM)、相位调制(PM)等操作,使得信号具
有更多的应用灵活性。
5. 调频功能:DDS信号发生器可以实现频率扫描功能,即以一定的频率范围内按照一定的步进进行频率连续变化。
DDS信号发生器广泛应用于科研、教学、通信、无线电测试和制造等领域,可以用于信号发生、电子设备测试、频谱分析等应用。
DDS波形产生

DDS波形产生器1组:糜健摘要:本DDS波形发生器由FPGA产生DDS数字信号,采用DAC900完成AD转换,然后对模拟信号进行滤波与放大,提高了波形的精度。
此外,还提供了较好的人机交互界面,用户可以方便地调节波形与频率,是一种高频带、高精度的DDS信号源。
关键词:DDS FPGA一.方案论证:方案一:采用专用的DDS芯片。
通过采用先进的工艺和低功耗的设计,数字集成电路的工作速度己经有了很大的提高。
现在最新的DDS芯片工作频率己经可以达到1GHz。
这样就可以产生频带比较宽的输出信号。
虽然专用DDS芯片的功能比较多,但其控制方式却是固定的,因此不一定是我们所需要的。
而且专用DDS芯片的价格一般比较昂贵。
方案二:使用FPGA产生DDS信号。
利用FPGA则可根据需要方便地实现各种比较复杂的调频、调相和调幅功能,具有良好的实用性和灵活性。
但是输出信号的频带与精度则达不到专用DDS芯片。
为使得更为方便调整信号的频率、相位与幅度,采用方案二。
二.具体方案:DDS数字信号由Altera公司Cyclone III系列的EP3C16F484C6芯片产生。
此芯片具有成本低、逻辑单元多等特点。
配合DE0开发板上的数码管、拨码开关及按键,可以调节DDS 信号的频率、幅度以及种类。
产生的DDS数字信号通过高速DA转换器DAC900转为模拟信号。
由于DAC900为电流型DAC,固采用运算放大器OPA2690进行I—V变换,然后通过无源和有源的滤波电路,滤去DDS信号中的高频分量,使信号更加理想。
系统的结构图2.1所示。
图2.1三.电路设计与参数计算3.1 DDS基本原理介绍与精度分析Direct Digital Synthesizer (DDS) 即直接数字合成技术,是采用数字技术产生波形的一种频率合成技术。
基本思想就是预先保存一个周期正弦波信号的幅度值(如正弦表)。
再根据用户设定的不同频率,以不同的速度(在正弦表中取值的步进)将这个周期的正弦波信号发送出去,通过离散的幅度值合成正弦信号,具体实现的过程如图3.1所示。
DDS信号发生器原理(1)

2 基本原理2.1 直接数字频率合成器直接数字合成(Direct Digital Synthesis,简称DDS)技术是从相位概念出发,直接对参考正弦信号进行抽样,得到不同的相位,通过数字计算技术产生对应的电压幅度,最后滤波平滑输出所需频率。
2.1.1 DDS工作原理下面,通过从相位出发的正弦函数产生描述DDS的概念。
图1表示了半径R为1的单位圆,半径R绕圆心旋转与X轴的正方向形成夹角θ(t),即相位角。
图1 单位圆表示正弦函数S= R sinθ(t)DDS的原理框图如图2所示。
图中相位累加器可在每一个时钟周期来临时将频率控制字(FTW)所决定的相位增量M累加一次,如果记数大于2N,则自动溢出,而只保留后面的N位数字于累加器中[9]。
图2 DDS原理框图DDS的数学模型可归结为:在每一个时钟周期Tc内,频率控制字M与N比特相位累加器累加一次,并同时对2N取模运算,得到的和(以N位二进制数表示)作为相位值,以二进制代码的形式去查询正弦函数表ROM,将相位信息转变成相应的数字量化正弦幅度值,ROM输出的数字正弦波序列再经数模转换器转变为阶梯模拟信号,最后通过低通滤波器平滑后得到一个纯净的正弦模拟信号。
由于ROM表的规模有限,相位累加器一般仅取高位作为寻址地址送入正弦查询表获得波形幅度值。
正弦查询表中以二进制数形式存入用系统时钟对正弦信号进行采样所得的样值点,可见只需改变查询表内容就可实现不同的波形输出。
2.1.2 DDS的结构DDS的基本结构包括相位累加器、正弦查询表(ROM)、数模转换器(DAC)和低通滤波器(LPF),其中从频率控制字到波形查询表实现由数字频率值输入生成相应频率的数字波形,其工作过程为:⑴确定频率控制字M;⑵在时钟脉冲fc的控制下,该频率控制字累加至相位累加器生成实时数字相位值;⑶将相位值寻址ROM转换成正弦表中相应的数字幅码。
模块DAC实现将数字幅度值高速且线性地转变为模拟幅度值,DDS产生的混叠干扰由DAC之后的低通滤波器滤除]7[。
DDS任意波形发生器

基于DDS技术的任意波形发生器研究与设计1 DDS概述1.1 DDS基本原理直接数字合成技术(Direet Digital Synthesis,简称DDS)是建立在采样定理基础上,首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后通过查表读取数据,再经D/A转换器转换为模拟量,将保存的波形重新合成出来。
DDS基本原理框图如图1所示。
由图l看出,除了滤波器(LPF)之外,DDS系统都是以数字集成电路实现,因此DDS 系统易于集成和小型化。
DDS系统的参考时钟源通常是一个具有高稳定性的晶体振荡器,整个系统的各个组成部分提供同步时钟。
频率字(FSW)实际上是相位增量值(二进制编码),作为相位累加器的累加值。
相位累加器在每一个参考时钟脉冲输入时,累加一次频率字,其输出相应增加一个步长的相位增量。
由于相位累加器的输出连接在波形存储器(ROM)的地址线上,因此其输出的改变就相当于查表。
这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出。
ROM的输出送到D/A转换器,经D/A转换器转换成模拟量输出。
1.2 DDS的基本参数及其计算在系统时钟脉冲的作用下,相位累加器不停累加,即不停查表,把波形数据送到D/A 转换器转换成模拟量输出,从而合成波形。
滤波器则进一步平滑D/A转换器输出的近似正弦波的锯齿阶梯波,同时衰减不必要的杂散信号。
设频率字(FSW)的值为d,系统时钟频率为f,相位累加器的字长为N,则系统的输出频率为:2 任意波形发生器的设计方案基于DDS技术的任意波形发生器主要由微处理器控制模块、键盘与显示模块、DDS通道的FPGA实现模块、D/A转换模块以及滤波器模块组成。
同时片外扩展了4 KB程序存储器SRAM和6 KB数据存储器ROM,分别用于存储波形抽样数据和3种标准输出波形抽样数据。
本系统设计原理如图2所示。
2.1 微处理器控制模块采用AT89C5l单片机完成数据处理和控制其他电路工作。
用DDS实现一个波形发生器实验报告

用DDS实现一个波形发生器1、实验课题:用DDS实现一个波形发生器,可以产生正弦波,方波,三角波三种周期性波形。
2、功能概述:用DDS实现一个波形发生器,可以产生正弦波,方波,三角波三种周期性波形。
3、总体结构:图3-1.总体结构图4、接口描述:相位累加器:在时钟的作用下,进行相位累加。
波形存储器:进行波形的相位—幅值转换。
频率预制与调节电路的作用:实现频率控制量的输入。
D/A转换器:把已经合成的正弦波的数字量转换成模拟量。
滤除生成的阶梯形正弦波中的高频成分,将其变成光滑的正弦波。
5、技术指标:模块代码:module dds_ver( clk_50MHz,fout,change,freq,key0 );input clk_50MHz; //输入50MHz的全局时钟input[1:0] change; //定义输入变量,用来切换输出波形,一共4个档位input [2:0] freq; //定义输入变量,用来改变输出信号的频率,一共8个档位output [7:0] fout; //输出8为rom的值,用来驱动DA转化芯片,输出波形input key0; //定义输入变量,用来改变幅值计数器的值,从而改变幅值//调用FPGA芯片集成的锁相环模块,让输出的波形相位更稳定pll pll_inst (.inclk0 ( clk_50MHz ),.c0 ( clk_pll ) );wire [7:0] fout; //分频功能,根据输入变量的不同实现不同的分频,用于读取rom的步长reg clk;reg [15:0] cnt;always @(posedge clk_pll) //利用计数器实现任意分频begin if(cnt==(50*(freq+1))) //设定频率控制字节begincnt=0;clk=~clk;endelsecnt=cnt+1;end //调幅功能,输入key0更变计数器cntvol的值,从而更变输出信号的幅度reg [2:0] cntvol;always@(negedge key0)beginif (cntvol>=1&&cntvol<7)cntvol<=cntvol+1'd1;else cntvol<=1'b1;end //地址累加器,实现地址的分段累加,从而实现四种不同波形的切换输出reg [5:0] addr;always @(posedge clk)beginbeginif(change==0)beginif(addr>=0&&addr<15) //切换正弦波addr=addr+1;elseaddr=0;endelse if(change==1)beginif(addr>=16&&addr<31) //切换方波addr=addr+1;elseaddr=16;endelse if(change==2)beginif(addr>=32&&addr<47) //切换正三角波addr=addr+1;elseaddr=32;endelse if(change==3)beginif(addr>=48&&addr<63) //切换反三角波addr=addr+1;elseaddr=48;endend end。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DDS波形发生器电路组成及功能
一、DDS波形发生器电路的组成
本系统以单片机STC89C52为核心,采用了直接数字合成技术(DDS),实现了频
率任意调节的正弦波,方波,三角波以及特定的任意信号,产生的各类波形精度高,稳定性好,采用友好的人机界面,操作方便。
系统总框图如下图所示:
DDS波形发生器系统框图
(1)相位累加地址发生器
使用可编程逻辑器件IC4GAL16V8编程得到累加相位码,也就是波形的地址码。
这里的GAL16V8是100进制计数器,相位累加时,对应一个波形100个数据的地址。
GAL16V8拥有8个输入端和8个输出端,可以单独选择每个输出端的极性,灵活的进行输出端的组合排列、可重复编程、频带范围宽,工作频率很高。
使用GAL16V8做相位累加地址发生器使得电路更加简洁,保证在高频率下的稳定工作。
(2)数据存储器
使用外部ROM数据存储器IC527C64,已经预先把相关波形的量化数据写入该外部ROM中。
(3)D/A模数转换电路
使用数模转换集成芯片IC6DAC0832,DAC0832是一个8位的电流式的数模转换器,就是把波形数据转化为波形真实的模拟信号。
波形信号为电流信号,因此输出端还要接运算放大器,把电流信号转换为电压信号。
(4)双极性转换电路及滤波电路
采用反相比例运算放大电路IC7TL084中的A,B运放,将D/A输出的单极性信号转换为双极性信号。
为确保产生波形的质量,减少波形失真度,使输出波形光滑,须用低通滤波器把高
频分量滤掉。
在此采用自动线性跟踪Butterworth有源滤波器,在此采用二阶有源低通滤
波器,即TL084中的C运放及R19,C18,R20,C10两节低通滤波器组成。
(5)显示及控制电路
本机器需要进行人机对话,根据系统设计要求,采用独立式微动按钮S2〜7输入,八只七段LED18数码管作为输出显示,清晰可见。
使用时可以选择方波、三角波和正弦波三种波形的输出;可调节不同波形的输出频率,并实现了1Hz的频率步进。
(6)单片机电路
单片机电路是DDS波形发生器的核心电路,它由微处理器IC12AT89S52及外围电路、元器件等组成。
它由P0和P1共16个端口与显示电路相连接,把各种的输出波形的相关数据送到八只七段LED18数码管显示。
1〜8
还与可编程逻辑器件IC4,外部ROM数据存储器IC5相连接,提供可编程基准信号:
使用单片机定时器产生固定频率,波形稳定,为相位累加地址发生器提供基准信号。
另外由P2.0〜P2.5接键盘的6只微动按钮S2〜7,作控制输出信号之用。
微处理器IC12已经按功能要求,把相关的程序写入到芯片中。
(7)电源电路
本系统中,许多集成电路,如单片机、D/A电路、运算放大器等都需要直流电源进行供电才能工作。
单片机、EEPROM等都以5V电源供电,而运算放大器需要±12V供电,因此在电源板的设计过程中,要同时获得+5V、±12V的直流电压。
LM7812输出电压为+12V,LM7912输出电压为-12V,LM7805输出电压为+5V,三者的性能都能满足
设计要求。
在具体电路中,由市电AC220V经变压器降压为双AC12V后,接入到经由二极管VD36组成的单相全波整流电桥整流,由电容器C811滤波后一路电压经过三端稳压器3〜68〜11
LM7912稳压后输出+12V,另一路电压经过三端稳压器LMC7912稳压后输出-12V电压。
±12V电压作为模拟放大器的电源电压,电容器久〜口是滤波电容。
其中+12V电压经三
端稳压器LM7805稳压后输出+5V电压,作为AT89S51、CAL16V8、27C64、URL2803、DAC0832、74LS244等数字集成电路的电源电压。
考虑到D/A转换器在进行数模转换
时,需要较稳定、精度较高的参考电压,在电源板设计过程中,将LM7812输出的+12V 电压经再分压处理,通过稳压二极管TL431稳压和精密电阻的调节来得到D/A电路所需的高精度稳压参考电源V REF。
还有外部测试信号端口J】:外部基准信号输入,为系统调试时作为相位累加地址发生器基准信号。
二、DDS波形发生器的功能描述
1.DDS波形发生器按键功能,系统操作共设有六个按键S27,分别:
2.数码管显示方式
开机时,最前面显示正弦波符号,后面4位显示0100,最末2位显示“HZ”字样,即2□0100Hz o上电开机或按复位键S]后,输出默认频率100Hz的正弦波。
当输出端J2有信号输出时(不在关闭状态)所有按键都无效,或者说只有输出端J2在关闭状态时(没有输出信号),按键才能进行操作。
3.“方波”、“三角波”、“正弦波”这三种主要波形在数码管LED]显示的代码符号:
DDS波形发生器能产生“正弦波”、“三角波”、“方波”这三种主要波形,波形的频率从1Hz〜1kHz,分辨率为1Hz,波形幅度从2.56V〜5.12V,频率可以通过按键S3、S4设定得到,但是幅度只能通过电位器R21的调节加以实现。
4.操作与功能
(1)上电开机或按S1复位键后,数码显示管DS18显示为2D0100Hz,输出频率
11〜8
100Hz的正弦波。
(2)按下S5〜7其中一键,可随意改变输出信号波形,LED]代码符号改变。
但此时输出端J2输出波形仍处于关闭状态。
(3)短按(V0.15s)选择键S2,从左向右第3只数码管抖动,再短按S2选择键,抖动数码管移动至下一位,每短按一次S2选择键,抖动数码管均可移动至下一位,可在千位到个位间循环。
在数码管抖动的位置上,通过按功能键s4“频率+”或s3“频率-”,则可以调节频率增加或减小,单次按键实现1的加减,直到4位数字全部输入完成(数字最高只能是1000),当完成数字输入时(此时亦可按S5〜7键改变输出波形),长按选择键S2(3s)确定输出取消关闭状态,数码管不再抖动,输出端J2输出波形,此时输出端J2应有已经选择的波形和频率输出。
按键S3〜7不能进行操作。
(4)如需再调整输出的波形和频率,可再长按选择键S2,使波形输出端J2处于输出关闭状态。
(5)再短按选择键S2,此时可按(3)步骤操作,重复选择波形或重置信号频率。
再长按选择键S2可确定输出端J2输出。
(6)在数码管LED3置1时,数码管LED46必置0。
在输出1kHz信号时要进行小
34〜6
于1kHz信号的调整,必须要使数码管LED3置0后才能调整。
注:只有在输出端J2的输出处于关闭状态时,信号的波形或信号的频率才可以按动s3〜7中一键(s2短按)进行调整。