高三数学期末试卷带答案
北京市丰台区2023-2024学年高三上学期期末练习数学试卷含答案

丰台区2023~2024学年度第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,则()U A B ⋃=ð()A.{3,2}-- B.{3,2,1,2}--C.{3,2,1,0,1}--- D.{3,2,1,0,2}---【答案】A【解析】【分析】由补集和并集的定义求解即可.【详解】因为{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,所以{}1,0,1,2A B ⋃=-,U ð(){}3,2A B ⋃=--.故选:A .2.若(1i)1i z -=+,则||z =()A.iB.1C. D.2【答案】B【解析】【分析】根据复数的运算法则进行运算,继而直接求模即可.【详解】因为(1i)1i z -=+,所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,所以i 1z z =-=,,故选:B .3.在6(2)x y -的展开式中,42x y 的系数为()A.120- B.120C.60- D.60【答案】D【解析】【分析】求出6(2)x y -的通项,令2r =即可得出答案.【详解】6(2)x y -的通项为:()()66166C 2C 2r rr r r r r r T x y x y --+=-=-,令2r =可得:42x y 的系数为()226C 215460-=⨯=.故选:D .4.在中国文化中,竹子被用来象征高洁、坚韧、不屈的品质.竹子在中国的历史可以追溯到远古时代,早在新石器时代晚期,人类就已经开始使用竹子了.竹子可以用来加工成日用品,比如竹简、竹签、竹扇、竹筐、竹筒等.现有某饮料厂共研发了九种容积不同的竹筒用来罐装饮料,这九种竹筒的容积129,,,a a a L (单位:L )依次成等差数列,若1233a a a ++=,80.4a =,则129a a a +++= ()A.5.4B.6.3C.7.2D.13.5【答案】B【解析】【分析】利用等差数列的性质及求和公式求解.【详解】∵129,,,a a a L 依次成等差数列,1233a a a ++=,∴233a =,即21a =,又80.4a =,则()()()81912299910.49 6.3222a a a a a a a +⨯+⨯+⨯+++==== .故选:B.5.已知直线y kx =与圆221x y +=相切,则k =()A.1± B.C. D.2±【答案】B【解析】【分析】根据题意可得圆心(0,0)O 到0-=kx y 的距离等于半径1,即可解得k 的值.【详解】直线y kx =+即0-=kx y ,由已知直线y kx =+与圆221x y +=相切可得,圆221x y +=的圆心(0,0)O 到0kx y -=的距离等于半径1,1=,解得k =,故选:B .6.如图,函数()f x 的图象为折线ACB ,则不等式π()tan 4f x x >的解集是()A.{|20}x x -<< B.{|01}x x <<C.{|21}x x -<< D.{|12}x x -<<【答案】C【解析】【分析】利用正切型函数的图象与性质结合分段函数性质即可得到解集.【详解】设()πtan4h x x =,令π242k x k ππππ-<<+,且k ∈Z ,解得4242k x k -<<+,k ∈Z ,令0k =,则22x -<<,则()h x 在()2,2-上单调递增,()00h =1,1BC AC k k =-=,则2,02()2,20x x f x x x -+≤<⎧=⎨+-<<⎩,则当20x -<≤时,()0h x ≤,()0f x >,则满足()()f x h x >,即π()tan 4f x x >,当02x <<时,()11f =,且()f x 单调递减,()11h =,且()h x 单调递增,则()0,1x ∈时,()()f x h x >,即π()tan4f x x >;()1,2x ∈时,()()f x h x <,即()πtan 4f x x <;综上所述:π()tan4f x x >的解集为()2,1-,故选;C.7.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D --为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据题意,结合线面位置关系的判定定理和性质定理,逐项判定,即可求解.【详解】对于①中,因为二面角A BC D --为直二面角,可得平面ABC ⊥平面BCD ,又因为平面ABC ⋂平面BCD BC =,DC BC ⊥,且DC ⊂平面BCD ,所以DC ⊥平面ABC ,所以①正确;对于②中,由DC ⊥平面ABC ,且AB ⊂平面ABC ,可得AB CD ⊥,又因为AB AC ⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以AB ⊥平面ACD ,所以②正确;对于③中,由AB ⊥平面ACD ,且AB ⊂平面ABD ,所以平面ABD ⊥平面ACD ,所以③正确;对于④,中,因为DC ⊥平面ABC ,且DC ⊂平面BCD ,可得平面ABC ⊥平面BCD ,若平面ABD ⊥平面BCD ,且平面ABD ⋂平面ABC AB =,可得AB ⊥平面BCD ,又因为BC ⊂平面BCD ,所以AB BC ⊥,因为AB 与BC 不垂直,所以矛盾,所以平面ABD 和平面BCD 不垂直,所以D 错误.8.已知,a b 是两个不共线的单位向量,向量c a b λμ=+r r r (,λμ∈R ).“0λ>,且0μ>”是“()0c a b ⋅+> ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】举例验证必要性,通过向量的运算来判断充分性.【详解】当0λ>,且0μ>时,()()()()()22cos ,c a b a b a b a a b b a b λμλλμμλμλμ⋅+=+⋅+=++⋅+=+++ ()0λμλμ>+-+=,充分性满足;当()0c a b ⋅+> 时,()()cos ,c a b a b λμλμ⋅+=+++ ,当0λ>,0μ=时,()cos ,c a b a b λλ⋅+=+ 是可以大于零的,即当()0c a b ⋅+> 时,可能有0λ>,0μ=,必要性不满足,故“0λ>,且0μ>”是“()0c a b ⋅+>”的充分而不必要条件.故选:A .9.在八张亚运会纪念卡中,四张印有吉祥物宸宸,另外四张印有莲莲.现将这八张纪念卡平均分配给4个人,则不同的分配方案种数为()A.18B.19C.31D.37【答案】B【分析】设吉祥物宸宸记为a ,莲莲记为b ,将这八张纪念卡分为四组,共有3种分法,再分给四个人,分别求解即可.【详解】设吉祥物宸宸记为a ,莲莲记为b①每人得到一张a ,一张b ,共有1种分法;②将这八张纪念卡分为()()()(),,,,,,,a a a a b b b b 四组,再分给四个人,则有2242C C 6=种分法③将这八张纪念卡分为()()()(),,,,,,,a b a a a b b b 四组,再分给四个人,则有2142C C 12=种分法共有:161219++=种.故选:B .10.已知函数2()||2||f x x a x =++,当[2,2]x ∈-时,记函数()f x 的最大值为()M a ,则()M a 的最小值为()A.3.5B.4C.4.5D.5【答案】C【解析】【分析】先利用函数的奇偶性,转化为求()f x 在[]0,2上的最大值;再根据a 的取值范围的不同,讨论函数()f x 在[]0,2上的单调性,求函数()f x 的最大值.【详解】易判断函数()f x 为偶函数,根据偶函数的性质,问题转化为求函数()22f x x a x =++,[]0,2x ∈上的最大值()M a .当0a ≥时,()22f x x x a =++,二次函数的对称轴为1x =-,函数在[]0,2上单调递增,所以()()288M a f a ==+≥;当10a -≤<时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,1≤,所以()f x在⎡⎣上递增,在2⎤⎦上也是递增,所以()()287M a f a ==+≥;当41a -<<-时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,因为12<<,所以()f x 在[]0,1上递增,在(上递减,在2⎤⎦上递增,所以()()11M a f a ==-或()()28M a f a ==+,若18a a -≥+⇒742a -≤≤-,则()()9112M a f a ==-≥;若18a a -<+⇒712a -<<-,则()()9282M a f a ==+>;当4a ≤-时,()22f x x x a =-+-,[]0,2x ∈2≥),所以函数()f x 在[]0,1上递增,在(]1,2上递减,所以()()115M a f a ==-≥.综上可知:()M a 的最小值为92.故选:C【点睛】关键点点睛:问题转化为二次函数在给定区间上的最值问题,然后讨论函数在给定区间上的单调性,从而求最大值.认真分析函数的单调性是关键.第二部分非选择题(共110分)二、填空题共5小题,每小题5分,共25分.11.双曲线2214x y -=的渐近线方程________.【答案】12y x =±【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214x y -=的a=2,b=1,焦点在x 轴上而双曲线22221x y a b-=的渐近线方程为y=±b x a ∴双曲线2214x y -=的渐近线方程为y=±12x故答案为y=±12x 【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.已知()44x x f x -=-,则11(()22f f -+=___.【答案】0【解析】【分析】由解析式直接代入求解即可.【详解】因为1122113()442222f -=-=-=,1122113()442222f --=-=-=-,所以11((022f f -+=.故答案为:0.13.矩形ABCD 中,2AB =,1BC =,且,E F 分为,BC CD 的中点,则AE EF ⋅= ___.【答案】74-##-1.75【解析】【分析】以A 为坐标原点,建立如下图所示的平面直角坐标系,求出,AE EF ,由数量积的坐标表示求解即可.【详解】以A 为坐标原点,建立如下图所示的平面直角坐标系,()()()()()10,0,2,0,2,1,0,1,2,,1,12A B C D E F ⎛⎫ ⎪⎝⎭,所以112,,1,22AE EF ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ,()11172122244AE EF ⋅=⨯-+⨯=-+=- .故答案为:74-.14.如图,在平面直角坐标系xOy 中,角(0π)αα<<的始边为x 轴的非负半轴,终边与单位圆O 交于点P ,过点P 作x 轴的垂线,垂足为M .若记点M 到直线OP 的距离为()f α,则()f α的极大值点为___,最大值为___.【答案】①.π4或3π4②.12##0.5【解析】【分析】根据三角函数的概念得(cos ,sin )P αα及,,OP OM MP ,利用面积法求得()f α,根据α的范围及三角函数的性质讨论()f α的单调性,进而求得答案.【详解】由题意(cos ,sin )P αα,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得()1πsin 2,0122cos sin sin cos sin 21π2sin 2,π22f αααααααααα⎧<<⎪⎪=⋅===⎨⎪-<<⎪⎩,∴当π04α<<时,()f α单调递增;当ππ42α<<时,()f α单调递减;当π3π24α<<时,()f α单调递增;当3ππ4α<<时,()f α单调递减,则()f α的极大值点为π4或3π4,∵0πα<<,022πα<<,∴当sin 21α=±,即π4α=或3π4α=时,()f α取最大值为12.故答案为:π4或3π4;12.15.在平面直角坐标系内,动点M 与定点(0,1)F 的距离和M 到定直线:3l y =的距离的和为4.记动点M 的轨迹为曲线W ,给出下列四个结论:①曲线W 过原点;②曲线W 是轴对称图形,也是中心对称图形;③曲线W 恰好经过4个整点(横、纵坐标均为整数的点);④曲线W 围成区域的面积大于则所有正确结论的序号是___.【答案】①③④【解析】【分析】根据题目整理方程,分段整理函数,画出图象,可得答案.【详解】设(),M x y ,则MF =,M 到直线l 的距离3d y =-,34y +-=,222(1)(43)x y y +-=--,22221168369x y y y y y +-+=--+-+,224483x y y =---,当3y ≥时,2214812412x y y x =-=-+,,则2214312,12x x x -+≥≤-≤≤,当3y <时,22144x y y x ==,,则2134x <,212x <,x -<<可作图如下:由图可知:曲线W 过原点,且是轴对称图形,但不是中心对称图形,故①正确,②错误;曲线W 经过()()()()0,02,10,42,1O A C E -,,,4个点,没有其它整点,故③正确;由()B ,()D -,()0,3F ,四边形AFEO 的面积113462S =⨯⨯=,122ABF EFD S S ==⨯= ,112BCD S =⨯⨯= ,多边形ABCDEO 的面积626S =+⨯=+曲线W 围成区域的面积大于,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,a =,2π3A =.(1)求C 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出AC 边上的中线的长度.条件①:2a b =;条件②:△ABC 的周长为4+ABC 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6(2【解析】【分析】(1)由正弦定理可解得;(2)条件②由余弦定理可得;条件③由三角形的面积公式和余弦定理可得.【小问1详解】在ABC 中,因为sin sin a cA C=,又a =,所以sin A C =.因为2π3A =,所以1sin 2C =.因为π03C <<,所以π6C =.【小问2详解】选择条件②:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为a =,所以24a b c b ++=+=+.所以2b =.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.选择条件③:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为ABC 的面积为312πsin 323ABC S bc ∆==,所以2b c ==.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.由题可知3a b =,故①不合题意.17.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,AD PA =,点E 为PA 中点.(1)求证:AD //平面BCE ;(2)点Q 为棱BC 上一点,直线PQ 与平面BCE 所成角的正弦值为515,求BQ BC 的值.【答案】(1)证明见解析(2)12BQ BC =【解析】【分析】(1)根据线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用线面角的向量求法可得Q 的坐标,即可得解.【小问1详解】因为正方形ABCD 中,//BC AD .因为BC ⊂平面BCE ,AD ⊄平面BCE ,所以//AD 平面BCE .【小问2详解】因为PA ⊥底面ABCD ,正方形ABCD 中AB AD ⊥,分别以,,AB AD AP的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,如图不妨设2PA =,因为AD PA =,点E 为PA 的中点,点Q 为棱BC 上一点,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,0,1)E ,(0,0,2)P ,(2,,0)Q m (02)m ≤≤.所以(0,2,0)BC = ,(2,0,1)BE =- ,(2,,2)PQ m =-.设(,,)n x y z =为平面BCE 的法向量,则BCn ⊥ ,BE n ⊥.所以2020BC n y BE n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,得102x y z =⎧⎪=⎨⎪=⎩,所以(1,0,2)n = .设直线PQ 与平面BCE 所成角为θ,则sin cos ,15PQ n PQ n PQ n θ⋅==== ,解得21m =,因为02m ≤≤,所以1m =,所以12BQ BC =.18.2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【答案】(1)(20)0.1p =,(20)0.05q =(2)分布列见解析;期望为65(3)20a =【解析】【分析】(1)由频率分布直方图计算可得;(2)利用超几何分布求解;(3)写出()f a 的表达式判单调性求解.【小问1详解】由频率分布直方图可知(20)0.0250.1p =⨯=,(20)0.0150.05q =⨯=.【小问2详解】样本中患病者在指标为区间[20,25]的人数是200.0252⨯⨯=,未患病者在指标为区间[20,25]的人数是200.0353⨯⨯=,总人数为5人.X 可能的取值为0,1,2.202325C C 1(0)10C P X ===,112325C C 3(1)C 5P X ===,022325C C 3(2)10C P X ===.随机变量X 的分布列为X012P11035310随机变量X 的期望为1336()012105105E X =⨯+⨯+⨯=.【小问3详解】由题,()()()95%5%f a q a p a =⨯+⨯,[20,25]a ∈时,令()20,0,1,2,3,4,5a t t =+=()()50.010.03,50.020.0255t t q a p a ⎛⎫⎛⎫=⨯+⨯=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭所以()()50.010.0395%50.020.025%55t t f a g t ⎛⎫⎛⎫==⨯+⨯⨯+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,关于t 的一次函数系数为()50.0319%0.021%0⨯-⨯>,故()g t 单调递增,则0=t 即20a =时()f a 取最小值19.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.【答案】(1)1(2)答案见解析【解析】【分析】(1)先求函数()f x 的导函数,若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,只需保证()01f '=,求实数a 的值即可;(2)求得()0f x '=有两个根“2x =-和x a =”,再分2a <-、2a =-和2a >-三种情况分析函数()f x 的单调性即可.【小问1详解】由题可得2()e [(2)2]x f x x a x a '=+--,因为()f x 在点(1,(1))f 处的切线平行于x 轴,所以()01f '=,即e(33)0a -=,解得1a =,经检验1a =符合题意.【小问2详解】因为2()e [(2)2]x f x x a x a '=+--,令()0f x '=,得2x =-或x a =.当2a <-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,)a -∞a(,2)a -2-(2,)-+∞()f 'x +-+()f x 单调递增()f a 单调递减(2)f -单调递增所以()f x 在区间(,)a -∞上单调递增,在区间(,2)a -上单调递减,在区间(2,)-+∞上单调递增.当2a =-时,因为2()e (2)0x f x x '=+≥,当且仅当2x =-时,()0f x '=,所以()f x 在区间(,)-∞+∞上单调递增.当2a >-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,2)-∞-2-(2,)a -a(,)a +∞()f 'x +-+()f x 单调递增(2)f -单调递减()f a 单调递增所以()f x 在区间(,2)-∞-上单调递增,在区间(2,)a -上单调递减,在区间(,)a +∞上单调递增.综上所述,当2a <-时,()f x 的单调递增区间为(,)a -∞和(2,)-+∞,单调递减区间为(,2)a -;当2a =-时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当2a >-时,()f x 的单调递增区间为(,2)-∞-和(,)a +∞,单调递减区间为(2,)a -.20.已知椭圆22:143x y E +=.(1)求椭圆E 的离心率和焦点坐标;(2)设直线1:l y kx m =+与椭圆E 相切于第一象限内的点P ,不过原点O 且平行于1l 的直线2l 与椭圆E 交于不同的两点A ,B ,点A 关于原点O 的对称点为C .记直线OP 的斜率为1k ,直线BC 的斜率为2k ,求12k k 的值.【答案】(1)离心率为12,焦点坐标分别为(1,0)-,(1,0)(2)121k k =【解析】【分析】(1)根据椭圆方程直接求出离心率与焦点坐标;(2)根据直线1l 与椭圆E 相切求出P 坐标并得到134k k=-,法一:设直线2l 的方程为y kx n =+,由韦达定理求出234k k=-证得结论.法二:记1122(,),(,)A x y B x y ,由点差法求2k k ⋅可证得结论.【小问1详解】由题意得2222243a b c a b ⎧=⎪=⎨⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆E 的离心率为12c e a ==,焦点坐标分别为(1,0)-,(1,0).【小问2详解】由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222()4384120k x kmx m +++-=①其判别式Δ0=得222(8)4(43)(412)0km k m -+-=,化简为2243m k =+.此时方程①可化为2228160m x kmx k ++=,解得4kx m=-,(由条件知,k m 异号).记00(,)P x y ,则04k x m=-,所以220443()k m k y k m m m m -=-+==,即点43(,)k P m m -.所以OP 的斜率13344m k k k m==--.法一:因为12//l l ,所以可设直线2l 的方程为(0,)y kx n n n m =+≠≠.由22,143y kx n x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222(43)84120k x knx n +++-=.当其判别式大于零时,有两个不相等的实根,设1122(,),(,)A x y B x y ,则21212228412,4343kn n x x x x k k -+=-=++.因为C 是A 关于原点O 的对称点,所以点C 的坐标为11(,)C x y --.所以直线BC 的斜率22121221212122243384443y y kx n kx n n n k k k k k kn x x x x x x k k k +++++===+=+=-=-+++-+.所以121k k =.法二:记1122(,),(,)A x y B x y ,因为点C 与点A 关于原点对称,所以11(,)C x y --.因为12//l l ,所以直线AB 的斜率为k ,所以22212121222212121y y y y y y k k x x x x x x -+-⋅=⋅=-+-.因为点,A B 在椭圆上,所以2211143x y +=,2222143x y+=.两式相减得:22222121043x x y y --+=.所以2221222134y yx x-=--,即234k k⋅=-,所以234kk=-.所以121kk=.【点睛】方法点睛:将P视为1l与椭圆相交弦中点,由中点弦定理得212bk ka⋅=-,设AB中点为M,由中点弦定理得22OMbk ka⋅=-,由2OMk k=得222bk ka⋅=-,故12k k=.21.对于数列{}n a,如果存在正整数T,使得对任意*()n n∈N,都有n T na a+=,那么数列{}na就叫做周期数列,T叫做这个数列的周期.若周期数列{}n b,{}n c满足:存在正整数k,对每一个*(,)i i k i∈N≤,都有i ib c=,我们称数列{}n b和{}n c为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①sinπna n=;②121,1,3,2,, 3.nn nnb nb b n--=⎧⎪==⎨⎪-≥⎩(2)若{}n a和{}n b是“同根数列”,且周期的最小值分别是3和5,求证:6k≤;(3)若{}n a和{}n b是“同根数列”,且周期的最小值分别是2m+和4m+*()m∈N,求k的最大值.【答案】(1){}n a、{}n b均是周期数列,数列{}n a周期为1(或任意正整数),数列{}n b周期为6(2)证明见解析(3)答案见解析【解析】【分析】(1)由周期数列的定义求解即可;(2)由“同根数列”的定义求解即可;(3)m是奇数时,首先证明25k m+≥不存在数列满足条件,其次证明24k m=+存在数列满足条件.当m 是偶数时,首先证明24k m+≥时不存在数列满足条件,其次证明23k m=+时存在数列满足条件.【小问1详解】{}n a 、{}n b 均是周期数列,理由如下:因为1sin (1)π0sin πn n a n n a +=+===,所以数列{}n a 是周期数列,其周期为1(或任意正整数).因为32111n n n n n n n b b b b b b b +++++=-=--=-,所以63n n n b b b ++=-=.所以数列{}n b 是周期数列,其周期为6(或6的正整数倍).【小问2详解】假设6k ≤不成立,则有7k ≥,即对于17i ≤≤,都有i i a b =.因为71a a =,722b b a ==,所以12a a =.又因为63a a =,611b b a ==,所以13a a =.所以123a a a ==,所以1=n n a a +,与1T 的最小值是3矛盾.所以6k ≤.【小问3详解】当m 是奇数时,首先证明25k m +≥不存在数列满足条件.假设25k m +≥,即对于125i m +≤≤,都有i i a b =.因为()54m t m t a b t m ++=≤≤+,所以()24454t t t a b a t m ---==≤≤+,即1352m a a a a +==== ,及2461m a a a a +==== .又5t m =+时,12(2)12511m m m m a a b b a +++++====,所以1=n n a a +,与1T 的最小值是2m +矛盾.其次证明24k m =+存在数列满足条件.取(2)31,=21(1)212,2(1)2m l im i k k a m i k k +++⎧-≤≤⎪⎪=⎨+⎪=≤≤⎪⎩()l ∈N及()431,=21(1)212,2(1)21,32,4m l i m i k k m i k k b i m i m +++⎧-≤≤⎪⎪+⎪=≤≤=⎨⎪=+⎪⎪=+⎩()l ∈N ,对于124i m +≤≤,都有i i a b =.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件.假设24k m +≥,即对于124i m +≤≤,都有i i a b =.因为()53m t m t a b t m ++=≤≤+,所以()24453t t t a b a t m ---==≤≤+,即1351m a a a a +==== ,及246m a a a a ==== .又4t m =+时,2m m m a b a +==,所以2=n n a a +,与1T 的最小值是2m +矛盾.其次证明23k m =+时存在数列满足条件.取()221,=21(1)22,2(1)23,2m l i m i k k a m i k k i m +++⎧-≤≤⎪⎪=⎨=≤≤⎪⎪=+⎩()l ∈N 及()421,=21(1)22,2(1)23,21,32,4m l im i k k m i k k b i m i m i m +++⎧-≤≤⎪⎪⎪=≤≤⎪=⎨⎪=+⎪=+⎪⎪=+⎩()l ∈N ,对于123i m +≤≤,都有i i a b =.综上,当m 是奇数时,k 的最大值为24m +;当m 是偶数时,k 的最大值为23m +.【点睛】关键点睛:本题(3)的突破口是利用“同根数列”的定义分类讨论,当m 是奇数时,首先证明25k m +≥不存在数列满足条件,其次证明24k m =+存在数列满足条件.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件,其次证明23k m =+时存在数列满足条件.。
浙江省温州市2024届高三年级期末统一测试数学试卷(附答案)

浙江省温州市2024届高三年级期末统一测试试题数 学注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自已的姓名.准考证号填写在答题卷上.将条形码横贴在答题卷右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,不要折叠.不要弄破.选择题部分一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设1i z =+(其中i 为虚数单位),则11z z +=-( )A. 1B.C. 3D. 52. 设集合{}2Z 340A x x x =∈--≤,{}1B x x =≤,则A B = ( ) A {}1,0,1-B. {}2,1,0--C. {}0,1,2D. {}0,13. 已知函数()cos f x x =,若关于x 的方程()f x a =在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,则实数a 的取值范围是( )A. ,12⎫⎪⎪⎣⎭B. ,12⎤⎥⎣⎦C. 1,12⎡⎫⎪⎢⎣⎭D. 1,12⎡⎤⎢⎥⎣⎦4. 已知x ,y ∈R ,则“1x y >>”是“ln ln x x y y ->-”的( ) A. 充分条件但不是必要条件 B. 必要条件但不是充分条件 C. 充要条件D. 既不是充分条件也不是必要条件5. 6名同学排成一排,其中甲与乙互不相邻,丙与丁必须相邻的不同排法有( ) A. 72种B. 144种C. 216种D. 256种.6. 已知()424567845678x x a x a x a x a x a x +=++++,则( )A. 45a a =B. 56a a =C. 67a a =D. 57a a =7. 《九章算术》中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,则堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛8. 已知12304πx x x <<<<,函数()sin f x x =在点()(),sin 1,2,3i i x x i =处的切线均经过坐标原点,则( )A. 3113tan tan x x x x < B. 1313tan tan x x x x > C. 1322x x x +< D. 1322x x x +>二、选择题:本题共3小题,在每小题给出的选项中,有多项符合题目要求. 9. 已知函数()2121x x f x -=+,则( )A. 不等式()13f x <的解集是()1,1- B. x ∀∈R ,都有()()f x f x -= C. ()f x 是R 上的递减函数 D. ()f x 的值域为()1,1-10. 某企业协会规定:企业员工一周7天要有一天休息,另有一天的工作时间不超过4小时,且其余5天的工作时间均不超过8小时(每天的工作时间以整数小时计),则认为该企业“达标”.请根据以下企业上报的一周7天的工作时间的数值特征,判断其中无法确保“达标”的企业有( ) A. 甲企业:均值为5,中位数为8 B. 乙企业:众数为6,中位数为6C. 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8D. 丁企业:均值为5,方差为611. 已知数列{}n a 满足21n n n a a a λ+++=,R λ∈,若11a =,22a =,20242024a ≥,则λ的值可能为( ) A. -1B. 2C.52D. -2非选择题部分三、填空题:本大题共3小题,把答案填在题中的横线上.12. 若tan 2θ=,则cos πsin()4θθ=-______. 13. 已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C 的圆的方程为______. 14. 已知四棱锥P ABCD -的底面为边长为1的菱形且60DAB ∠=︒,PA ⊥平面ABCD ,且1PA =,M ,N 分别为边PB 和PD 的中点,PC ⋂平面AMN Q =,则PQ =______,四边形AMQN 的面积等于______.四.解答题:本大题共5小题,解答应写出文字说明.证明过程或演算步骤.15. 已知函数()()23f x x x =-,[]1,x a ∈.(1)若()f x 不单调,求实数a 的取值范围;(2)若()f x 的最小值为()f a ,求实数a 的取值范围.16. 已知等比数列{}n a 的前n 项和为n S ,且满足6356a a -=,63112S S -=. (1)求数列{}n a 的通项公式; (2)设1nn n n a b S S +=,求数列{}n b 的前n 项和n T .17. 如图,以AD 所在直线为轴将直角梯形ABCD 旋转得到三棱台ABE DCF -,其中AB BC ⊥,22AB BC CD ==.(1)求证:AD BE ⊥;(2)若π3EAB ∠=,求直线AD 与平面CDF 所成角的正弦值. 18. 现有标号依次为1,2,…,n n 个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止. (1)当2n =时,求2号盒子里有2个红球概率; (2)当3n =时,求3号盒子里的红球的个数ξ的分布列; (3)记n 号盒子中红球的个数为n X ,求n X 的期望()n E X .19. 已知动点M 到点()1,0F -距离与到直线l :2x =-的距离之比等于2. (1)求动点M 的轨迹W 的方程;(2)过直线l 上的一点P 作轨迹W 的两条切线,切点分别为A ,B ,且60APB ∠=︒, ①求点P 坐标;②求APB ∠的角平分线与x 轴交点Q 的坐标.的的的的参考答案一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设1i z =+(其中i 为虚数单位),则11z z +=-( )A. 1B.C. 3D. 5【答案】B 【答案解析】【详细分析】将z 表示的复数代入所求式,化简成一个复数的模,再运用模的运算公式计算即得.【过程详解】因1i z =+,则()12i 2i 112i 1i z z ++==--=-=-. 故选:B. 2. 设集合{}2Z 340A x x x =∈--≤,{}1B x x =≤,则A B = ( )A.{}1,0,1- B. {}2,1,0-- C. {}0,1,2 D.{}0,1【答案】A 【答案解析】【详细分析】根据不等式的解法求得集合,A B ,结合集合交集的运算,即可求解.【过程详解】由不等式2340x x --≤,解得14x -≤≤,所以{}1,0,1,2,3,4A =-, 又由不等式1x ≤,解得{}11B x x =-≤≤,所以{}1,0,1A B =- .故选:A.3. 已知函数()cos f x x =,若关于x 的方程()f x a =在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,则实数a 的取值范围是( )A,12⎫⎪⎪⎣⎭B. ,12⎤⎥⎣⎦C. 1,12⎡⎫⎪⎢⎣⎭ D. 1,12⎡⎤⎢⎥⎣⎦【答案】C 【答案解析】【详细分析】将方程的根转化为两函数的交点,数形结合即可..【过程详解】画出函数()cosf x x=,ππ,32x⎡⎤∈-⎢⎥⎣⎦的图象,若方程()f x a=在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,,由图可知1,12a⎡⎫∈⎪⎢⎣⎭.故选:C4. 已知x,y∈R,则“1x y>>”是“ln lnx x y y->-”的()A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充要条件D. 既不是充分条件也不是必要条件【答案】A【答案解析】【详细分析】设()lnf x x x=-,利用导数研究函数()f x的性质可知()f x在(1,)+∞上单调递增,结合函数的单调性解不等式以及充分、必要条件的定义即可求解.【过程详解】设()lnf x x x=-,则11()1xf xx x'-=-=,令()01f x x'>⇒>,所以函数()f x在(1,)+∞上单调递增.当1x y>>时,则()()f x f y>,即ln lnx x y y->-,充分性成立;当ln lnx x y y->-时,有()()f x f y>,得x y>,所以1x y>>不一定成立,即必要性不成立,所以“1x y>>”是“ln lnx x y y->-”的充分不必要条件.故选:A5. 6名同学排成一排,其中甲与乙互不相邻,丙与丁必须相邻的不同排法有()A. 72种B. 144种C. 216种D. 256种【答案】B【答案解析】【详细分析】要使元素不相邻,则用插空法,要使元素相邻,则运用捆绑法,分步完成即得. 【过程详解】先将丙与丁看成一“个”人,与除甲和乙之外的另外两个人留下4个空, 在其中选2个给甲和乙,有24A 种方法;再考虑丙丁这“个”人和另两个人进行全排,有33A 种排法;最后将丙丁“松绑”,有22A 种方法,由分步计数原理,可得不同排法数为:232432A A A 144⋅⋅=种.故选:B.6. 已知()424567845678x x a x a x a x a x a x +=++++,则( )A. 45a a =B. 56a a =C. 67a a =D. 57a a =【答案】D 【答案解析】详细分析】利用二项式定理展开即可. 【过程详解】()()()()()()423424213222231240244444C C C C C x x xx x xxx x xxx +=++++45678464x x x x x =++++,所以574a a ==.故选:D7. 《九章算术》中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,则堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛 【答案】B 【答案解析】【详细分析】由地面弧长求出圆锥底面半径,再利用体积公式求体积,再代换为斛即可.【【过程详解】设圆锥的底面半径为r ,则π82r ⨯=,解得16πr =, 故米堆的体积2221116320π543π3π11π43V r h =⨯⨯⨯==⨯(立方尺). 1斛米的体积约为1.62立方尺,故221.03π6232≈(斛).故选:B.8. 已知12304πx x x <<<<,函数()sin f x x =在点()(),sin 1,2,3i i x x i =处的切线均经过坐标原点,则( )A.3113tan tan x x x x < B.1313tan tan x x x x > C.1322x x x +< D. 1322x x x +>【答案】C 【答案解析】【详细分析】根据导数的几何意义求出曲线()f x 在点112233(,sin ),(,sin ),(,sin )x x x x x x 处的切线方程,进而312123tan tan tan 1x x x x x x ===即可判断AB ;画出函数tan y x =与y x =图象,由AD EC k k <可得32212132ππx x x x x x x x --<----,化简计算即可判断CD.【过程详解】由题意知,()cos f x x '=,则112233()cos ,()cos ,()cos f x x f x x f x x '''===,所以曲线()f x 在点112233(,sin ),(,sin ),(,sin )x x x x x x 处的切线方程分别为111222333sin cos (),sin cos (),sin cos ()y x x x x y x x x x y x x x x -=--=--=-,因为切线均过原点,所以111222333sin cos ,sin cos ,sin cos x x x x x x x x x ===,即112233tan ,tan ,tan x x x x x x ===,得312123tan tan tan 1x x x x x x ===,故AB 错误;由312123tan tan tan 1x x x x x x ===,得tan (1,2,3)i i x x i ==,画出函数tan y x =与y x =图象,如图,设()()()112233,tan ,,tan ,,tan A x x B x x C x x ,如上图易知:2222(π,tan ),(+π,tan )D x x E x x -,由正切函数图象性质AD EC k k <,得32212132tan tan tan tan ππx x x x x x x x --<----,即32212132ππx x x x x x x x --<----,又2132π0,π0x x x x -->-->,所以21323221()(π)()(π)x x x x x x x x ---<---, 即132ππ2πx x x +<,解得1322x x x +<,故C 正确,D 错误.故选:C【点评】关键点点评:证明选项CD 的关键是根据tan (1,2,3)i i x x i ==构造新函数tan x x =,通过转化的思想和数形结合思想详细分析是解题的关键.二、选择题:本题共3小题,在每小题给出的选项中,有多项符合题目要求.9. 已知函数()2121x xf x -=+,则( ) A. 不等式()13f x <的解集是()1,1-B x ∀∈R ,都有()()f x f x -= C. ()f x 是R 上的递减函数 D.()f x 的值域为()1,1-【答案】AD 【答案解析】【详细分析】由题意可得2()121x f x =-+,利用绝对值不等式、指数不等式的解法计算即可判断A ;利用奇偶函数的定义计算即可判断B ;举例说明即可判断C ;根据指数型函数的的值域的求法计算即可判断D..【过程详解】A :212()12121x x x f x -==-++,由1()3f x <,得12113321x -<-<+,即1123321x <<+, 得32132x <+<,解得11x -<<,即原不等式的解集为(1,1)-,故A 正确; B :122()11()2121x x x f x f x +--=-=-≠++,故B 错误; C :2132(1)11(2)3355f f =-=<=-=,所以()f x 在R 上单调递减不成立,故C 错误;D :由20221x<<+知211121x -<-<+,即函数()f x 的值域为(1,1)-,故D 正确. 故选:AD10. 某企业协会规定:企业员工一周7天要有一天休息,另有一天的工作时间不超过4小时,且其余5天的工作时间均不超过8小时(每天的工作时间以整数小时计),则认为该企业“达标”.请根据以下企业上报的一周7天的工作时间的数值特征,判断其中无法确保“达标”的企业有( )A. 甲企业:均值为5,中位数为8B. 乙企业:众数为6,中位数为6C. 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8D. 丁企业:均值为5,方差为6 【答案】ABD 【答案解析】【详细分析】根据每个企业所给数字特征,找出满足数字特征但不达标的一个特例即可判断ABD ,对C 中满足条件的数据详细分析,确定工作时长数据达标.【过程详解】甲企业每周7天的工作时间可以为:9,8,8,8,2,0,0,满足均值为5,中位数为8,故不达标,故A 正确;乙企业:众数为6,中位数为6,满足条件的7天工作时间可以为:6,6,6,6,6,6,6,故不达标,故B 正确; 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8, 设7天的工作时间为:4,5,5,8,a,b,c()48a b c ≤≤≤≤,13,139b c a c b ++=∴≤-≤,9,4c b ==与众数矛盾,8c =,为使众数为5,5b =成立,故丙企业达标,故C 错误;丁企业:均值为5,方差为6,7天的工作时间可以为0,5,5,5,5,6,9,故D 正确. 故选:ABD11. 已知数列{}n a 满足21n n n a a a λ+++=,R λ∈,若11a =,22a=,20242024a ≥,则λ的值可能为( )A. -1B. 2C. 52D. -2【答案】BCD 【答案解析】【详细分析】由题意,结合选项根据λ的取值,得出对应的递推公式,利用归纳法求出对应的通项公式,依次验证即可.【过程详解】A :当1λ=-时,21n n n a a a ++=--,得3214325436543,1,2,3a a a a a a a a a a a a =--=-=--==--==--=-, 所以数列{}n a 是以3为周期的周期数列,则2024222024a a ==<,不符合题意,故A 错误;B :当2λ=时,212n n n a a a ++=-,得32143254365423,24,25,26,,n a a a a a a a a a a a a a n =-==-==-==-== , 所以20242024a =,符合题意,故B 正确;C :当52λ=时,2152n n na a a ++=-,得2345132143254365455552,2,2,2,,22222n n a a a a a a a a a a a a a -=-==-==-==-== ,所以2023202422024a =>,符合题意,故C 正确; D :当2λ=-时,212n n n a a a ++=--,得32143254365425,28,211,214,,(1)(34)nn a a a a a a a a a a a a a n =--=-=--==--=-=--==-- ,所以202432024460682024a =⨯-=>,符合题意,故D 正确. 故选:BCD 非选择题部分三、填空题:本大题共3小题,把答案填在题中的横线上.12. 若tan 2θ=,则cos πsin()4θθ=-______.【答案】 【答案解析】【详细分析】利用差角的正弦公式,结合齐次式法计算即得.【过程详解】当tan 2θ=时,cos π1tan sin()422θθθ===--.故答案为:13. 已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C 的圆的方程为______. 【答案】()(22328x y -+-=【答案解析】 【详细分析】设()()1122,,,A x y B x y ,直线方程与圆的方程联立求出,A B 点坐标,设经过点A ,B ,C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,代入三点坐标解方程组可得答案.过程详解】设()()1122,,,A x y B x y ,由2216y x y ⎧=⎪⎨+=⎪⎩解得121222x x y y ==-⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩,可得((2,,2,A B --,设经过点A ,B ,()8,0C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,所以412204120640800D F Dx F D F ⎧++-+=⎪⎪+-++=⎨⎪++++=⎪⎩,解得616D E F =-⎧⎪=-⎨⎪=-⎩,即226160+---=x y x ,可得()(22328x y -+=.故答案为:()(22328x y -+-=.14. 已知四棱锥P ABCD -的底面为边长为1的菱形且60DAB ∠=︒,PA ⊥平面ABCD ,且1PA =,M ,N 分别为边PB 和PD 的中点,PC ⋂平面AMN Q =,则PQ =______,四边形AMQN 的面积等于______. 【答案】 ①. 23 ②.12【答案解析】【【详细分析】过点A 作AD 的垂线AE ,建立如图空间直角坐标系,设PQ PC λ= ,利用空间向量法求出平面AMN 的法向量n ,由题意可知0n MQ ⋅=,求出点Q 的坐标,进而可求得PQ ;再求得AQ MN ⊥ ,从而利用三角形面积公式即可得解.【过程详解】过点A 作AB 的垂线AE ,建立如图空间直角坐标系,由题意可知1111(0,0,1),(0,0,0),,(0,,4222P A M N,3,,0)22C ,则1111(,,(0,,)44222AM AN ==,3(,,1)22PC =- , 设PQ PC λ=,即33,1),,)22PQ λλλ=-=-,则3,,1)2Q λλ-,所以311,)242QM λλ=-- ,设平面AMN 的一个法向量为(,,)n x y z = ,则11044211022n AM x y z n AN y z ⎧⋅=++=⎪⎪⎨⎪⋅=+=⎪⎩,令3y =,得3x z ==-,所以3)n =- ,因为PC ⋂平面AMN Q =,所以,,,A M N Q 四点共面,得0n MQ ⋅=,即311330242λλ⎛⎫⎛⎫+⨯---= ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得13λ=,则12(,623Q,11,623PQ =-,12,)623AQ = ,此时23PQ ==;又1(,0)44MN =-,所以1106424AQ MN ⎛⋅=-+⨯= ⎝⎭ ,则AQ MN ⊥ ,因为3AQ ==,12MN == ,所以四边形AMQN的面积为111222AQ MN ⋅==. 故答案为:23;12.【点评】关键点评:本题主要考查利用向量法证明空间的线面关系,根据,,,A M N Q 四点共面确定0n MQ ⋅=是本题的关键,属于难题.四.解答题:本大题共5小题,解答应写出文字说明.证明过程或演算步骤.15. 已知函数()()23f x x x =-,[]1,x a ∈.(1)若()f x 不单调,求实数a 的取值范围; (2)若()f x 的最小值为()f a ,求实数a 的取值范围.【答案】(1)3a > (2)13a <? 【答案解析】【详细分析】(1)利用导数讨论函数()f x 的单调性,即可求解;(2)由(1)知函数()f x 的单调性,求出函数的最小值即可求解.【小问1过程详解】()()()23129313f x x x x x =-+=--', 当13x <<时,()0f x '<,当3x >时,()0f x ¢>,∴函数()f x 在()1,3上单调递减,在()3,+∞上单调递增,又∵()f x 在[1,]a 上不单调,∴3a >;【小问2过程详解】 由(1)知函数()f x 在()1,3上单调递减,在()3,+∞上单调递增,当3a >时,min ()(3)f x f =,不符合题意,当13a <?时,min ()()f x f a =,所以实数a 的取值范围为13a <?.16. 已知等比数列{}n a 的前n 项和为n S ,且满足6356a a -=,63112S S -=.(1)求数列{}n a 的通项公式;(2)设1nn n n a b S S +=,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)1111421n n T +⎛⎫=- ⎪-⎝⎭. 【答案解析】【详细分析】(1)利用等比数列通项公式、前n 项和求基本量,进而写出等比数列通项公式. (2)等比数列前n 项和公式写出n S ,应用裂项相消法求n T【小问1过程详解】 由题知:()3633156a a a q -=-=①,()()22634564311112S S a a a a q q a q q q -=++=++=++=②,②÷①得,()()23331211a q q q qq a q ++==--,解得2q =,代入①式得,38a =,所以3822n nn a -=⨯=.【小问2过程详解】由(1)知:()12122212n n n S +-==--,所以()()121212111222222222n n n n n n n n n a b S S +++++⎛⎫===- ⎪----⎝⎭,所以2334122111111111122222222222222222n n n n T +++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪-------⎝⎭⎝⎭1111421n +⎛⎫=- ⎪-⎝⎭.17. 如图,以AD 所在直线为轴将直角梯形ABCD 旋转得到三棱台ABE DCF -,其中AB BC ⊥,22AB BC CD ==.(1)求证:AD BE ⊥;(2)若π3EAB ∠=,求直线AD 与平面CDF 所成角的正弦值.【答案】(1)证明见答案解析(2)3【答案解析】【详细分析】(1)如图,取AB 的中点G ,连接DG ,BD ,DE ,设2AB a =,由勾股定理的逆定理可得AD BD ⊥,同理可得AD DE ⊥,结合线面垂直的判定定理和性质即可证明;(2)由(1)和勾股定理的逆定理可得DE BD ⊥,又DE AD ⊥,根据线面、面面垂直的判定定理可得面DEM ⊥面ABE ,如图,则NAD ∠为题意所求的线面角,解三角形NAD V 即可.【小问1过程详解】连接BD ,DE ,设2AB a =,则BC CD a ==,取AB 的中点G ,连接DG ,则四边形BCDG 为正方形,故DG a =,得AD BD ==,∴222AD BD AB +=,∴AD BD ⊥同理可得,AD DE ⊥,又,BD DE D BD DE =⊂ 、面BDE , ∴AD ⊥面BDE ,又BE ⊂面BDE ,AD BE ⊥;【小问2过程详解】由(1)知BD DE =,又∵π3EAB ∠=,∴2AB AE EB a ===,由222ED BD EB +=,得DE BD ⊥.又∵DE AD ⊥,,BD AD D BD AD =⊂ 、面ABCD ,∴DE ⊥面ABCD , 过点D 作DM AB ⊥交AB 于点M ,连接EM .因为AB ⊂面ABCD ,所以DE AB ⊥,又因为DE DM D = ,且,DE DM ⊂面DEM , 则AB ⊥面DEM ,又AB ⊂面ABE ,∴面DEM ⊥面ABE . 过点D 作DN EM ⊥交EM 于点N ,连接AN . ∴NAD ∠就是直线AD 与面ABE 所成的线面角.∵面//CDF 面ADE ,∴NAD ∠就是直线AD 与面CDF 所成的线面角.∵DE DM ⊥,又DG a =,DE =,∴3DN a =,又AD =,∴sin 3aNAD ∠==, 即直线AD 与平面CDF所成线面角的正弦值为3.18. 现有标号依次为1,2,…,n 的n 个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止. (1)当2n =时,求2号盒子里有2个红球的概率; (2)当3n =时,求3号盒子里的红球的个数ξ的分布列; (3)记n 号盒子中红球的个数为n X ,求n X 的期望()n E X .【答案】(1)23(2)分布列见答案解析 (3)()2n E X =【答案解析】【详细分析】(1)由古典概率模型进行求解;(2) ξ可取1,2,3,求出对应的概率,再列出分布列即可;(3) 记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则123b =,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,化解得121162n n b b --=+,即可求解. 【小问1过程详解】由题可知2号盒子里有2个红球的概率为112224C C 2C 3P ==; 【小问2过程详解】由题可知ξ可取1,2,3,()221123222222224444C C C C C 71C C C C 36P ξ==⨯+⨯=, ()221123222222224444C C C C C 73C C C C 36P ξ==⨯+⨯=()()()11211318P P P ξξξ==-=-==,所以3号盒子里的红球的个数ξ的分布列为【小问3过程详解】记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则12211318,==b b ,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,化解得121162n n b b --=+, 得12131331565515n n b b b --⎛⎫-=--= ⎪⎝⎭,,而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515-=b ,公比为16,所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556nn a ⎛⎫=- ⎪⎝⎭因此()()1111111231322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.【点评】关键点点评:记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则12211318,==b b ,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,即可求解.19. 已知动点M 到点()1,0F -的距离与到直线l :2x =-的距离之比等于2.(1)求动点M 的轨迹W 的方程;(2)过直线l 上的一点P 作轨迹W 的两条切线,切点分别为A ,B ,且60APB ∠=︒, ①求点P 的坐标;②求APB ∠的角平分线与x 轴交点Q 的坐标.【答案】(1)2212x y += (2)①2,3P ⎛⎫-± ⎪ ⎪⎝⎭;②1,03⎛⎫- ⎪⎝⎭ 【答案解析】【详细分析】(1)根据题意,设(),M x y2=,化简得解;(2)①()2,P t -,切线方程为;()2y k x t=++,与椭圆方程联立,利用韦达定理表示出1cos 2APB ∠==,求解即可;②由对称性,不妨取t =,所以2,3P ⎛⎫- ⎪ ⎪⎝⎭,解出tan ,PB k PBQ =∠再根据()tan 30PQ k PBQ =∠+︒可求解.【小问1过程详解】 设(),M x y ,2=,化简得:动点M 的轨迹方程为:2212x y +=;【小问2过程详解】①()2,P t -,切线方程为;()2y k x t =++, 代入2222x y +=得:()2212k x+()42k k t x ++()222k t ++20-=, ∵切线,∴Δ0=,得:222410k tk t ++-=(*),设方程(*)的两根分别为1k ,2k ,分别为P A ,PB 的斜率则有122k k t +=-,21212t k k -= 又∵P A ,PB 的方向向量分别为()11,a k = ,()21,b k = ,∴1cos cos ,2APB a b ∠==== ,解得:253t =,∴2,3P ⎛⎫-± ⎪⎪⎝⎭.②由对称性,不妨取3t =,所以2,3P ⎛⎫- ⎪⎪⎝⎭, 将t =代入(*)得:2620k++=,解得3k ±=,则tan 3PB k PBQ -==∠,∴()3tan 305233PQQ k PBQ x -+=∠+︒===-=--, 得:13Q x =-,所以点Q 坐标为1,03⎛⎫- ⎪⎝⎭.的【点评】求动点轨迹一般有:直接发,定义法,相关点法.。
高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。
高三期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = √(x - 1)B. g(x) = |x|C. h(x) = 1/xD. k(x) = √(x^2 - 4)2. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值为()A. 1B. -1C. 3D. -33. 下列各对点中,与点P(2,3)关于直线y=x对称的是()A. A(3,2)B. B(2,4)C. C(4,2)D. D(3,3)4. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB 的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在6. 下列各对数函数中,单调递减的是()A. y = 2^xB. y = log2(x)C. y = 3^xD. y = log3(x)7. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n(n-1)(n-2)/3B. n(n+1)(n-2)/3C. n(n-1)(n+2)/3D. n(n+1)(n+2)/38. 已知等差数列{an}的前n项和为S_n,若S_5 = 50,公差d=2,则数列{an}的第六项a_6为()A. 16B. 18C. 20D. 229. 下列各不等式中,恒成立的是()A. x^2 + 1 < 0B. |x| > 1C. x^2 - 1 > 0D. x^2 + 1 > 010. 若函数f(x) = ax^2 + bx + c在x=1处取得极小值,则a、b、c应满足的关系式是()A. a > 0, b = 0, c > 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 0二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。
2023-2024学年北京市昌平区高三(上)期末数学试卷【答案版】

2023-2024学年北京市昌平区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .5855.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .369.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = .12.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 .13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= ;a n= .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 .15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A . (1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC 的面积. 条件①:a =7; 条件②:c =8; 条件③:cos C =17.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图: (1)求m 的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X 元,求X 的分布列和数学期望E (X );(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y ,问k (k =0,1,2,…,10)为何值时,P (Y =k )的值最大?(结论不要求证明)19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22.(1)求椭圆E的方程;(2)设过点T(t,0)的直线l与椭圆E有两个不同的交点A,B(均不与点M重合),若以线段AB为直径的圆恒过点M,求t的值.20.(15分)已知函数f(x)=x2e2﹣x﹣x+1.(1)求曲线y=f(x)在(2,f(2))处的切线方程;(2)设函数g(x)=f'(x),求g(x)的单调区间;(3)判断f(x)极值点的个数,并说明理由.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.2023-2024学年北京市昌平区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)解:全集U =R ,集合A ={x |x 2>1}=(﹣∞,﹣1)∪(1,+∞),∁U A =[﹣1,1], 故选:A .2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i解:由图可知,z 1=﹣2﹣i ,z 2=1+i ,故z 1•z 2=(﹣2﹣i )•(1+i )=﹣2﹣2i ﹣i +1=﹣1﹣3i . 故选:A .3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x解:由双曲线的离心率√3,可知c =√3a ,又a 2+b 2=c 2,所以b =√2a ,所以双曲线的渐近线方程为:y =±bax =±√2x .故选:B .4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .585解:令x =0,解得a 0=1;当x =1时,a 0+a 1+a 2+a 3+a 4+a 5=﹣32;①,当x =﹣1时,a 0−a 1+a 2−a 3+a 4−a 5=45,②,故①+②得:2a 0+2a 2+2a 4=1024﹣32=992,解得a 0+a 2+a 4=496, 故a 2+a 4=495.故选:C .5.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )解:根据题意,依次分析选项:对于A ,y =2x ,是指数函数,在(0,2)上为增函数,不符合题意; 对于B ,y =sin x ,是正弦函数,在(0,π2)上为增函数,不符合题意;对于C ,y =x 1−x =−1x−1−1,可以由函数y =−1x向右平移一个单位,向下平移一个单位得到, 故y =x1−x在区间(0,2)上不是单调函数,不符合题意; 对于D ,y =log 0.5(﹣x 2+4x ),设t =﹣x 2+4x ,y =log 0.5t , t =﹣x 2+4x 在(0,2)上为增函数,且t >0恒成立, y =log 0.5t 在(0,+∞)上为减函数,故y =log 0.5(﹣x 2+4x )在区间(0,2)上为减函数,符合题意. 故选:D .6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件解:根据题意,函数f (x )={ ⋯⋯x −4,2≤x <3x −2,1≤x <2x ,0≤x <1x +2,−1≤x <0⋯⋯,在R 上满足f (x +1)<f (x ), 当f (x )不是增函数,反之,若f (x )为减函数,必有f (x +1)<f (x ),故“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的必要而不充分条件. 故选:B .7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]解:设P (x ,y ),由图可知,AO →与AP →夹角为锐角,故AO →⋅AP →>0,又AO →=(1,−√3),AP →=(x +1,y −√3),则AO →⋅AP →=x −√3y +4, 令t =|x−√3y+4|2,则t 为点P (x ,y )到直线x −√3y +4=0的距离, 圆心C (1,0)到直线x −√3y +4=0的距离d =52,所以t ∈[32,72],故AO →⋅AP →∈[3,7].故选:D .8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .36解:由正弦定理可得,a :b :c =sin A :sin B :sin C =2:3:4,故可设a =2x ,b =3x ,c =4x , S =√14[c 2a 2−(c 2+a 2−b 22)2]=12√(8x 2)2−(16x 2+4x 2−9x 22)2=3√15,解得,x =2,故△ABC 的周长为4+6+8=18. 故选:C .9.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点解:对于A :因为函数f (x )=2sin x ﹣2cos x , 所以f (x +π2)+f (﹣x )=2sin(x+π2)−2cos(x+π2)+2sin(﹣x )﹣2cos(﹣x )=2cos x ﹣2﹣sin x+2﹣sin x﹣2cos x =0,所以f (x )关于点(π4,0)对称,所以f (π4+x )=﹣f (π4−x ),故A 错误;对于B :因为f (x +2π)=2sin(x +2π)﹣2cos(x +2π)=2sin x ﹣2cos x =f (x ),所以2π为函数f (x )的一个周期,故B 错误;对于C :因为f (x )=2sin x ﹣2cos x ,所以f ′(x )=2sin x cos x •ln 2+2cos x sin x •ln 2, 当0<x <π2时,f ′(x )>0,f (x )单调递增,所以f (x )在(0,π2)上单调递增,故C 错误;对于D :令f (x )=2sin x ﹣2cos x =0,即2sin x =2cos x ,即sin x =cos x ,因为x ∈(0,π),则tan x =1,所以x =π4,所以方程在(0,π)上只有一个根,所以函数f (x )在(0,π)内有且只有一个零点,故D 正确. 故选:D .10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1解:以D 为原点,分别以DA ,DC ,DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),E (1,34,0),D 1(0,0,1),∴DA →=(1,0,0),ED 1→=(−1,−34,1),设n →=(x ,y ,z),由{n →⋅DA →=x =0n →⋅ED 1→=−x −34y +z =0,取y =1,得n →=(0,1,34). ∴点P 到直线AD 距离的最小值为d =|n →⋅AE →||n →|=34√1+916=35.故选:C .二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = 34.解:因为sinx =−35,x ∈(π,32π),所以cos x =−45,则tan x =sinx cosx =34.故答案为:3412.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 7 . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y =﹣1, 根据抛物线定义,∴y p +1=8,解得y p =7,∴点P 到x 轴的距离为7, 故答案为:7.13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= 2 ;a n = 2n . 解:由S n =2a n ﹣a 1,得S n +1=2a n +1﹣a 1, 两式相减得a n +1=2a n +1﹣2a n ,即a n+1a n=2,∴{a n }是以q =2为公比的等比数列,由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1a 3, 即2(2a 1+1)=a 1+4a 1,解得a 1=2, ∴a n =2×2n ﹣1=2n .故答案为:2,2n .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 0(答案不唯一) .解:根据题意,假设函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上是单调函数,则有21﹣m ≤ln 1,即2﹣m ≤0,解可得:m ≥2,反之,若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,必有m <2,即m 的取值范围为(﹣∞,2),故m 的值可以为0. 故答案为:0(答案不唯一).15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 ①②④ .解:根据题意可知a 2=a a 1=a a ,因为0<a <1,所以a 1<a a <a 0⇒a 2∈(a ,1)即①正确;由a 1<a 2<1,可得a a 1>a a 2>a 1,得1>a 2>a 3>a 1=a ,所以a a 2<a a 3<a a 1,即a 3<a 4<a 2,故③不正确;根据递推式有a <a 3<a 4<a 2<1,a a 3>a a 4>a a 2,即a 4>a 5>a 3,同理可得a 4>a 6>a 5,a 5<a 7<a 6,a 6>a 8>a 7,a 7<a 9<a 8,从而可得a a 7>a a 9>a a 8,即a 8>a 10>a 9,故②正确;因为0<a <1,所以a a =a 2∈(a ,1),则a a 2∈(a ,1),依次可知a a n ∈(a ,1),所以{a <a n+1<1a ≤a n <1,故|a n +1﹣a n |<1﹣a 成立,④正确. 故答案为:①②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.(1)证明:因为AB ∥DC ,AB ⊄平面PDC ,DC ⊂平面PDC , 所以AB ∥平面PDC ,又AB ⊂平面ABMN , 平面ABMN ∩平面PDC =MN , 所以AB ∥MN ,故MN ∥DC ,又N 为PD 中点,所以M 为PC 中点;(2)解法一:由PD ⊥平面ABCD ,可得PD ⊥AD , 又AD ⊥DC ,DC ∩PD =D ,则AD ⊥平面PDC ,故∠AND 为二面角A ﹣MN ﹣P 的平面角的补角,又AD =2,PD =4,点N 是PD 的中点,则AD =DN =2,故∠AND =45°,故二面角A ﹣MN ﹣P 的大小为135°;解法二:由PD ⊥平面ABCD ,可得PD ⊥AD ,PD ⊥DC ,又AD ⊥DC ,则DA ,DC ,DP 两两垂直,故以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由AD =2,DC =PD =4,点M ,N 是分别是PD ,PC 的中点,则A (2,0,0),M (0,2,2),N (0,0,2),即AM →=(−2,2,2),AN →=(−2,0,2),设平面AMN 的一个法向量为n →=(x ,y ,z),则由{n →⋅AM →=−2x +2y +2z =0n →⋅AN →=−2x +2z =0,令x =1,可得y =0,z =1, 则平面AMN 的一个法向量为n →=(1,0,1),不妨取平面PMN 的一个法向量为m →=(1,0,0),则cos <m →,n →>=m →⋅n →|m →||n →|=1√2=√22, 由图可知二面角A ﹣MN ﹣P 的平面角为钝角,则二面角A ﹣MN ﹣P 的大小为135°.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A .(1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC的面积.条件①:a=7;条件②:c=8;条件③:cos C=1 7.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)由b cos C+c cos B=2a cos A及正弦定理,可得sin B cos C+sin C cos B=2sin A cos B,即sin(B+C)=2sin A cos A,即sin A=2sin A cos A,又A∈(0,π),sin A≠0,所以cosA=12,即A=π3;(2)若选①②:即a=7,c=8,A=π3,由正弦定理,可得sinC=sinAa⋅c=√327×8=4√37,因为a<c,所以A<C,即C可能为锐角或钝角,故△ABC不唯一,不合题意;若选①③:即a=7,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可c=asinA⋅sinC=7√32×4√37=8,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3;若选②③:即c=8,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可得:a=csinC⋅sinA=84√37√32=7,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图:(1)求m的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X元,求X的分布列和数学期望E(X);(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y,问k(k=0,1,2,…,10)为何值时,P(Y=k)的值最大?(结论不要求证明)解:(1)依题意,(0.005+0.025+0.035+m+0.007)×10=1,所以m=0.028;(2)由题意可知,X的可能取值为:6000,7000,8000,9000,任选1人,估计认为该款车性能的评分不低于110分的概率为0.7,则P(X=6000)=C33×0.73×0.30=0.343;P(X=7000)=C32×0.72×0.3=0.441,P(X=8000)= C31×0.7×0.32=0.189,P(X=9000)=C30×0.70×0.33=0.027,所以X的分布列为:所以E(X)=6000×0.343+7000×0.441+8000×0.189+9000×0.027=6900元;(3)k=7时,P(Y=k)的值最大,理由如下:由题意可知Y~B(10,0.7),则{C10k×0.7k×0.310−k≥C10k+1×0.7k+1×0.39−kC10k×0.7k×0.310−k≥C10k−1×0.7k−1×0.311−k,解得6.7≤k≤7.7,又因为k=0,1,2,…,10,所以k=7,即k =7时,P (Y =k ) 的值最大.19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22. (1)求椭圆E 的方程;(2)设过点T (t ,0)的直线l 与椭圆E 有两个不同的交点A ,B (均不与点M 重合),若以线段AB 为直径的圆恒过点M ,求t 的值.解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22, 所以a =2,c =b =√2,所以椭圆E 的方程x 24+y 22=1.(2)设直线l 的方程为:x =my +t ,A (x 1,y 1),B (x 2,y 2),由{x =my +t x 2+2y 2−4=0,得(m 2+2)y 2+2mty +t 2﹣4=0, Δ=(2mt )2﹣4(m 2+2)(t 2﹣4)>0,y 1+y 2=−2mt m 2+2,y 1y 2=t 2−4m 2+2, x 1+x 2=m (y 1+y 2)+2t =4t 2+m 2,x 1x 2=(my 1+t )(my 2+t ) =m 2y 1y 2+mt (y 1+y 2)+t 2=m 2(t 2−4)2+m 2−2m 2t 22+m 2+t 2=2t 2−4m 22+m 2, 因为以线段AB 为直径的圆恒过点M ,所以MA →⋅MB →=0,即(x 1﹣2)(x 2﹣2)+y 1y 2=0,所以x 1x 2﹣2(x 1+x 2)+4+y 1y 2=0,即2t 2−4m 22+m 2−2×4t 2+m 2+4+t 2−4m 2+2=0, 即3t 2﹣8t +4=0,解得t =23或t =2(舍), 所以t =23. 20.(15分)已知函数f (x )=x 2e 2﹣x ﹣x +1. (1)求曲线y =f (x )在(2,f (2))处的切线方程;(2)设函数g (x )=f '(x ),求g (x )的单调区间;(3)判断f (x )极值点的个数,并说明理由.解:(1)∵f (x )=x 2e 2﹣x ﹣x +1, ∴f ′(x )=e 2﹣x (2x ﹣x 2)﹣1, ∴f ′(2)=﹣1,f (2)=3,∴y =f (x )在(2,f (2))处的切线方程为y ﹣3=﹣(x ﹣2),即x +y ﹣5=0;(2)∵g(x)=f'(x)=e2﹣x(2x﹣x2)﹣1,x∈R,∴g′(x)=e2﹣x(x2﹣4x+2)=e2−x(x−2+√2)(x−2−√2),∴当x∈(﹣∞,2−√2)∪(2+√2,+∞)时,g′(x)>0;当x∈(2−√2,2+√2)时,g′(x)<0,∴g(x)的单调增区间为(﹣∞,2−√2),(2+√2,+∞),单调减区间为(2−√2,2+√2);(3)2个极值点,理由如下:又(2)知:当x<2−√2时,g(x)在(﹣∞,2−√2)上单调递增,且g(2−√2)=(2−√2)e√2−1>12e−1>0,g(0)=﹣1<0,∴存在唯一x1∈(0,2−√2),使得g(x1)=0;当2−√2<x<2+√2时,g(x)在(2−√2,2+√2)上单调递减,g(2−√2)>0,g(2+√2)<g(2)=﹣1<0,∴存在唯一x2∈(2−√2,2+√2),使得g(x1)=0;当x>2+√2时,﹣x2+2x<0,e2﹣x>0,∴g(x)=e2﹣x(2x﹣x2)﹣1<0,∴g(x)在(2+√2,+∞)上无零点,综合可得:当x∈(﹣∞,x1),g(x)=f'(x)<0,当x∈(x1,x2),g(x)=f'(x)>0,当x∈(x2,+∞),g(x)=f'(x)<0,∴当x=x1时,f(x)取得极小值;当x=x2时,f(x)取得极大值,故f(x)有2个极值点.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.解:(1)31是,1024不是,理由如下:由题意可知x1a1+x2a2+⋯+x k a k=t,当a i=2i−1,k=10时,有x1+2x2+⋯+29x10=t,x i∈{﹣1,0,1},显然若x1=﹣1,x6=1,x i=0(i∈{2,3,4,5,7,8,9,10})时,t=31,而t ≤20×1+21×1+22×1+⋯+29×1=210﹣1=1023<1024,故31是k ﹣可表数,1024不是k ﹣可表数;(2)由题意可知若x i =0⇒t =0,即0∈T ,设s ∈T ,即∃x i ∈{﹣1,0,1}使得x 1a 1+x 2a 2+⋯+x k a k =S ,所以(﹣x 1a 1)+(﹣x 2a 2)+⋯+(﹣x k a k )=﹣s ,且﹣x i ∈{﹣1,0,1}成立,故﹣s ∈T ,所以若{1,2,…,n }⊆T ,则{±1,±2,…,±n ,0}⊆T ,即{±1,±2,…±n ,0}中的元素个数不能超过T 中的元素,对于确定的Q ,T 中最多有3k 个元素,所以2n +1≤3k ⇒n ≤3k−12; (3)由题意可设∀n ∈N *,∃m ∈N *使3m−1−12<n ≤3m −12, 又x 1×1+x 2×3+x 3×32+⋯+x m−1×3m−2≤1×1+1×3+1×32+…+1×3m ﹣2=3m−1−12, 所以k >m ﹣1,即k ≥m ,而1×1+1×3+1×32+⋯+1×3m−1=3m −12,即当n =3m−12时,取a 1=1,a 2=3,…,a m =3m−1 时,n 为m ﹣可表数, 因为2×(1×1+1×3+1×32+⋯+1×3m−1)=2×3m−12=3m −1, 由三进制的基本事实可知,对任意的0≤p ≤3m ﹣1,存在r ∈{0,1,2}(i =1,2,…,m ,),使p =r 1×30+r 2×31+⋯r m ×3m−1,所以p −3m−12=(r 1×30+r 2×31+⋯r m ×3m−1)−(30+31+⋯+3m−1)=(r 1−1)×30+(r 2−1)×31+⋯+(r m −1)×3m−1,令x i =r i ﹣1 则有x i ∈{﹣1,0,1},i =1,2,…,m ,设t =p −3m −12⇒−3m −12≤t ≤3m−12, 由p 的任意性,对任意的−3m −12≤t ≤3m −12,t ∈Z , 都有t =x 1×30+x 2×31+⋯+x m ×3m−1,x i ∈{﹣1,0,1},i =1,2,…,m ,又因为n ≤3m−12, 所以对于任意的﹣n ≤t ≤n ,t ∈Z ,t 为m ﹣可表数,综上,可知k 的最小值为m ,其中m 满足3m−1−12<n ≤3m −12, 又当n =2024时,37−12<n ≤38−12, 所以k 的最小值为8.。
东城区2023-2024学年第一学期期末检测高三数学试卷及答案

东城区2023—2024学年度第一学期期末统一检测高 三 数 学 2024.1一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集{04}U x x =<<,集合{02}A x x =<<,则U A =ð(A ){24}x x << (B ){24}x x <≤ (C ){24}x x ≤< (D ){24}x x ≤≤ (2)若复数z 满足(1i)i z +=,则z 的共轭复数z =(A )11i 22+ (B )11i 22--(C )11i 22-+ (D )11i 22-(3)51()x x+的展开式中,x 的系数为(A )1 (B )5(C )10 (D )20(4)设等比数列{}n a 的各项均为正数,n S 为其前n 项和,若12a =,2349a a a a =,则3S =(A )6 (B ) 8 (C ) 12 (D )14(5)已知非零向量,a b 满足a b =,且0⋅=a b ,对任意实数λμ,,下列结论正确的是(A ) ()()0λμλμ-⋅-=a b a b (B ) ()()0λμμλ-⋅+=a b a b (C ) ()()0λμλμ-⋅+=a b a b (D ) ()()0λμμλ+⋅+=a b a b(6)如图,在正方体1111ABCD A B C D -中,2AB =,,E F 分别是11,DD BB 的中点. 用过点F 且 平行于平面ABE 的平面去截正方体,得到的截面图形的面积为(A ) (B(C(D(7)已知0,0a b >>,则“1122a b >”是“1122a b <”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)一粒子在平面上运动的轨迹为抛物线的一部分,在该平面上建立直角坐标系后,该粒子的运动轨迹如图所示. 在0t =时刻,粒子从点()0,1A 出发,沿着轨迹曲线运动到()1,1B -,再沿着轨迹曲线途径A 点运动到()1,1C --,之后便沿着轨迹曲线在B C ,两点之间在B C ,两点之间循环往复运动. 设该粒子在t 时刻的位置对应点(),P x y ,则坐标,x y 随时间()0t t ≥变化的图象可能是(9)已知线段AB 的长度为10,M 是线段AB 上的动点(不与端点重合). 点N 在圆心为M ,半径为MA 的圆上, 且,,B M N 不共线,则BMN ∆的面积的最大值为(A )252 (B )254 (C (D(10) 设函数()cos f x x = ① 函数()f x 的一个周期为π;② 函数()f x 的值域是⎡⎤⎢⎥⎣⎦;③ 函数()f x 的图象上存在点(),P x y ,使得其到点()1,0;④ 当ππ,44x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的图象与直线2y =有且仅有一个公共点.正确的判断是(A )① (B )② (C )③ (D )④二、填空题 共5小题,每小题5分,共25分。
2023-2024学年北京市西城区高三(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目 1.已知集合A ={x |﹣1<x <3},B ={x |x 2≥4},则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,2]C .(﹣∞,﹣2]∪(﹣1,+∞)D .(﹣∞,﹣2]∪(﹣1,3)2.在复平面内,复数z =i−2i的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b ∈R ,且a >b ,则( ) A .1a <1bB .tan a >tan bC .3﹣a <2﹣bD .a |a |>b |b |4.已知双曲线C 的一个焦点是F 1(0,2),渐近线为y =±√3x ,则C 的方程是( ) A .x 2−y 23=1B .x 23−y 2=1C .y 2−x 23=1D .y 23−x 2=15.已知点O (0,0),点P 满足|PO |=1.若点A (t ,4),其中t ∈R ,则|P A |的最小值为( ) A .5B .4C .3D .26.在△ABC 中,∠B =60°,b =√7,a ﹣c =2,则△ABC 的面积为( ) A .3√32B .3√34 C .32D .347.已知函数f(x)=ln1+x1−x,则( ) A .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称轴B .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称中心C .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称轴D .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称中心 8.设a →,b →是非零向量,则“|a →|<|b →|”是“|a →•b →|<|b →|2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设{a n }是首项为正数,公比为q 的无穷等比数列,其前n 项和为S n .若存在无穷多个正整数k ,使S k ≤0,则q 的取值范围是( ) A .(﹣∞,0)B .(﹣∞,﹣1]C .[﹣1,0)D .(0,1)10.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板A 1B 1C 1D 1E 1F 1.若其中三根柱子AA 1,BB 1,CC 1的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为( )A .47mB .48mC .49mD .50m二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市海淀区高三上学期期末练习数学试题+答案解析

2023-2024学年北京市海淀区高三上学期期末练习数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则()A. B. C. D.2.如图,在复平面内,复数,对应的点分别为,,则复数的虚部为()A. B. C. D.3.已知直线,直线,且,则()A.1B.C.4D.4.已知抛物线的焦点为F,点M在C上,,O为坐标原点,则()A. B.4 C.5 D.5.在正四棱锥中,,二面角的大小为,则该四棱锥的体积为()A.4B.2C.D.6.已知圆,直线与圆C交于A,B两点.若为直角三角形,则()A. B. C. D.7.若关于x的方程且有实数解,则a的值可以为()A.10B.eC.2D.8.已知直线,的斜率分别为,,倾斜角分别为,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知是公比为的等比数列,为其前n项和.若对任意的,恒成立,则()A.是递增数列B.是递减数列C.是递增数列D.是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF是正六边形,棱AG,BH,CI,DJ,EK,FL均垂直于底面ABCDEF,上顶由三个全等的菱形PGHI,PIJK,PKLG构成.设,,则上顶的面积为()参考数据:,A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,x的系数为__________.12.已知双曲线的一条渐近线为,则该双曲线的离心率为__________.13.已知点A,B,C在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则__________;点C到直线AB的距离为__________.14.已知无穷等差数列的各项均为正数,公差为d,则能使得为某一个等差数列的前n项和的一组,d的值为__________,__________.15.已知函数给出下列四个结论:①任意,函数的最大值与最小值的差为2;②存在,使得对任意,;③当时,对任意非零实数x,;④当时,存在,,使得对任意,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设为定义在上的奇函数,当时, (为常数),则( )A .3B .1C .-3D .2.当函数()取得最大值时,( )A .B .C .D . 3.已知向量的最小值为( )A .B .6C .12D .4.将正方形沿对角线折成一个直二面角,点到达点,则异面直线与所成角是( ) A .B .C .D .5.函数f(x)=()x 与函数g(x)=log|x|在区间(-∞,0)上的单调性为 ( ) A .都是增函数 B .都是减函数C .f(x)是增函数,g(x)是减函数D .f(x)是减函数,g(x)是增函数6.已知集合为实数,且,为实数,且,则A∩B 的元素个数为 A .无数个 B .3 C .2 D .17.函数的部分图像如图,则 ( )A .0B .C .D . 8.对于以下判断: (1)命题“已知”,若x 2或y 3,则x+y 5”是真命题.(2)设f(x)的导函数为f'(x),若f'(x 0)=0,则x 0是函数f(x)的极值点. (3)命题“,e x ﹥0”的否定是:“,e x ﹥0”.(4)对于函数f(x),g(x),f(x)g(x)恒成立的一个充分不必要的条件是f(x)min g(x)max .其中正确判断的个数是( ) A .1 B .2 C .3 D .0 9.如图,已知点是边长为1的等边的中心,则等于( )A .B .C .D .10.设,定义符号函数,则下列正确的是( )A .B .C .D .11.已知集合,,那么( )A .B .C .D .12.(2011•湖北)已知U={y|y=log 2x ,x >1},P={y|y=,x >2},则∁U P=( ) A .[,+∞)B .(0,)C .(0,+∞)D .(﹣∞,0)∪(,+∞) 13.若过点的直线与圆相较于两点,且为弦的中点,则为( )A .B .4C .D .214.若复数(为虚数单位),则=()A.3 B.2 C. D.15.设m、n是两条不同的直线,、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥,则n∥B.若⊥β,m∥,则m⊥βC.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β16.已知点是双曲线上一点,、是它的左、右焦点,若,则双曲线的离心率的取值范围是A. B. C. D.17.,且,则()A. B. C. D.18.已知集合,,则中的元素的个数为()A.0 B.1 C.2 D.319.“或”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件20.已知曲线()A. B. C. D.二、填空题21.(坐标系与参数方程选做题)在极坐标系中,直线被圆截得的弦长为____________.22.函数是常数,的部分图象如图所示,则23.设,则与大小关系是.24.已知(,),则的最大值为__________.25.观察下列式子:,,,…,根据上述规律,第个不等式应该为.26.历史上有人用向画有内切圆的正方形纸片上随机撒芝麻,用随机模拟方法来估计圆周率的值.如果随机向纸片撒一把芝麻,1000粒落在正方形纸片上的芝麻中有778粒落在正方形内切圆内,那么通过此模拟实验可得的估计值为__________.27.在平面几何中有如下结论:若正三角形ABC的内切圆面积为,外接圆面积为,则.推广到空间几何体中可以得到类似结论:若正四面体ABCD 的内切球体积为,外接球体积为,则=___________.28.已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f(x)=x2−2cx+1在上为增函数,若“p且q”为假,“p或q”为真,则实数c的取值范围为.29.已知与之间具有很强的线性相关关系,现观测得到的四组观测值并制作了右边的对照表,由表中数据粗略地得到线性回归直线方程为,其中的值没有写上.当不小于时,预测最大为 .30.已知的三边垂直平分线交于点,分别为内角的对边,且,则的取值范围是__________.三、解答题31.在1,2,3,…,9这9个自然数中,任取3个数.(1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ.32.某单位在2012春节联欢会上举行一个抽奖活动:甲箱中装有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.(Ⅰ)求每个活动参加者获奖的概率;(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.33.(本小题满分16分)经市场调查,某超市的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间(天)的函数,且日销售量近似满足(件),价格近似满足(元).(Ⅰ)试写出该种商品的日销售额与时间的函数表达式;(Ⅱ)求该种商品的日销售额的最大值与最小值.34.(本小题满分14分)已知f(x)=,x∈[1,+∞).(1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.35.已知函数的图象经过三点,且在区间内有唯一的最值,且为最小值.(1)求出函数的解析式;(2)在中,分别是角的对边,若且,求的值.参考答案1 .C【解析】由为定义在上的奇函数可知,于是。
2 .B【解析】, 时,,最大,故选B.3 .B【解析】考点:基本不等式;数量积判断两个平面向量的垂直关系.专题:计算题.分析:利用向量垂直的充要条件列出方程求出x,y满足的方程;利用基本不等式得到函数的最值,检验等号何时取得.解答:解:由已知?=0?(x-1,2)?(4,y)=0?2x+y=2则9+3=3+3≥2=2=2=6,当且仅当3=3,即x=,y=1时取得等号.故答案为:6点评:本题考查向量垂直的充要条件:坐标交叉相乘相等、考查利用基本不等式求函数的最值需满足的条件:一正、二定、三相等.4 .B 【解析】试题分析:方法一:如图,则所以与所成的角即为异面直线与所成角,设正方形边长为2,则,所以为等边三角形,故异面直线与所成角是.方法二:建立如图所示的空间坐标系,则所以,所以,故异面直线与所成角是.考点:异面直线夹角的求法.5 .D【解析】略6 .C【解析】试题分析:把代入得,即,由于,因此直线与抛物线的交点为2个,故答案为C.考点:元素的个数.7 .C【解析】由图可知周期,,可得振幅为.函数,则有..故本题选.8 .A【解析】试题分析:对(1),原命题与逆否命题等价,原命题不易判断故考查该命题的逆否命题.因为若,则且是假命题,所以“已知”,若x2或y3,则x + y5”也是假命题.(1)错.(2)设f(x)的导函数为f' (x),若f' (x)=0,x不一定是函数f(x)的极值点.比如,就不是的极值点.(2)错.(3)命题“,e x﹥0”的否定是:“,e x<0”.所以(3)错.(4)对于函数f(x),g(x),当f(x)ming(x)max时f(x)g(x)恒成立;f(x)g(x)恒成立时,不一定有f(x)ming(x)max,比如,.所以(4)正确.考点:逻辑与命题.9 .D【解析】解:因为点O是边长为1的等边△ABC的中心,D为BC的中点,OA , OC , OB 两两夹角为120°.所以| OA |="|" OB |="|" OC |="2" /3 |AD|="2" /3 ×/ 2 = / 3 .所以( OA + OB )•( OA + OC )=" OA" 2+ OB • OA + OA • OC + OB • OC="(" / 3 )2+( / 3 )2cos120°+( /3 )2cos120°+( / 3 )2cos120°="(" / 3 )2 (1+3cos120°)="-1/" 6 .故选D.10 .A【解析】试题分析:时,,时,,所以,A正确.故选A.考点:新定义.11 .A【解析】集合,所以,故选A.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答,研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.12 .A【解析】由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到CUP=[,+∞).故选A.13 .A 【解析】圆心坐标为,半径为,。
故选A。
14 .B【解析】,所以="2" ,故选B.15 .D【解析】略16 . C【解析】略17 .C【解析】由已知易得.则.本题选择C选项.18 .C【解析】联立方程,解得或,所以中共有两个元素,故选C.19 .B【解析】p:或,q: ,因为,所以,所以“或”是“”的必要不充分条件.20 .D【解析】试题分析:,,当时,,即,即,解得.考点:函数图象的切线方程21 .【解析】试题分析:直线的直角坐标方程为,圆的直角坐标方程为,∵圆心到直线的距离,半径,∴截得的弦长为.考点:极坐标方程与直角坐标方程的转化、点到直线的距离公式.22 .答案:解析:考察三角函数的图像与性质以及诱导公式,中档题。
由图可知:由图知:【解析】略23 .logm2<logn2【解析】试题分析:∵2m>2n>22,∴m>n>2,∴log2m>log2n>1即∴logm2<logn2考点:比较大小,指数函数的性质.24 .0【解析】,,当时等号成立,所以的最大值为,故答案为.【易错点晴】本题主要考查幂指数的运算、利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).25 .【解析】试题分析:观察可得:每个不等式的左边是正整数的平方倒数之和,且最后一项的分母是项数加1,右边是分数,且分母是项数加1、分子是以3为首项、2 为公差的等差数列,∴可归纳出第个不等式:考点:归纳推理26 .3.112【解析】由题设可知,则运用几何概型计算公式可得,应填答案。