高三上学期期末考试数学试卷(附答案解析)
山东省潍坊市2024届高三上学期期末数学含答案解析

潍坊市2023-2024学年上学期期末考试高三数学本试卷共4页.满分150分.考试时间120分钟.注意事项:1.答题前、考生务必在试卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后、用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2P x x =<,12xQ y y ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则P Q = ()A.1,4⎛⎫-∞ ⎪⎝⎭B.10,4⎛⎫ ⎪⎝⎭C.()0,2 D.∅【答案】C【解析】因为12xy ⎛⎫= ⎪⎝⎭,函数的值域为()0,∞+,所以{}0Q y y =>,又因为{}2P x x =<,所以()0,2P Q = .故选:C 2.已知复数z 在复平面内对应的点的坐标为()3,4-,则43iz=+()A.iB.i- C.1i+ D.1i-【答案】A【解析】复数z 在复平面内对应的点的坐标为()3,4-,则34i z =-+,则()()()()34i 43i 34i 25ii 43i 43i 43i 43i 25z -+--+====+++-,故选:A3.已知角ϕ的终边落在()0y x =>上,下列区间中,函数()()2sin f x x ϕ=+单调递增的区间是()A.π,02⎛⎫-⎪⎝⎭B.π0,2⎛⎫⎪⎝⎭C.π,π2⎛⎫⎪⎝⎭D.3ππ,2⎛⎫ ⎪⎝⎭【答案】A【解析】因为角ϕ的终边落在()0y x =>上,可取一点(,则sin 2ϕ=,则ϕ与π3的终边相同,可令π3ϕ=,则()π2sin 3f x x ⎛⎫=+ ⎪⎝⎭,令ππ2π+2π,Z 232k x k k π-+≤≤+∈,所以5ππ2π2π,Z 66k x k k -+≤≤+∈,所以()f x 的单调递增区间为5ππ2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,只有π5ππ,02π,2πZ 266k k k ⎛⎫⎡⎤-⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦,故A 正确,B,C,D 错误,故选:A.4.已知圆锥的侧面展开图是半径为的半圆,则该圆锥的体积为()A.B. C.3πD.9π【答案】C【解析】由圆锥的侧面展开图是半径为l =,设圆锥的底面半径为r ,则2πr ,解之得r =,则圆锥的高3h ==则该圆锥的体积为211ππ333π33r h =⨯⨯=,故选:C 5.如图,谢尔宾斯基地毯是一种无限分形结构,由波兰数学家谢尔宾斯基于1916年发明.它的美妙之处在于,无论将其放大多少次,它总是保持着相同的结构.它的构造方法是:首先将一个边长为1的正方形等分成9个小正方形,把中间的小正方形抠除,称为第一次操作;然后将剩余的8个小正方形均重复以上步骤,称为第二次操作;依次进行就得到了谢尔宾斯基地毯.则前n 次操作共抠除图形的面积为()A.1889n⎛⎫⎪⎝⎭B.819n⎛⎫- ⎪⎝⎭C.1189n⎛⎫- ⎪⎝⎭D.111889n⎛⎫- ⎪⎝⎭【答案】B【解析】观察图形的变化可知:图①中,第一次操作涂黑部分正方形的面积为89,图②中,第二次操作涂黑部分正方形的面积为289⎛⎫ ⎪⎝⎭,图③中,第三次操作涂黑部分正方形的面积为389⎛⎫ ⎪⎝⎭,依次类推,可得第n 次操作涂黑部分正方形的面积为89n⎛⎫ ⎪⎝⎭,故前n 次操作共抠除图形的面积为819n⎛⎫- ⎪⎝⎭.故选:B 6.若函数()ln e 1xf x mx =--为偶函数,则实数m =()A.1B.1-C.12D.12-【答案】C【解析】由函数()ln e 1xf x mx =--为偶函数,可得()()11f f -=,即1ln e 1ln e 1m m --+=--,解之得12m =,则()1ln e 1(0)2x f x x x =--≠,()()111ln e 1ln e 1ln e 1222x x x f x x x x x f x --=-+=--+=--=故()1ln e 12x f x x =--为偶函数,符合题意.故选:C 7.已知甲:1x ≥,乙:关于x 的不等式()01x aa x a -<∈--R ,若甲是乙的必要不充分条件,则a 的取值范围是()A.1a ≥B.1a > C.a<0D.0a ≤【答案】A【解析】甲:1x ≥,设此范围对应集合[)1,A =+∞;由1a a <+,则乙:()()01011x ax a x a a x a x a -<⇔---<⇔<<+--,设此范围对应集合(,1)B a a =+,若甲是乙的必要不充分条件,则B A ⊆,其中A B =必不成立;则(,1)a a +[)1,⊆+∞,所以1a ≥.故选:A.8.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,左顶点为A ,点P 在C 上,且112PF AF =,2160PF F ∠=︒,则C 的离心率为()A.2B.2C.33D.12【答案】D【解析】由题意可得1AF a c =-,则11222PF AF a c ==-,则1222PF a PF c =-=,又212F F c =,2160PF F ∠=︒,则21PF F 为等边三角形,则222a c c -=,即2a c =,故C 的离心率12c e a ==.故选:D 二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.某校举行演讲比赛,6位评委对甲、乙两位选手的评分如下:甲:7.57.57.87.88.08.0乙:7.57.87.87.88.08.0则下列说法正确的是()A.评委对甲评分的平均数低于对乙评分的平均数B.评委对甲评分的方差小于对乙评分的方差C.评委对甲评分的40%分位数为7.8D.评委对乙评分的众数为7.8【答案】ACD【解析】选项A ,评委对甲评分的平均数7.57.57.87.88.08.017.87.8630x +++++==-<甲,评委对乙评分的平均数7.57.87.87.88.08.017.87.8660x +++++==+>乙,所以x x <甲乙,故A 正确;选项B ,由A 知,两组数据平均数均约为7.8,且纵向看,甲组数据与乙组数据仅一组数据7.5,7.8不同,其余数据相同,又甲组数据7.5与平均数的差明显大于乙组数据7.8与平均数的差,且差距较大,故与平均数比较,甲组数据波动程度明显大些,即评委对甲评分的方差大于对乙评分的方差,故B 错误;选项C ,由640% 2.4⨯=不是整数,则评委对甲评分的40%分位数为从小到大第3个数据,即:7.8,故C 正确;选项D ,评委对乙评分中最多的数据,即众数为7.8,故D 正确.故选:ACD.10.双曲线22:1E mx ny +=(0m >,0n <)的左、右焦点分别为1F ,2F ,点P 在E 上,则()A.12PF PF -=B.12F F =C.ED.E的渐近线方程为y =【答案】ABD【解析】221mx ny +=(0m >,0n <),所以双曲线的标准方程为22111x y m n -=⎛⎫- ⎪⎝⎭,双曲线为焦点在x 轴,所以21a m =,a =21b n =-,b =,22211c a b m n=+=-,c =122PF PF a -==A正确;122F F c ==,所以B 正确;E的离心率为e ==,所以C 错误;双曲线的渐近线方程为b y x a =±=,所以D 正确.故选:ABD 11.如图,棱长为2的正方体1111ABCD A B C D -中,M 为棱11D C 的中点,N 为棱1CC 上的动点(不与端点重合),则()A.直线AM 与BN 为异面直线B.存在点N ,使得MN ⊥平面BDNC.当//AM 平面BDN 时,23CN =D.当N 为1CC 的中点时,点C 到平面BDN的距离为3【答案】AD【解析】如图:以D 为原点,建立空间直角坐标系.则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,1,2M ,()0,2,N t (02t <<).对A :假设A ,B ,M ,N 共面,则存在,,R x y z ∈,使得DA xDB yDM zDN =++,且1x y z ++=,即()()()()2,0,02,2,00,1,20,2,x y z t =++⇒2202021x x y y tz x y z =⎧⎪=+⎪⎨=+⎪⎪++=⎩,解得:1222x y z t =⎧⎪=-⎪⎨=⎪⎪=⎩,即()0,2,2N .故只有N ,1C 重合时,才有直线AM 与BN 共面.而条件N 不与线段1CC 端点重合,所以AM 与BN 必为异面直线,故A 对;对B :若MN ⊥平面BDN ,则MN DB ⊥⇒()()0,1,2·2,2,00t -=⇒20=,故B 错误;对C :当23CN =时,设平面DBN 的一个法向量(),,n x y z = ,则n DB n DN ⎧⊥⎪⎨⊥⎪⎩ ⇒()()(),,·2,2,002,,·0,2,03x y z x y z ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩⇒003x y z y +=⎧⎪⎨+=⎪⎩,取1x =可得:()1,1,3n =- ,此时()()·2,1,2·1,1,33AM n =--= ,所以AM 与n 不垂直,即AM 平面BDN 不成立,故C 错误;对D :当N 为1CC 中点时,设C 到平面BDN 的距离为h ,则··BDC BDN S CN S h = .而·2BDC S CN = ,在BDN 中,22DB =,5DN BN ==,所以DB 523-=122362BDN S =⨯= 636h ==,故D 正确.故选:AD 12.已知函数()()2221R f x ax x x ax a =++++∈,则()A.当1a =-时,()f x 为增函数B.若()f x 有唯一的极值点,则0a >C.当2a ≤-时,()f x 的零点为1±D.()f x 最多有2个零点【答案】ACD【解析】函数()()2221R f x ax x x ax a =++++∈,对于A 中,当1a =-时,()1f x x =+单调递增,所以A 正确;对于B 中,当0a =时,()221f x x x =++,此时函数()f x 只有一个极大值点,所以B 错误;对于C 中,当2a ≤-时,设210x ax ++=的两个根据分别为12,x x 且12x x ≤,则122x x a +=-≥,121=x x ,所以1201,1x x <≤≥,当1x x <或2x x >时,()2(1)(2)1f x a x a x =++++,此时函数()f x 的开口向下,且对称轴为()20,102(1)a x f a +=-<-=+,当12x x x <<时,()2(1)(2)1f x a x a x =-+--,此时函数()f x 的开口向下,且对称轴为()20,102(1)a x f a -=>=-,如图所示,所以C 正确;对于D 中,由选项C 可知,当2a ≤-时,函数()f x 有两个零点,当22a -<≤时,240a ∆=-<,可得()2(1)(2)1f x a x a x =++++至多有两个零点;当2a >时,设方程210x ax ++=的两个根据分别为12,x x 且12x x ≤,则122x x a +=-<,121=x x ,所以122,10x x <--<<,当1x x <或2x x >时,()2(1)(2)1f x a x a x =++++,此时图象开口向上,对称轴为()21,01,(1)02(1)2a x f f a -+=<-=-=+;当12x x x <<时,()2(1)(2)1f x a x a x =-+--,此时图象开口向上,对称轴为()2(0,1),10,(0)12(1)a x f f a -=∈==--,(1)2(2)0f a -=->,如图所示,所以D 正确.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知向量a ,b满足2a b == ,,60a b =︒ ,则a b -=r r ___.【答案】2【解析】向量a ,b满足2a b == ,,60a b =︒ ,则a b -==r r2===,14.已知函数()()()ln e ,021,0x x f x f x x ⎧-+≤⎪=⎨->⎪⎩,则()2f =_________.【答案】4【解析】由题意()()()221404ln e=4f f f ===.故答案为:4.15.无重复数字且各位数字之和为8的三位数的个数为__________.【答案】24【解析】分两类:第一类不含数字0,有以下几种组合125++和134++,结果为332A 12=;第二类含数字0,有以下几种组合017++、026++和035++,结果为12223C A 12=;综上,无重复数字且各位数字之和为8的三位数的个数是24.故答案是:24.16.已知1n a n=,若对任意的()*n n ∈N ,都有()()()212222n a a a kn +++ ≥,则实数k 的最大值为___.【答案】158【解析】由题意可得:()()()122222n a a a k n +++≤对*n ∈N 恒成立.设()()()122222n n a a a b n +++=,令11n n b b +≥,得()2212111n n n ⎛⎫+ ⎪+⎝⎭≥+⇒331n n ≥+⇒2n ≥,又11231b +==,()2112215248b ⎛⎫++ ⎪⎝⎭==,所以158k ≤.故答案为:158四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{}n a 满足112a =,246a a =.(1)求{}n a 的通项公式;(2)求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由已知得()23511a q a q ⋅=⋅,……………………………………………………2分所以112q =,2q =,…………………………………………………………3分所以121222n n n a --=⨯=.………………………………………………………4分(2)22n n na n -=⋅设数列{}n na 的前n 项和为n S ,则10121222322n n S n --=⋅+⋅+⋅++⋅ ,①所以()012121222122n n n S n n --=⋅+⋅++-⋅+⋅ ,②……………………………6分①-②得1121121212122n n n S n ----=⋅+⋅+⋅++⋅-⋅ ,()11122212n n n --=-⋅-……………………………………………………8分()11122n n -=-⋅-……………………………………………………9分所以()11122n n S n -=-⋅+.…………………………………………………………10分18.如图,矩形ABCD 中,4AB =,6BC =,点E ,F 在边BC ,AD 上,且2CE DF ==.将矩形CDFE 沿EF 折起至C D FE '',使得60C EB '∠=︒,M ,N 分别为AB ,C D ''的中点.(1)证明:EN ⊥平面MNF ;(2)求EN 与平面C AE '所成角的正弦值.【解析】(1)在矩形C D FE ''中,2C N C E ''==,90C '∠=︒,所以45C NE '∠=︒,同理45D NF '∠=︒,故EN NF ⊥,①…………………………………………2分连结BC '、ME ,在BEC '△中,由余弦定理知:2222cos 164812BC EB EC EB EC C EB =+-⋅⋅∠=+-''='',所以BC '=MN =,又因为NE ===ME ===所以222ME MN NE =+,所以90ENM ∠=︒,即EN MN ⊥,②………………………5分由①,②及MN NF N = ,,MN NF ⊂平面MNF ,可得EN ⊥平面MNF .………………6分(2)以E 为坐标原点,EF ,EB 所在直线为x ,y 轴,建立如图所示的空间直角坐标系E xyz -.则()0,0,0E,(C ',()4,4,0A,(N,(EC '= ,()4,4,0EA =,设平面C AE '的法向量(),,n x y z =,则0440n EC y n EA x y ⎧⋅=+=⎪⎨⋅=⎪⎩'+=,令x =y =,1z =,所以)n =.…………………………………………………………9分因为(EN =,所以42cos ,14n EN n EN n EN⋅===,………………………………………………………11分所以EN 与平面C AE '所成角的正弦值为14.…………………………………………………………12分19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,且a c +=,3A C π-=.(1)求cosB ;(2)若b =ABC 的面积.【解析】(1)因为a c +=,所以由正弦定理得sin sin A C B +=,…………………………………………………………1分因为3A C π-=,且A B C π++=,所以32B C π=-,232B A π=-,…………………………………………………………2分所以2sin sin 3232B B B ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭即22sin cos cos sin sin cos cos sin 32323232B B B B B ππππ-+-=,…………………………4分2B B =,所以cos4sin cos 222B B B =,因为022B π<<,所以1sin 24B =,…………………………………………………………5分所以27cos 12sin 28B B =-=;…………………………………………………………6分(2)由余弦定理可得2222cos b a c ac B =+-,………………………………………………………7分即()27524a c ac ac =+--,得()21554ac =-,得443ac =,…………………………………………………………9分因为7cos 8B =,所以sin 8B =,………………………………………………………10分所以1sin 212ABC S ac B ==△…………………………………………………………12分20.已知函数()()()e 2ln 0x f x a a x a =+->,()f x 的导函数为()f x '.(1)当1a =时,解不等式()e xf x >;(2)判断()f x '的零点个数;(3)证明:()224ln 4a f x a ++≥.【解析】(1)当1a =时,()e 12ln e x x f x x =+->,所以1ln 2x <,所以0x <<,所以不等式的解集为(.…………………………………………………………3分(2)函数()f x 的定义域为()0,∞+,()2e 2e x xax f x a x x ='-=-.………………………………4分令()e 2x g x ax =-,则()()1e 0xg x a x =+>',所以()g x 在区间()0,∞+上单调递增.…………………………………………………………5分又因为()020g =-<,2222e 22e 10a a g a ⎛⎫⎛⎫=-=-> ⎪ ⎪⎝⎭⎝⎭,所以存在020,x a ⎛⎫∈ ⎪⎝⎭使得()00g x =,所以()f x '在区间()0,∞+上有且只有一个零点0x .……………………………………………………7分(3)证明:由(2)知,当()00,x x ∈时,()0f x '<,()f x 在()00,x 上单调递减,当()0,x x ∞∈+时,()0f x '>,()f x 在()0,x ∞+上单调递增,所以()()()000e 2ln x f x f x a a x ≥=+-.…………………………………………………………9分因为00e 20x ax -=,所以002e x a x =,00ln ln 2ln a x x +=-.……………………………………10分所以()()()0200002e 2ln 2ln 2ln x f x a a x a a x x =+-=+---22220022ln 4ln 44a a x a a x =+++++≥,所以()224ln 4a f x a ≥++.…………………………………………………………12分21.某人从A 地到B 地有路程接近的2条路线可以选择,其中第一条路线上有n 个路口,第二条路线上有m 个路口.(1)若2n =,2m =,第一条路线的每个路口遇到红灯的概率均为23;第二条路线的第一个路口遇到红灯的概率为34,第二个路口遇到红灯的概率为35,从“遇到红灯次数的期望”考虑,哪条路线更好?请说明理由.(2)已知;随机变量i X 服从两点分布,且()()110i i i P X P X p ==-==,.则11n i i n i i E X p ==⎛⎫= ⎪⎝⎭∑∑,且()2112,1,2,3,,n n i i i i i j i j E X p p p i j n ==<⎡⎤⎛⎫=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑∑ .若第一条路线的第i 个路口遇到红灯的概率为12i ,当选择第一条路线时,求遇到红灯次数的方差.【解析】(1)应选择第一条路线,…………………………………………………………1分理由如下:设走第一、第二条路线遇到的红灯次数分别为随机变量1X 、2X ,则10,1,2X =,20,1,2X =,()2111039P X ⎛⎫=== ⎪⎝⎭,()1122141C 339P X ==⨯⨯=,()2212242C 39P X ⎛⎫==⋅= ⎪⎝⎭,所以()1484993E X =+=;…………………………………………………………3分又()212104510P X ==⨯=,()2321391454520P X ==⨯+⨯=,()233924520P X ==⨯=,所以()299272202020E X =+⨯=;……………………………………………………5分因为427320<,所以应选择第一条路线.………………………………………………6分(2)设选择第一条路线时遇到的红灯次数为X ,所以()11n n i i i i E X E X p ==⎛⎫== ⎪⎝⎭∑∑;()22112n n i i i j i i i j E X E X p p p ==<⎡⎤⎛⎫==+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑∑,………………………………………………8分设随机变量Y ,Y 取值为()1,2,3,,i Y i n =L ,其概率分别为i q ,且11n i i q==∑,()(){}21n i i i D Y Y E Y q ==-⎡⎤⎣⎦∑()(){}2212n i i i i i i Y q E Y Y q E Y q ==⋅-⋅+⋅⎡⎤⎣⎦∑()()()()()22111222n n ni i i i i i i i Y q E Y Y q E Y q E Y E Y ====⋅-⋅+⋅⎡⎤⎣⎦=-⎡⎤⎣⎦∑∑∑所以()()()()22D X E X E X=-2112n n i i j i i i j i p p p p =<=⎛⎫=+- ⎪⎝⎭∑∑∑21122n n i i j i i j i i j i i j p p p p p p =<=<⎛⎫=+-+ ⎪⎝⎭∑∑∑∑()21ni i i p p ==-∑,………………………………………11分又因为12i i p =,所以()1111111111224411241124n n n n i i i i D X ==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-=---∑∑2113342n n =+-⋅.…………………………………………………………12分22.在直角坐标系xOy 中,点P 到直线92y =的距离等于点P 到点70,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为C .(1)求C 的方程;(2)设A ,B 是C 上位于y 轴两侧的两点,过A ,B 的C 的切线交于点Q ,直线QA ,QB 分别与x 轴交于点M ,N ,求QMN 面积的最小值.【解析】(1)设(),P x y ,92y =-,…………………………………………………………1分整理得282x y =-;…………………………………………………………3分(2)如图:设2,42a A a ⎛⎫- ⎪⎝⎭,2,42b B b ⎛⎫- ⎪⎝⎭,不妨设0a b <<,因为242x y =-,所以y x '=-,…………………………………………………………4分所以过点A 的切线方程为()242a y a x a ⎛⎫--=-- ⎪⎝⎭,即242a y ax =-++,同理可得过点B 的切线方程242b y bx =-++,………………………………………………………6分联立QA ,QB 方程,得8,22a b ab Q +-⎛⎫⎪⎝⎭,令0y =,得4,02a M a ⎛⎫+⎪⎝⎭,4,02b N b ⎛⎫+ ⎪⎝⎭,所以()42a b b a MN ab --=+,…………………………………………………………8分所以QMN 的面积()4181822222a b ab b a ab S MN ab ⎡⎤----⎛⎫⎛⎫=⨯=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,因为0a ->,所以()()418222b a b a ab S ab ⎧⎫⎡⎤+-+--⎪⎪⎛⎫⎣⎦=+⎨⎬ ⎪-⎝⎭⎪⎪⎩⎭142284822222ab ab ab ab ⎛⎛⨯--⎛⎫⎛⎫≥+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,………………………………10分t =,得234816416224t t S t t t t ⎛⎫+⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,所以221643164S t t ⎛⎫=+- ⎝'⎪⎭,令0S '=,得283t =由0S '>⇒22643160t t +->⇒()()223880t t -+>⇒283t >;所以当2803t <<时,()S t 单调递减,当283t >时,()S t 单调递增;所以当283t =,即3t =时,9S =为最小值.…………………………………………………12分。
高三数学上学期期末考试试题含解析试题_1_1

2021届高三数学上学期期末考试试题〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题{}16,M x x x N =<<∈,{}1,2,3N =-,那么MN =〔 〕A. {}1,2,3,4B. {}1,2,3,4,5C. {}2,3D.{}2,3,4【答案】C 【解析】 【分析】求出集合M ,然后利用交集的定义可求出集合M N ⋂. 【详解】{}{}16,2,3,4,5M x x x N =<<∈=,因此,{}2,3MN =,应选C.【点睛】此题考察交集的计算,考察计算才能,属于根底题.22y x 149-=的渐近线方程是 ( ) A. 3y x 2=±B. 2y x 3=±C. 9y x 4=±D.4y x 9=±【答案】B 【解析】由双曲线HY 方程可知,2,3a b ==,且焦点在x 轴上,所以双曲线的渐近线方程为32y x =±,应选A.{}n a 的公差为d ,前n 项和为n S ,那么“1532S S S +<〞是“0d <〞的〔 〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】 【分析】利用等差数列的定义以及前n 项和公式,结合充要条件的定义即可得到结论. 【详解】由1532S S S +<,得()111510233a a d a d ++<+,即0d <, 所以“1532S S S +<〞是“0d <〞的充分条件, 由0d <,()151********a a S S a a d ++=+=+,()1331322662a a S a d +=⨯=+, 所以,151********S S a d S a d +=+<=+, 所以“1532S S S +<〞是“0d <〞的必要条件, 综上,“1532S S S +<〞是“0d <〞的充要条件. 应选:C.【点睛】此题主要考察充分条件和必要条件的判断,根据充分条件和必要条件的定义结合不等式的性质是解决此题的关键,属于根底题.4.某几何体的三视图如图,那么该几何体的体积为〔 〕A.76B.476C.72D.236【答案】D 【解析】 【分析】由三视图可得几何体是三棱柱挖去一个三棱锥,用三棱柱体积减去三棱锥的体积即为该几何体的体积.【详解】由三视图得到几何体是三棱柱挖去一个三棱锥,所以几何体的体积为111232*********V ⎛⎫⎛⎫=⨯⨯⨯-⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.应选:D.【点睛】此题考察了几何体的三视图,属于根底题.()()2ln122x x f x xx ++=++-的图象大致是〔 〕A.B.C.D.【答案】D 【解析】 【分析】利用函数为奇函数,且()00f =,即可得到结论.【详解】由于()f x 是奇函数,故排除A ,B ;又()0f x =,那么0x =,即函数有唯一零点,再排除选C .应选:D.【点睛】此题主要考察函数图象的识别和判断,判断函数的奇偶性,利用排除法是解决此题的关键,属于根底题.X 的分布列是假设()116E X =,那么()D X 的值是〔 〕 A.1736B.1718C.239D.2318【答案】A 【解析】 【分析】根据分布列的性质得23a b +=,再由()116E X =,解得12a =,16b =,进而求得()D X 的值.【详解】由1231P P P ++=,得23a b +=①. 由()1112336a E Xb =++=②,得3232a b +=,联立①②,得12a =,16b =.所以()2221111111111712363626636D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.应选:A.【点睛】此题考察了离散型随机变量的分布列的性质,期望与方差,属于根底题.x 的二项式(x +3ax)n 展开式的二项式系数之和为32,常数项为80,那么a 的值是( ) A. 1 B. +1 C. 2 D. ±2【答案】C 【解析】由题意知2n=32,n =5,T r +1=5rC (x )5-r a r·r x13=5rC a r 5526r x -,令55026r -=,得3r =,∴a 335C =80,解得a =2.应选C. 8.1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的间隔 等于b ,那么椭圆E 的离心率为〔 〕A.13B.12C.23D.34【答案】B 【解析】 【分析】过2F 做直线1PF 的垂线,交1PF 于点H ,根据题意以及椭圆的定义,利用等腰三角形三线合一,得关于a ,b ,c 的方程,进而可求得离心率的值. 【详解】由得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-, 又2F 到直线1PF 的间隔 等于b ,即2F H b =, 由等腰三角形三线合一的性质可得:21F H PF ⊥, 可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,应选:B.【点睛】此题考察椭圆的方程及其简单几何性质,考察等腰三角形性质及勾股定理的应用,椭圆的离心率的取值,考察数形结合思想,属于中档题.()()()21,111,1x x a x x x e f x f x +⎧-+≥-⎪=⎨+--<-⎪⎩,假设函数()2y f x =-恰有两个零点,那么实数a 的取值范围为〔 〕A. )1,2B.}[)11,2C.}[)11,+∞D.)1,+∞【答案】B 【解析】 【分析】利用分段函数的单调性讨论a 的范围即可得到答案.【详解】由()()()21,111,1x x a x x x f x e f x +⎧-+≥-⎪=⎨+--<-⎪⎩()2221222(0)2(10)21(1)x x ax a x f x ax a x e a a x +⎧-+≥⎪⇒=-+-≤<⎨⎪++-<-⎩, 当0a <时,函数()f x 在R 上单调递增,不满足条件; 当0a =时,显然不满足条件;当0a >时,()f x 在(],1-∞-上为增函数,在1,2a ⎡⎤-⎢⎥⎣⎦上为减函数,在,2a ⎡⎫+∞⎪⎢⎣⎭上为增函数,∵x →-∞,()221f x a a →+-且()2f x =恰有两个零点,那么()12f -=或者221222a a a f a f ⎧⎛⎫+-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩或者222122212a a a f a f a a ⎧⎛⎫+-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪<≤+- ⎪⎪⎝⎭⎩,解得31a 或者12a ≤<.应选:B.【点睛】此题考察了利用函数有零点求参数的范围,分段函数单调性,属于中档题.ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD ∆沿对角线BD 翻折得到三棱锥'A BCD -,在此过程中,二面角'A BC D --、'A CD B --的大小分别为α,β,直线'A B 与平面BCD 所成角为γ,直线'A D 与平面BCD 所成角为δ,那么〔 〕 A. γδβ<<B. γαβ<<C. αδβ<<D.γαδ<<【答案】B 【解析】 【分析】利用定量分析结合最大角原理即可得到结论. 【详解】如图,因为AB AD >,所以点A 在BD 上的投影点H 靠近点D ,由翻折的性质,知点'A 在底面的投影点在AH 所在的直线上,如图设为点O ,那么'A FO α∠=,'A EO β∠=,'A BO γ∠=,'A DO δ∠=,由最大角原理知:γα<,δβ≤,当且仅当D 与E 重合时,取到等号;而'tan A O OB γ=,'tan A OOD δ=,如图易得,OB OD >,所以tan tan γδ<,即γδ<;又'tan A O OF α=,'tan A OOEβ=,由图易得,OF OE >,所以αβ<; 综上可得:γαβ<<. 应选:B.【点睛】此题考察二面角,线面角,利用平面四边形ABCD 中,90A C ∠=∠=︒,构造圆面解决问题是关键,属于中档题. 二、填空题()1z a i a R =+∈,21z i =+〔i 为虚数单位〕,那么2z =______;假设12z z 为纯虚数,那么a 的值是______.【答案】 (2). 1 【解析】 【分析】利用复数的模,复数的乘除运算化简,在令实部为0,即可得到答案.【详解】2z ==假设12z z 为纯虚数,那么()1211101z z a a i a a =-++⇒-=⇒=.;1.【点睛】此题考察复数代数形式的乘除运算,考察了复数的根本概念,属于根底题. 12.中国古代数学专著?九章算术?有问题:“五只雀,六只燕,一共重一斤〔等于16两〕,雀重燕轻,互换其中一只,恰好一样重〞,那么雀重______两,燕重______两. 【答案】 (1).3219 (2). 2419【解析】 【分析】分别设出雀与燕的重量,互换一只后,列出方程,解得即可. 【详解】设雀重x 两,燕重y 两, 由题意得:互换后有458x y y x +=+=,解得:3219x =,2419y =, 故答案为:3219;2419. 【点睛】此题考察了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解,属于根底题.x 、y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,且可行域表示的区域为三角形,那么实数m 的取值范围为______,假设目的函数z x y =-的最小值为-1,那么实数m 等于______. 【答案】 (1). 2m > (2). 5m = 【解析】 【分析】作出不等式组对应的平面区域,利用目的函数的几何意义,结合目的函数z x y =-的最小值,利用数形结合即可得到结论. 【详解】作出可行域如图,那么要为三角形需满足()1,1B 在直线x y m +=下方,即11m +<,2m >; 目的函数可视为y x z =-,那么z 为斜率为1的直线纵截距的相反数, 该直线截距最大在过点A 时,此时min 1z =-,直线PA :1y x =+,与AB :21y x =-的交点为()2,3A , 该点也在直线AC :x y m +=上,故235m =+=, 故答案为:2m >;5m =.【点睛】此题主要考察线性规划的应用,利用目的函数的几何意义,结合数形结合的数学思想是解决此类问题的根本方法,属于根底题.ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,cos cos 2cos a B b AC c+=,那么C =______;又23ABC S ∆=6a b +=,那么c =______. 【答案】 (1). 3π(2). 23【解析】 【分析】利用正弦定理或者余弦定理将边化为角或者角化为边,在结合三角形的面积公式,整理化简即可得到结论.【详解】解析1:〔边化角〕∵cos cos sin cos sin cos sin a B b A A B B A c C ++=()sin 1sin A B C+==,∴2cos 1C =,∴1cos 2C =, ∵0C π<<,∴3C π=;∵1sin 24ABC ab C b S a ∆===8ab =,又∵6a b +=〔可消元求出边a 、b 〕 ∴()()22222cos 21cos c a b ab C a b ab C =+-=+-+216281122⎛⎫=-⨯+= ⎪⎝⎭,∴c =.解析2:〔任意三角形射影定理〕∵cos cos 1a B b A cc c+==下同.故答案为:3π,【点睛】此题考察了正弦定理、余弦定理在解三角形中的应用,属于根底题. 15.a ,b 均为正实数,那么()124a a b b ⎛+⎫+ ⎪⎝⎭的最小值为______.【答案】【解析】 【分析】利用根本不等式即可得到结论.【详解】()1412284a b a b ab a b⎛⎫+=+++≥= ⎪⎝⎭+,当且仅当a =b =.故答案为:【点睛】此题考察了根本不等式的应用,构造根本不等式是解题的关键,属于根底题. 16.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,那么使a b c d e ⋅⋅+⋅为奇数的不同排列方法有______种.【答案】180 【解析】 【分析】分类讨论,先选后排,最后相加即可.【详解】假设a b c ⋅⋅为奇数d e ⋅为偶数时,有323336A A ⨯=种; 假设a b c ⋅⋅为偶数d e ⋅为奇数时,有2334144A A ⨯=种; 一共180种. 故答案为:180.【点睛】此题考察计数原理,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类,属于根底题.17.(b c k k ==>,0b c ⋅=,假设存在实数λ及单位向量a ,使得不等式()()()1112ab bc c b c λλ-+-++--≤成立,那么实数k 的最大值为______. 【答案】5【解析】 【分析】利用三点一共线,将不等式转化为求最值的间隔 问题,或者利用绝对值不等式a b a b +≥-,解得即可.【详解】解析:原题等价于()()()min1112a b b c c b c λλ⎧⎫-+-++--≤⎨⎬⎩⎭解析1:几何法〔三点一共线+将HY 饮马〕如图,()()()112a b b c c b c λλ-+-++--()()1112a b c c b c λλλλ⎡⎤⎡⎤=--++--+⎣⎦⎣⎦AP EP =+〔A 为单位圆上的,a OA =,b OB =,c OC =,P 为BC 上一点,E 为OC中点〕,由将HY 饮马模型,作E 关于BC 对称点'E ,那么()min '''1AP EP E A OE +==-225'112OC E C k =+-=-,所以,5451125k k -≤⇒≤.解析2:代数法〔建系坐标运算+将HY 饮马〕 设(),0c k =,()0,b k =,()cos ,sin a θθ=,()()()112a b b c c b c λλ-+-++--()()()2222221cos sin (1)12k k k k θλθλλλ⎛⎫=-+---+- ⎪⎝⎭()()()2222222212cos 21sin 1112k k k k k k λλθλθλλλ⎛⎫=---+-+-+- ⎪⎝⎭()()()()222222222222121sin 1112k k k k k k λλλθαλλλ⎛⎫=-+-++-+-+- ⎪⎝⎭()()222211112λλλλ⎛⎫≥+-+-+- ⎪⎝⎭那么k≤,由将HY 饮马可得2⎭2≥=⎝⎭,所以5k≤.解析3:绝对值不等式a b a b+≥-+将HY饮马因为()22122112b c k k aλλλλ--=-+≥≥=,所以()()()112a b b c c b cλλ-+-++--()()1112b c b caλλλλ⎛⎫≥--+-+--⎪⎝⎭12=-⎭,由解析2可得k≤解析4:绝对值不等式a b a b+≥-,{}max,a b a b a b+≥+-+对称转化因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()()112a b b c c b cλλ-+-++--()()1112b c b c aλλλλ⎛⎫≥--+-+--⎪⎝⎭,因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=-++-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=+-+-+-⎪⎝⎭,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭max,max,22222c c kb⎧⎫⎧⎫⎪⎪⎪⎪≥+==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,所以1125k k-≤⇒≤.故答案为:5.【点睛】此题考察不等式成立问题,构造不等式解不等式是关键,“将HY饮马〞模型的使用,对称问题,两点之间,线段最短,点到直线的间隔 ,垂线段最短,属于难题. 三、解答题()()()sin 0f x x ωϕϕπ=+<<图象上相邻两个最高点的间隔 为π.〔1〕假设()y f x =的图象过10,2⎛⎫ ⎪⎝⎭,且局部图象如下图,求函数()f x 的解析式;〔2〕假设函数()y f x =是偶函数,将()y f x =的图象向左平移6π个单位长度,得到yg x 的图象,求函数()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值. 【答案】〔1〕()5sin 26f x x π⎛=⎫+ ⎪⎝⎭〔2〕()max 52f x =,()min 13f x =【解析】 【分析】〔1〕由题意得2ω=,再由()102f =,进而可得解析式; 〔2〕由()y f x =是偶函数,得2ϕπ=,从而()cos2f x x =,经过平移得()g x ,再表示出()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,利用余弦型函数即可得最值. 【详解】解析:由题意得,2T ππω==,所以2ω=,()()sin 2f x x ϕ=+.〔1〕由于()102f =,那么1sin 2ϕ=,又0ϕπ<<, 那么56πϕ=或者6π=ϕ〔舍去〕,故()5sin 26f x x π⎛⎫=+⎪⎝⎭.〔2〕由于()()sin 2y f x x ϕ==+是偶函数,那么()0sin 1f ϕ==±, 又0ϕπ<<,所以2ϕπ=,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,将()cos2y f x x ==的图象向左平移6π个单位长度, 得到()cos 23x y g x π=⎛⎫=+ ⎪⎝⎭的图象,故()2222cos cos 223x y fg x x x π⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦13331cos 2cos 2sin 21cos 2sin 22222x x x x x =++-=+-3113cos 2sin 213cos 2226x x x π⎛⎫⎛⎫=+-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,72666x πππ≤+≤, 所以()()max 502f x f ==,()min 51312x f f π⎛⎫= ⎪⎭=-⎝. 【点睛】此题考察三角函数的图象与性质,图象的平移问题,余弦型函数求最值,属于根底题.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AD =,1AB =,PA ⊥平面PCD ,且1PC PD ==,设E ,F 分别为PB ,AC 的中点.〔1〕求证://EF 平面PAD ;〔2〕求直线DE 与平面PAC 所成角的正弦值.【答案】〔1〕证明见解析〔2〕33020【解析】 【分析】〔1〕利用线面平行的性质定理即可得到结论;〔2〕方法一:利用几何法求线面角,一作,二证,三求解;方法二:利用空间直角坐标系,线面角的向量关系即可得到结论.【详解】〔1〕解析:因为底面ABCD 为平行四边形,F 是AC 中点,所以F 是BD 中点,所以1//2EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面PAD . 〔2〕解析1:〔几何法〕 因为DE ⊂平面PBD ,平面PBD平面PAC PF =,所以直线DE 与平面PAC 的交点即为DE 与PF 的交点,设为G ,1PC PD CD ===,所以PCD ∆为等边三角形,取PC 中点O ,那么DO PC ⊥,因为PA ⊥平面PCD ,所以平面PAC ⊥平面PCD , 平面PAC平面PCD PC =,DO PC ⊥,所以DO ⊥平面PAC ,所以DGO ∠是直线DE 与平面PAC 所成角,因为E ,F 分别为PB ,AC 的中点,所以G 是PBD ∆的重心, 在Rt PAD ∆中,3PA =2PB AC ==,在平行四边形ABCD 中,6BD =,在PBD ∆中,4161cos 2214BPD +-∠==-⨯⨯,在PED ∆中,2511211cos 2DE EPD =+-⨯⨯⨯∠=,所以102DE =, 所以21033DG DE ==,又因为32OD =, 所以3sin 3020OD DGO DG ∠==,即直线DE 与平面PAC 所成角的正弦值为33020. 解析2:〔向量法〕取PC 中点O ,那么1//2OF PA ,因为PA ⊥平面PCD , 所以OF ⊥平面PCD ,因为1PC PD CD ===,所以PCD ∆为等边三角形, 所以OD PC ⊥,此时OD ,OF ,OP 两两垂直,如图,建立空间直角坐标系,10,0,2P ⎛⎫ ⎪⎝⎭,3,0,02D ⎛⎫ ⎪ ⎪⎝⎭,在Rt PAD ∆中,3PA =3F ⎛⎫ ⎪ ⎪⎝⎭,由12FE DP =,得3314E ⎛⎫ ⎪ ⎪⎝⎭,所以3333,,424DE ⎛⎫= ⎪ ⎪⎝⎭,平面PAC 的法向量为32OD ⎛⎫= ⎪ ⎪⎝⎭, 所以3cos ,3020DE OD DE OD DE OD⋅==-⋅, 所以3sin cos ,3020DE OD θ==即直线DE 与平面PAC 所成角的【点睛】此题考察线面平行,线面角,应用几何法求线面角,向量法求线面角,属于根底题.{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.〔1〕求{}n a ,{}n b 的通项公式;〔2〕设23,41,n n nn a b n n a c ⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:12313...6n c c c c +++⋅⋅+<.【答案】〔1〕n a n =,112n n b -=〔2〕证明见解析 【解析】 【分析】〔1〕由根本量思想的等差数列{}n a 的通项公式,由n b 与n S 的关系即可得到结论; 〔2〕利用放缩法和数列求和即可得到不等式.【详解】〔1〕由题意得11112349a d a a d a d +=⎧⎨+++=⎩,解得:111a d =⎧⎨=⎩,∴n a n =,即数列{}n a 的通项公式为n a n =, 由122n n S S +=+,得21322222S S S S =+⎧⎨=+⎩,两式相减整理得:322b b =,∴12q =,11b =, ∴112n n b -=,即数列{}n b 的通项公式为112n n b -=〔2〕解析1:〔应用放缩和错位相减求和证明不等式〕解:123n n C c c c c =+++⋅⋅⋅+,1321k k A c c c -=++⋅⋅⋅+,242k k B c c c =++⋅⋅⋅+,012110123135214444431352144444k k k k k A k A -+⎧-⎛⎫=+++⋅⋅⋅+ ⎪⎪⎪⎝⎭⎨+⎛⎫⎪=+++⋅⋅⋅+ ⎪⎪⎝⎭⎩两式相减整理得5511023346k k A k ⎛⎫=-+< ⎪⎝⎭,又因为()()()222121k k k >-+,∴()222111242k B k =++⋅⋅⋅+1111111213352121k k ⎛⎫<-+-+⋅⋅⋅- ⎪-+⎝⎭1326<=. 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 〔2〕解析2:〔应用放缩和裂项求和证明不等式〕 令()114n n d an b -=+,11214n n n n d d +--=-化简整理得:1841394n n d n -⎛⎫=-+ ⎪⎝⎭,∴115511023346k k k A d d k +⎛⎫=-=-+< ⎪⎝⎭,22221111123n T n =+++⋅⋅⋅+()111112231n n <+++⋅⋅⋅⨯⨯-⨯122n=-<,()222211111112242422n T n n =++⋅⋅⋅+<-<, 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 【点睛】此题考察等差数列与等比数列的通项公式,考察数列求和,考察放缩法,属于中档题.E :()220y px p =>过点()1,2Q ,F 为其焦点,过F 且不垂直于x 轴的直线l 交抛物线E 于A ,B 两点,动点P 满足PAB ∆的垂心为原点O .〔1〕求抛物线E 的方程;〔2〕求证:动点P 在定直线m 上,并求PABQABS S ∆∆的最小值.【答案】〔1〕24y x =〔2〕证明见解析,PABQABS S ∆∆的最小值为【解析】 【分析】〔1〕直接将()1,2Q 代入抛物线方程即可得到答案; 〔2〕设直线方程为1ty x =-,联立方程,表示出PABQABS S ∆∆,运用根本不等式即可得到结论. 【详解】〔1〕由题意,将点()1,2Q 代入22y px =,即222p =,解得2p =,所以,抛物线E 的方程为24y x =. 〔2〕解析1:〔巧设直线〕证明:设l :1ty x =-,()11,A x y ,()22,B x y ,联立24y x =,可得2104y ty --=,那么有121244y y ty y +=⎧⎨=-⎩,可设AP :()2112x y y x x y -=--,即21344y y x y =-+,同理BP :12344y y x y =-+,解得()3,3P t -,即动点P 在定直线m :3x =-上. 211221342122PAB QABAB d t S d S d t AB d ∆∆+===322t t =+≥,当且仅当3t =±1d ,2d 分别为点P 和点Q 到直线AB 的间隔 . 〔2〕解析2:〔利用向量以及同构式〕证明:设l :()10x my m =+≠,()11,A x y ,()22,B x y ,联立24y x =,可得2440y my --=,那么有121244y y m y y +=⎧⎨=-⎩.21001,4y PA y x y ⎛⎫=-- ⎪⎝⎭,222,4y y OB ⎛⎫= ⎪⎝⎭,又O 为PAB ∆的垂心,从而0PA OB ⋅=,代入化简得:20202304x y y y ++=,同理:20101304x y y y ++=,从而可知,1y ,2y 是方程200304xx y x ++=的两根,所以012012044124y y y m x y y x ⎧+=-=⎪⎪⎨⎪==-⎪⎩00000333y mx y m x x =-=⎧⎧⇒⇒⎨⎨=-=-⎩⎩,所以动点P 在定直线m :3x =-上. 211221342122PAB QABAB d m S d S d m AB d ∆∆+===322m m =+≥,当且仅当m =1d ,2d 分别为点P 和点Q 到直线AB 的间隔 .【点睛】此题考察抛物线的HY 方程,直线与抛物线的位置关系,考察韦达定理,考察根本不等式的应用,考察计算才能,属于中档题.()ln f x a x x b =-+,其中,a b ∈R .〔1〕求函数()f x 的单调区间;〔2〕使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【答案】〔1〕()f x 在()0,a 上单调递增,在(),a +∞单调递减〔2〕14,2e e e ⎡⎤++⎢⎥⎣⎦〔3〕42,2b c e ⎡⎤+∈+⎢⎥⎣⎦【解析】 【分析】〔1〕求出函数的导函数,通过讨论a 的范围,求出函数的单调区间即可;〔2〕别离变量k 得不等式,由恒成立把[]1,2a ∈,[]1,x e ∈放缩程一个新不等式,再构造一个新函数,讨论出c 的范围,即可得到结论. 【详解】〔1〕因()f x 的定义域为()0,∞+,()()'10af x x x=->,当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; 〔2〕()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x +-++-+-=⇒=,由〔1〕()ln p x x x b ⇒=-+-在()1,+∞上递增;〔1〕当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.〔2〕当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.〔3〕当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,那么当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>.∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增,()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 【点睛】此题考察函数的单调区间,考察不等式的恒成立转化为求函数的最值问题,运用不等式放缩、分类讨论思想是解题的关键,属于难题.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
2023-2024学年江苏省连云港市高三(上)期末数学试卷【答案版】

2023-2024学年江苏省连云港市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(1+i )•z =i ,则此复数z 的虚部为( ) A .12B .−12C .12iD .−12i2.已知集合S ={x |x =k −12,k ∈Z },T ={x |x =2k +12,k ∈Z },则S ∩T =( )A .SB .TC .ZD .R3.随机变量X ~N (2,σ2),若P (X ≤1.5)=m ,P (2≤X ≤2.5)=1﹣3m ,则P (X ≤2.5)=( ) A .0.25B .0.5C .0.75D .0.854.图1是蜂房正对着蜜蜂巢穴开口的截面图,它是由许多个正六边形互相紧挨在一起构成.可以看出蜂房的底部是由三个大小相同的菱形组成,且这三个菱形不在一个平面上.研究表明蜂房底部的菱形相似于菱形十二面体的表面菱形,图2是一个菱形十二面体,它是由十二个相同的菱形围成的几何体,也可以看作正方体的各个正方形面上扣上一个正四棱锥(如图3),且平面ABCD 与平面ATBS 的夹角为45°,则cos ∠ASB =( )A .√22B .√32 C .13D .2√235.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有( ) A .108种B .90种C .72种D .36种6.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左顶点为M ,左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线交C 于A ,B 两点,若∠AMB 为锐角,则C 的离心率的取值范围是( ) A .(1,√3)B .(1,2)C .(√3,+∞)D .(2,+∞)7.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =4,A =π3,且BE 为边AC 上的高,AD 为边BC 上的中线,则AD →•BE →的值为( )A .2B .﹣2C .6D .﹣68.已知a =ln 3,b =log 2e ,c =6(2−ln2)e,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .c <a <bD .a <c <b二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年北京市西城区高三(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目 1.已知集合A ={x |﹣1<x <3},B ={x |x 2≥4},则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,2]C .(﹣∞,﹣2]∪(﹣1,+∞)D .(﹣∞,﹣2]∪(﹣1,3)2.在复平面内,复数z =i−2i的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b ∈R ,且a >b ,则( ) A .1a <1bB .tan a >tan bC .3﹣a <2﹣bD .a |a |>b |b |4.已知双曲线C 的一个焦点是F 1(0,2),渐近线为y =±√3x ,则C 的方程是( ) A .x 2−y 23=1B .x 23−y 2=1C .y 2−x 23=1D .y 23−x 2=15.已知点O (0,0),点P 满足|PO |=1.若点A (t ,4),其中t ∈R ,则|P A |的最小值为( ) A .5B .4C .3D .26.在△ABC 中,∠B =60°,b =√7,a ﹣c =2,则△ABC 的面积为( ) A .3√32B .3√34 C .32D .347.已知函数f(x)=ln1+x1−x,则( ) A .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称轴B .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称中心C .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称轴D .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称中心 8.设a →,b →是非零向量,则“|a →|<|b →|”是“|a →•b →|<|b →|2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设{a n }是首项为正数,公比为q 的无穷等比数列,其前n 项和为S n .若存在无穷多个正整数k ,使S k ≤0,则q 的取值范围是( ) A .(﹣∞,0)B .(﹣∞,﹣1]C .[﹣1,0)D .(0,1)10.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板A 1B 1C 1D 1E 1F 1.若其中三根柱子AA 1,BB 1,CC 1的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为( )A .47mB .48mC .49mD .50m二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市海淀区高三上学期期末练习数学试题+答案解析

2023-2024学年北京市海淀区高三上学期期末练习数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则()A. B. C. D.2.如图,在复平面内,复数,对应的点分别为,,则复数的虚部为()A. B. C. D.3.已知直线,直线,且,则()A.1B.C.4D.4.已知抛物线的焦点为F,点M在C上,,O为坐标原点,则()A. B.4 C.5 D.5.在正四棱锥中,,二面角的大小为,则该四棱锥的体积为()A.4B.2C.D.6.已知圆,直线与圆C交于A,B两点.若为直角三角形,则()A. B. C. D.7.若关于x的方程且有实数解,则a的值可以为()A.10B.eC.2D.8.已知直线,的斜率分别为,,倾斜角分别为,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知是公比为的等比数列,为其前n项和.若对任意的,恒成立,则()A.是递增数列B.是递减数列C.是递增数列D.是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF是正六边形,棱AG,BH,CI,DJ,EK,FL均垂直于底面ABCDEF,上顶由三个全等的菱形PGHI,PIJK,PKLG构成.设,,则上顶的面积为()参考数据:,A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,x的系数为__________.12.已知双曲线的一条渐近线为,则该双曲线的离心率为__________.13.已知点A,B,C在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则__________;点C到直线AB的距离为__________.14.已知无穷等差数列的各项均为正数,公差为d,则能使得为某一个等差数列的前n项和的一组,d的值为__________,__________.15.已知函数给出下列四个结论:①任意,函数的最大值与最小值的差为2;②存在,使得对任意,;③当时,对任意非零实数x,;④当时,存在,,使得对任意,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
黑龙江省哈尔滨市第三中学2024届高三上学期期末数学试题(解析版)

哈三中2023-2024学年度上学期高三学年期末考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知{}21log 1,12xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则A B = ( )A. ()1,2- B. ()1,0- C. ()0,2 D. ()1,2【答案】C 【解析】【分析】根据对数函数的单调性、指数函数的单调性,结合集合交集的定义进行求解即可.【详解】由()22log 1log 2020,2x x A <=⇒<<⇒=,由()011100,22x x B ⎛⎫⎛⎫<=⇒>⇒=+∞ ⎪ ⎪⎝⎭⎝⎭,所以A B = ()0,2,故选:C 2. 复数12iiz +=的虚部为( )A. 1- B. 2C. i- D. i【答案】A 【解析】【分析】利用复数除法的运算法则化简为复数的代数形式,即可得到复数虚部.【详解】由()()2212i i 12i 2i i 2i i iz +-+===--=--,所以虚部为-1.故选:A3. 函数()232f x x x =+的大致图象是( )A. B.C. D.【答案】B 【解析】【分析】先求出定义域,再确定为偶函数,最后由特殊值法确定即可.【详解】定义域为0x ≠,()()()223322f x x x f x xx -=-+=+=-为偶函数,采用特殊值法代入,当x 趋近于零时,2x 趋近于零,23x 趋于正无穷;此时()232f x x x =+取值趋于正无穷;当x 趋近于正无穷时,2x 趋近于正无穷,23x 趋于零,此时()232f x x x=+取值趋于正无穷;所以只有B 图像符合;故选:B4. 若()(),1,2,,3a b a b a b m +=-==,则实数m =( )A. 6B. 6- C. 3D. 3-【答案】B 【解析】【分析】将a b a b +=- 两边平方,结合数量积的运算律求出a b ⋅ ,再根据数量积的坐标公式即可得解.【详解】因为a b a b +=-,所以()()22a ba b +=- ,即222222a b a b a b a b ++⋅=+-⋅,所以0a b ⋅=,即60+=m ,解得6m =-.故选:B.5. 已知命题:2000R,210x ax ax ∃∈+-≥为假命题,则实数a 的取值范围是( )A. ()(),10,-∞-⋃+∞B. ()1,0-C. []1,0-D. (]1,0-【答案】D 【解析】【分析】根据含有一个量词的命题的否定,可知命题:2R,210x ax ax ∀∈+-<为真命题,讨论a 是否为0,结合0a ≠时,解不等式,即可求得答案.【详解】由题意知命题:2000R,210x ax ax ∃∈+-≥为假命题,则命题:2R,210x ax ax ∀∈+-<为真命题,故当0a =时,2210ax ax +-<,即为10-<,符合题意;当0a ≠时,需满足2Δ440a a a <⎧⎨=+<⎩,解得10a -<<,综合可得实数a 的取值范围是(]1,0-,故选:D6. 若椭圆221259x y +=和双曲线22197x y -=的共同焦点为12,,F F P 是两曲线的一个交点,则12PF F △的面积值为 ( )A.B.C. D. 8【答案】A 【解析】【分析】设点(),P m n ,根据方程组求点P 的坐标和焦距,进而可得面积.【详解】对于椭圆221259x y +=可知:半长轴长为5,半短轴长为3,半焦距为4,则128F F =,设点(),P m n ,则22221259197m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩,解得=n 所以12PF F △的面积值为182⨯=.故选:A.7. 等比数列{}n a 中,n S 为{}n a 的前n 项和,若51013S S =,则1015SS =( )A.37B.73C.12D. 1【答案】A 【解析】【分析】根据51051510,,S S S S S --构成等比数列求解即可.【详解】因为{}n a 为等比数列,51013S S =,设510,3,0S k S k k ==>,所以51051510,,S S S S S --构成等比数列.所以15,2,3k k S k -构成等比数列,所以157S k =,所以10153377S k S k ==.故选:A8. 哈三中第38届教改汇报课在2023年12月15日举行,组委会派甲乙等6名志愿者到,A B 两个路口做引导员,每位志愿者去一个路口,每个路口至少有两位引导员,若甲和乙不能去同一路口,则不同的安排方案总数为( )A. 14 B. 20 C. 28 D. 40【答案】C 【解析】【分析】先安排甲乙两人,再根据分组分配的方法安排其余4名志愿者.【详解】先安排甲乙两人,有22A 2=种方法;再安排其余4名志愿者有两类方法,共有122424C A C 14+=种方法,根据分步计数原理可得共有21428⨯=种方法.故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分,9. 下列说法正确的是( )A. 已知111,,,202420232023α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在()0,∞+上递减,则α只能为1-B. 函数()212log 20242023y x x =-+-的单调递减区间为()1,1012C.函数y =与函数3y x =-是同一个函数D. 已知函数()21f x +的定义域为[]1,1-,则函数()22f x +的定义域为[]1,1-【答案】BCD 【解析】【分析】对于A ,直接由幂函数的奇偶性、单调性即可验证;对于B ,由复合函数单调性以及复合对数函数的定义域即可验证;对于C ,定义域都是全体实数,且对应法则也一样,由此即可判断;对于D ,由抽象函数定义域的求法即可验证.【详解】对于A ,当1α=-时,幂函数()1f x x xα==奇函数,且在()0,∞+上递减,满足题意,当12023α=时,幂函数()1f x x x α==在()0,∞+上递增,不满足题意,当12023α=-时,幂函数()f x x α==()0,∞+上递减,满足题意,当2024α=-时,幂函数()20241f x x xα==为偶函数,在()0,∞+上递减,不满足题意,故A 错误;对于B ,12log y t =关于t 在定义域内单调递减,若函数()212log 20242023y x x =-+-关于x 在定义域内单调递减,则由复合函数单调性可知220242023x x t -+-=关于x 单调递增,而二次函数220242023x x t -+-=开口向下,对称轴为2012x =,所以22024202302012x x x ⎧-+->⎨<⎩,解得12012x <<,所以函数()212log 20242023y x x =-+-的单调递减区间为()1,1012,故B 正确;对于C ,()13333y x x ⎡⎤==-=-⎣⎦,故C 选项正确,对于D ,若函数()21f x +的定义域为[]1,1-,则[][]1,1,211,3x x ∈-+∈-,所以函数()22f x +的定义域满足[]221,3x +∈-,解得[]1,1x ∈-,故D 正确.故选:BCD.10. 已知正数,a b ,2a b +=,且a b >,则下列说法正确的是( )为A.1b a> B. e e a b a b+>+ C.114a b+> D.1<【答案】AB 【解析】【分析】选项A ,将不等式1b a>等价转化为1ab <,由于和式为定值,判断积的取值范围即可;对于选项B ,需要研究函数e x y =的单调性,即可判断不等式;对于选项C ,1111()2a b a b a b ++=+⨯,应用基本不等式即可;对于选项D 平方,2a b =++,判断积的取值范围即可;【详解】对于选项A ,1b a>等价1ab <,2a b =+≥1≤,其中a b >1<,1ab <,不等式成立,选项A 正确;对于选项B ,因为e 1>,指数函数e x y =是增函数,且a b >,所以e e a b >所以e e a b a b +>+,选项B 正确;对于选项C ,1111()112222a b b a a b a b a b ++=+⨯=++≥+=,由于a b >,22b a a b ≠,等号取不到,112a b+>,选项C 不正确;对于选项D ,22()4a b a b +=++≤+=,由于a b >,等号取不到,所以24<2<,选项D 不正确;故选:AB.11. 在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的有( )A. 11//AC 平面1B CDB. 点1C 到平面1B CDC. 当P 在线段11C D 上运动时,三棱锥11A B PC -的体积不变D. 若Q 为正方体侧面11BCC B 上的一个动点,,E F 为线段1AC 的两个三等分点,则QE QF +的最小值【答案】BCD【解析】【分析】对于A 通过观察可得直线11A C 与平面有公共点1A 所以A 不正确;对于B 利用等体积法计算点到平面距离;对于C 观察到点P 到平面11A B C 的距离为定值,确定三棱锥11A B PC -的体积不变;对于D 利用线段1AC 关于平面11BCC B 的对称直线,将QE QF +转化,利用两点间线段距离最短求解.【详解】对于A ,因为平面1B CD 也就是平面11A B CD 与直线11A C 有公共点1A ,所以A 选项不正确. 对于B ,设点1C 到平面1B CD 的距离为h ,由1111C B CD D CC B V V --=得11111133B CD CC B S h S ⨯=⨯ ,由已知易得11,CD B C D ===则1B CD △是直角三角形,所以1B CD S =112C CD S =,解得h =.故B 选项正确对于C ,设点P 到平面11A B C 的距离为h ,易知点P 所在的直线11C D 与平面11A B C 平行,则点P 到平面11A B C 的距离为定值,因为11111113A B PC P A B C A B C V V S h --==⨯ ,其中11A B C S 也为定值,故C 选项正确.对于D ,如图1QE QF QE QF +=+,当1E Q F 、、共线的时候1QE QF EF +=最小,在1AC M 中222111111cos 23C A C M AMAC M C A C M+-∠==,由余弦定理得22211111111112cos 9EF C E C F C E C F AC M =+-∠=,所以1EF =,所以QE QF +有最小值,故D 正确.故选:BCD12. 已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2,()f x 的最小正周期为π,将()y f x =图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,再把得到的曲线向左平移π3个单位长度得到()g x 的图象,则下列结论正确的是( )A. π6x =是()f x 图象的一条对称轴 B. ()π2cos 26f x x ⎛⎫=-⎪⎝⎭C. π2g x ⎛⎫+⎪⎝⎭是奇函数 D. 方程()2lg 0g x x -=有3个实数解【答案】ACD 【解析】【分析】由()f x 最小正周期为π,求出ω,由最值点和最值,求出,a b ,得()f x 的解析式,判断AB 选项;由函数图象的变换,求()g x 的解析式,验证C 选项,数形结合验证D 选项.【详解】()()cos sin f x a x b x x ωωωϕ=+=-,其中tan b aϕ=,()f x 的最小正周期为πT =,则有2π2π2πT ω===,故()()2f x x ϕ=-,函数()f x 在π6x =处取得最大值2,则πππcos sin 26332f a b ⎧⎛⎫=+= ⎪⎪⎝⎭=,解得1a b =⎧⎪⎨=⎪⎩()πcos22cos 23f x x x x ⎛⎫==- ⎪⎝⎭,B 选项错误;函数()π2cos 23f x x ⎛⎫=- ⎪⎝⎭在π6x =处取得最大值2,则π6x =是()f x 图象的一条对称轴,A 选项正确;将()y f x =图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得函数π2cos 3y x ⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移π3个单位长度得到()2cos g x x =的图象,ππ2cos 2sin 22g x x x ⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭,函数为奇函数,C 选项正确;在同一直角坐标系下作出函数()2cos g x x =和函数2lg y x =的图象,如图所示,的两个函数图象有3个交点,可知方程()2lg 0g x x -=有3个实数解,D 选项正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 已知α为第二象限角,2sin 3α=,则tan2α=_______.【答案】-【解析】【分析】根据同角三角函数的关系式,结合正切的二倍角公式即可求得.【详解】因为2sin 3α=,α为第二象限角,所以cos ===α则sin tan cos ===ααα22tan tan21tan ααα=-2⎛⨯==-故答案为:-14. 已知边长为2的等边三角形ABC 所在平面外一点,S D 是AB 边的中点,满足SD 垂直平面ABC,且SD =S ABC -外接球的体积为_______.【解析】【分析】建立空间直角坐标系,设出球心坐标,根据外接球的性质,列出方程组,即可求出外接球的半径,从而求得三棱锥S ABC -外接球的体积.【详解】因为SD 垂直平面ABC ,ABC 为等边三角形,且D 是AB 边的中点,以D 为坐标原点,分别以,,DB DC DS 所在的直线为x 轴,y 轴,z轴,建系如图,设三棱锥S ABC -外接球的球心(),,O x y z ,半径为R ,因为2AB BC AC ===,则DC ===,又因为SD =(S ,()1,0,0B ,()1,0,0A -,()C ,则====OS OA OB OC R ,即RRR R ====,解得0x y z R =⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩所以三棱锥S ABC -外接球的体积3344R 33V ππ===.15. 直线l 与抛物线24x y =交于,A B 两点且3AB =,则AB 的中点到x 轴的最短距离为_______.【答案】916【解析】【分析】设出直线方程,利用弦长得到两个变量间的关系式,结合函数单调性可得答案.【详解】设直线l 的方程为y kx m =+,()()1122,,,A x y B x y ;联立24y kx m x y=+⎧⎨=⎩,2440x kx m --=,216160k m ∆=+>,12124,4x x k x x m +==-.AB ==因为3AB =3=,整理可得()229161m k k =-+.由()21212242y y k x x m k m +=++=+,所以AB 的中点到x 轴的距离为()2212292112161y y k m k k +=+=++-+设21t k =+,则1t ≥,1291216y y t t +=+-,由对勾函数的单调性可得129216y y +≥,当且仅当0k =时,取到最小值916.故答案为:91616. 设()f x 是定义在()(),00,∞-+∞U 上的奇函数,对任意的()12,0,x x ∈+∞满足()()1221120x f x x f x x x ->-且()315f =,则不等式()5f x x >的解集为_______.【答案】(,3)(0,3)-∞-⋃【解析】【分析】根据题意可设()(),0f x g x x x=≠,结合()f x 的奇偶性判断()g x 的奇偶性,再结合题设判断()g x 的单调情况,进而结合不等式()5f x x >,讨论x 的正负,结合()g x 的单调情况,分类求解,即可得答案.【详解】设()(),0f x g x x x=≠,而()f x 是定义在()(),00,∞∞-⋃+上的奇函数,即()()f x f x -=-,故()()()()f x f x g x g x xx---===--,即()(),0f x g x x x=≠为偶函数;对任意的()12,0,x x ∞∈+,不妨设12x x <,则()()()()121212f x f xg x g x x x -=-()()211212x f x x f x x x -=,又对任意的()12,0,x x ∞∈+满足()()1221120x f x x f x x x ->-,当12x x <时,120x x -<,则()()12210x f x x f x -<,即()()21120x f x x f x ->,而120x x >,故()()()()1212120,f x f x g x g x x x ->∴>,则()g x 在()0,∞+上单调递减,又()g x 为偶函数,故()g x 在(),0∞-上单调递增,()315f =,故()3(3)53f g ==,则(3)5g -=-,而不等式()5f x x >,即为不等式()50f x x x ⎧>⎪⎨⎪>⎩或()50f x x x ⎧<⎪⎨⎪<⎩,即()5(3)0g x g x >=⎧⎨>⎩或()5(3)g x g x <=-⎧⎨<⎩,故03x <<或3x <-,即不等式()5f x x >的解集为(,3)(0,3)-∞-⋃,故答案为:(,3)(0,3)-∞-⋃【点睛】方法点睛:诸如此类抽象函数的问题,解答时要结合题设构造出函数,由此判断出其奇偶性和单.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,角,,A B C 所对的边分别为,,a b c)sin b C C =-.(1)求角B ;(2)D 为AC 边上一点,DB BA ⊥,且4AD DC =,求cos C 的值.【答案】(1)2π3; (2.【解析】【分析】(1)利用正弦定理边化角,然后由三角形内角和定理与和差公式化简整理即可求解;(2)BCD △和Rt ABD 分别根据正弦定理和三角函数定义列式,联立整理得2c a =,再由余弦定理求得b =,然后可解.在【小问1详解】)sinb C C=-,)sin sinA B C C=-,又()()sin sinπsin sin cos cos sinA B C B C B C B C⎡⎤=-+=+=+⎣⎦,)cos sin sin sinB C B C B C C+=-,整理得)πsin sin2sin sin03C B B C B⎛⎫+=+=⎪⎝⎭,因为()0,π,sin0C C∈>,所以πsin03B⎛⎫+=⎪⎝⎭,又()ππ4π0,π,,333B B⎛⎫∈+∈ ⎪⎝⎭,所以ππ3B+=,即2π3B=.【小问2详解】由(1)知B,因为DB BA⊥,所以π6CBD∠=,记BDCθ∠=,则πBDAθ∠=-,在BCD△中,由正弦定理得πsinsin6CD aθ=,得2sinaCDθ=,在Rt ABD中,有()sinπsinc cADθθ==-,因为4AD DC=,所以2sin sinc aθθ=,得2c a=,在ABC中,由余弦定理可得22222π422cos73b a a a a a=+-⨯=,即b=,所以cos C==18. 已知{}n a是公差不为零的等差数列,11a=,且125,,a a a成等比数列.(1)求数列{}n a的通项公式;.(2)若114(1)n n n n nb a a ++=-⋅,求{}n b 的前1012项和1012T .【答案】(1)21n a n =- (2)101220242025T =【解析】【分析】(1)根据等差数列的通项公式和等比中项即可得解;(2)由裂项相消法可求出前1012项和.【小问1详解】设等差数列{}n a 的公差为d ,又11a =,则211a a d d =+=+,51414a a d d =+=+,因为125,,a a a 成等比数列,所以2215a a a =⋅,即()()21114d d +=⨯+,得220d d -=,又因为{}n a 是公差不为零的等差数列,所以2d =,即()()1111221n a a n d n n =+-=+-=-.【小问2详解】由(1)知()()11114411(1)(1)(1)21212121n n n n n n n n b a a n n n n ++++⎛⎫=-=-=-+ ⎪⋅-⋅+-+⎝⎭,1012123410111012T b b b b b b =++++++ 11111111111133557792021202320232025⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 12024120252025=-=.19. 已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点为12,A A ,点G 是椭圆C 的上顶点,直线2A G 与圆2283x y +=相切,且椭圆C.(1)求椭圆C 的标准方程;(2)过椭圆C 右焦点F 的直线l (与x 轴不重合)与椭圆C 交于A B 、两点,若点()0,M m ,且MA MB =,求实数m 的取值范围.【答案】(1)22184x y +=(2)[【解析】【分析】(1)先由离心率得出a =,再由直线2A G 与圆2283x y +=相切得到圆心(0,0)O 到直线2A G 的距离等于半径得出2222883a b a b +=,联立即得椭圆方程;(2)依题设出直线AB 方程,与椭圆方程联立,得出韦达定理,求出AB 的中点H 坐标,利用条件MA MB =判断MH 是直线AB 的中垂线,求出方程,将求m 的取值范围转化成求关于t 的函数的值域问题即得.【小问1详解】由c a =可得:a =①因2(,0),(0,)A a G b ,则2:1A Gx y l a b +=即:0bx ay ab +-=,又因直线2A G 与圆2283x y +==2222883a b a b +=②,联立①②,可解得:2a b ⎧=⎪⎨=⎪⎩故椭圆C 的标准方程为:22184x y +=.【小问2详解】如图,因直线l 与x 轴不重合,椭圆焦点为(2,0)F ,故可设:2l x ty =+,由222184x ty x y =+⎧⎪⎨+=⎪⎩,消去x整理得:22(2)440t y ty ++-=,易得:0∆>,不妨设1122(,),(,)A x y B x y ,则有12212242,42t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩设AB 中点为00(,)H x y ,则:1202222y y t y t +==-+,1212022()442()222222x x t y y t t x t t ++==+=⋅-+=++,即:2242(,)22t H t t -++,因MA MB =,则MH 为直线AB 的中垂线.又因直线AB 的斜率为1t,故直线AB 的中垂线MH 的斜率为t -,于是2224:()22MH t l y t x t t +=--++,因()0,M m ,则有:222422222t t tm t t t =-=+++,①当0=t 时,0m =,此时直线:2l x =,点(0,0)M ,符合题意;②当0t ≠时,22m t t=+,若0t >,则2t t +≥可得m ∈,当且仅当t =时取等号;若0t <,则2t t +≤-,可得[m ∈,当且仅当t =.综上,实数m的取值范围为[.20. 如图,在四棱锥P ABCD -中,//,4,2,60AB CD AB BC CD BP DP BCD ︒=====∠=,AD PD ⊥.(1)求证:平面PBD ⊥平面ABCD ;(2)若线段PC 上存在点F ,满足CF FP λ= ,且平面BDF 与平面ADP实数λ的值.【答案】(1)证明见解析(2)2λ=【解析】【分析】(1)要证面面垂直,需证线面垂直,就是要证AD ⊥平面PBD ,再进一步判断面面垂直;(2)建立空间直角坐标系,用向量的方法求解.【小问1详解】如图:因为2CB CD ==,60BCD ∠=︒,所以BCD △为等边三角形,2BD =又//AB CD ,所以60ABD BDC ∠=∠=︒,又4AB =,所以22212··cos 60164242122AD AB BD AB BD =+-︒=+-⨯⨯⨯=.因为222AD BD AB +=,所以ABD △为直角三角形,AD BD ⊥.又AD PD ⊥,BD ,PD 为平面PBD 内的两条相交直线,所以AD ⊥平面PBD ,AD ⊂ABCD ,所以:平面PBD ⊥平面ABCD .【小问2详解】取BD 中点O ,AB 中点E ,因为PB PD =⇒PO BD ⊥,又平面PBD ⊥平面ABCD ,平面PBD 平面ABCD BD =,PO ⊂平面PBD ,所以PO ⊥平面ABCD ,又OE BD ⊥,故以O 为原点,建立如图空间直角坐标系,所以()0,1,0B ,()0,1,0D -,()0,0,3P ,)E,()1,0A -,()C .设(),,F x y z ,因为CF FPλ=⇒()(),,,3x y z x y z λ+=---⇒()3x xy y z z λλλ⎧=-⎪=-⎨⎪=-⎩解得031x y z λλ⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩,所以31F λλ⎛⎫ ⎪ ⎪+⎝⎭.设平面ADP 的法向量为()111,,m x y z =,则m AD m DP ⎧⊥⎪⎨⊥⎪⎩ ⇒·0·0m AD m DP ⎧=⎪⎨=⎪⎩⇒()()()()111111,,0,,0,1,30x y z x y z ⎧⋅-=⎪⎨⋅=⎪⎩⇒111030x y z =⎧⎨+=⎩,取()0,3,1m =- ;设平面BDF 的法向量为()222,,n x y z = ,则n BD n BF ⎧⊥⎪⎨⊥⎪⎩ ⇒·0·0n BD n BF ⎧=⎪⎨=⎪⎩ ⇒()()()222222,,0,2,003,,1,01x y z x y z λλ⎧⋅-=⎪⎛⎫⎨⋅-= ⎪⎪ ⎪+⎝⎭⎩⇒222030y z λ=⎧⎪⎨+=⎪⎩,取),0,1n =.那么⋅=m n ()0,3,1-⋅),0,11=-,m =,n = .由m n m n ⋅=⋅⇒231λ+=⇒24λ=,又0λ>,所以2λ=.【点睛】关键点睛:根据CF FP λ=,和点C 、F 的坐标,求F 点坐标是本题的一个关键.21. 圆G经过点(()2,,4,0-,圆心在直线y x =上.(1)求圆G 的标准方程;(2)若圆G 与x 轴分别交于,M N 两点,A 为直线:16l x =上的动点,直线,AM AN 与曲线圆G 的另一个交点分别为,E F ,求证直线EF 经过定点,并求出定点的坐标.【答案】(1)2216x y +=(2)证明见详解,直线EF 过定点()1,0【解析】【分析】(1)设出圆心坐标,利用圆心到圆上各点的距离等于半径求解即可;(2)设出直线AM 的方程和直线AN 的方程,分别与圆的方程联立写出E F 、的坐标,进而写出直线EF的方程,化简即可证明直线EF 经过定点,并求出定点的坐标.【小问1详解】因为圆心在直线y x =上,设圆心为(),,a a 又因为圆G经过点(()2,,4,0-则()(()222224a a a a -+-=++,解得0a =,所以圆心()0,0,4=,所以圆G 的标准方程为2216x y +=【小问2详解】由圆G 与x 轴分别交于,M N 两点,不妨设()()4,0,4,0M N -,又A 为直线:16l x =上的动点,设()()16,0A t t ≠,则,,2012==AM AN t t k k 则AM 方程为()420t y x =+,AN 方程为()412ty x =-,设()()1122,,,E x y F x y ,联立方程()2242016t y x x y ⎧=+⎪⎨⎪+=⎩,解得()()22224008164000t x t x t +++-=,所以()212164004400t x t --=+,即()211224400160,400400t t xy t t --==++,即()2224400160,400400t t E t t ⎛⎫-- ⎪ ⎪++⎝⎭.联立方程()2241216t y x x y ⎧=-⎪⎨⎪+=⎩,解得()()22221448161440t x t x t +-+-=,所以()222161444144t x t -=+,即()22222414496,144144t t x y t t --==++,即()222414496,144144t t F t t ⎛⎫-- ⎪ ⎪++⎝⎭.所以()()2222221609640014444004144400144EFt tt t k t t t t --++=----++232240=-t t,所以直线EF 的方程为()222241449632,144240144t t t y x t t t ⎛⎫-- ⎪-=- ⎪+-+⎝⎭化简得()2321,240ty x t =--所以直线EF 过定点()1,0.22. 已知函数()()()22e e e ,,e 12x x x xf xg xh x x -+===+.(1)求函数()f x 在1x =处的切线方程;(2)当0x >时,试比较()()(),,f x g x h x 的大小关系,并说明理由;(3)设n *∈N ,求证:1111111111ln2123421223421n n n -+-+⋅⋅⋅+-<<-+-+⋅⋅⋅+--.【答案】(1)e e 44y x =+ (2)()()()f x g x h x <<;理由见解析; (3)证明见解析.【解析】【分析】(1(2)构造函数,利用导数确定函数的单调性,求出最值,即可判定结论;(3)构造函数,结合数列知识求和即可证明结论.【小问1详解】由()e1xf x x =+得,()()2e 1xx f x x '=+,所以()f x 在1x =处的切线的斜率()e 14k f ='=,切点e 1,2⎛⎫⎪⎝⎭,所以所求切线方程:()e e124y x -=-,即e e 44y x =+;【小问2详解】结论:()()()f x g x h x <<;理由如下:要证()()f x g x <,即证e e e 12x x x x -+<+,只需证()()2e 1e e x x xx -<++,为令()()()2e 1e e x x x x x ϕ-=-++,则()()()()()2e e e 1e -e ee x x x x x x x x x x ϕ---=-+-+=-',当0x >时,1x e -<,e 1x >,故()0x ϕ'<,所以()()()2e 1e e xx x x x ϕ-=-++在0x >时单调递减,所以()()00x ϕϕ<=,即()()2e 1e e 0x x x x --++<,所以e e e 12x x xx -+<+,故()()f x g x <;要证()()g x h x <,即证22e ee 2x x x -+<,只需证22e e ln ln e 2x x x -+<,令()222e e e e 1ln ln e ln 222x x x x x v x x --++=-=-,则()e e e e x x x x v x x ---=-+',令()e e e ex xx x w x x ---=-+,则()()241e e x x w x -=-+',当0x >时,e e 2x x -+>,从而()2e 4x ->,故()()2410e e x x w x -=-'<+,所以()e e e ex xx x v x x ---=-+'在0x >时单调递减,所以()()00v x v ''<=,从而()2e e 1ln 22x x v x x -+=-在0x >时单调递减,所以()()00v x v <=,即22e e ln ln e 20x x x -+-<,即22e e ln ln e 2x x x -+<所以22e ee 2x x x -+<,故()()g x h x <,又因为()()f xg x <,所以()()()f x g xh x <<.【小问3详解】令()()()ln 101x u x x x x =-+>+,则()()()22110111x u x x x x -=-=<+++'所以()()ln 11x u x x x =-++在当0x >时单调递减,所以()()00u x u <=,所以()ln 11x x x <++,即()1ln 111x x <++,令1x n =,则有()11ln 1ln 1ln 1n n n n ⎛⎫<+=+- ⎪+⎝⎭,即()1ln 1ln 1n n n <+-+,所以()()1ln 2ln 12n n n <+-++,()()1ln 3ln 23n n n <+-++,⋯()1ln 2ln 212n n n<--,所以111ln 2ln ln 2112n n n n n++<-=++ ,所以111111234212n n-+-+⋅⋅⋅+--11111111223421242n n ⎛⎛⎫=++++⋅⋅⋅++-++⋅⋅⋅+ ⎪-⎝⎝⎭1111111112342122n n n ⎛⎫⎛⎫=++++⋅⋅⋅++-++⋅⋅⋅+ ⎪ ⎪-⎝⎭⎝⎭,所以11111111112342121112n n n n n n-+-+⋅⋅⋅+-=+++-+++ ,因为1111ln 21112n n n n+++<+++ ,所以111111ln 2234212n n -+-+⋅⋅⋅+-<-;下面先证当0x >时,ln 1≤-x x ,令()()1ln 0p x x x x =-->,()111x p x x x'-=-=,令()0p x '>,则1x >,所以()1ln p x x x =--在()0,1上单调递减,在()1,∞+上单调递增,所以()()10p x p ≥=,从而()1ln 0p x x x =--≥,即ln 1≤-x x ,当且仅当1x =时,ln 1x x =-,所以当0x >时,()ln 1x x +<,令1x n =,则有11ln 1n n⎛⎫+< ⎪⎝⎭,即()1ln 1ln n n n+-<,所以()()1ln 2ln 11n n n +-+<+,()()1ln 3ln 22n n n +-+<+,⋯()()1ln 2ln 2121n n n --<-,所以()1111ln 2ln 1221n n n n n n -<++++++- ,即111ln 2121n n n ++++>+- ,因为1111123421n -+-+⋅⋅⋅+-111111112234212422n n ⎛⎫⎛⎫=++++⋅⋅⋅+-++⋅⋅⋅+ ⎪⎪--⎝⎭⎝⎭111111112342121n n ⎛⎫⎛⎫=++++⋅⋅⋅+-++⋅⋅⋅+ ⎪ ⎪--⎝⎭⎝⎭,所以111111111234211221n n n n n -+-+⋅⋅⋅+=++++-++- ,因为1111ln 21221n n n n ++++>++- ,所以11111ln 223421n -+-+⋅⋅⋅+>-,综上所述,1111111111ln2123421223421n n n -+-+⋅⋅⋅+-<<-+-+⋅⋅⋅+--.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
2023-2024学年北京市石景山区高三(上)期末数学试卷【答案版】

2023-2024学年北京市石景山区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合A ={﹣2,0,2,4},B ={x |x 2≤4},则A ∩B =( ) A .{﹣2,0,2}B .{0,2}C .{﹣2,2}D .{0,2,4}2.若复数z 1=1+2i 与复数z 2在复平面内对应的点关于虚轴对称,则z 1z 2=( ) A .5B .﹣5C .3D .﹣33.(x 2−2x)4展开式中含x 5的项的系数为( )A .8B .﹣8C .4D .﹣44.已知向量a →=(5,m ),b →=(2,﹣2),若(a →−b →)⊥b →,则m =( ) A .﹣1B .1C .2D .﹣25.已知S n 为等差数列{a n }的前n 项和,若a 2=15,S 5=65,则a 1+a 4=( ) A .24B .26C .28D .306.直线2x ﹣y +m =0与圆x 2+y 2﹣2x ﹣4=0有两个不同交点的一个充分不必要条件是( ) A .﹣5<m <3B .0<m <5C .﹣9<m <3D .﹣7<m <37.设函数f(x)={log 2(2−x),x <12x−1,x ≥1,则f (﹣2)+f (log 210)=( )A .2B .5C .7D .108.在△ABC 中,2a cos A =b cos C +c cos B ,则∠A =( ) A .π6B .π3C .π2D .2π39.已知函数f (x )=ln |x +1|﹣ln |x ﹣1|,则f (x )( ) A .是偶函数,且在(﹣1,1)上单调递增 B .是奇函数,且在(1,+∞)上单调递减C .是偶函数,且在(﹣∞,﹣1)上单调递增D .是奇函数,且在(﹣1,1)上单调递减10.在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在正方形ADD 1A 1内(不含边界),则在正方形DCC 1D 1内(不含边界)一定存在一点Q ,使得( )A.PQ∥AC B.PQ⊥ACC.AC⊥平面PQC1D.平面PQC1∥平面ABC 二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市大兴区高三(上)期末数学试卷【答案版】

2023-2024学年北京市大兴区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .03.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣154.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( ) A .(﹣∞,2]B .[0,1]C .[1,+∞)D .[1,2]6.在△ABC 中,“C =π2”是“sin 2A +sin 2B =1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知定点M (1,3)和抛物线C :x 2=8y ,F 是抛物线C 的焦点,N 是抛物线C 上的点,则|NF |+|NM |的最小值为( ) A .3B .4C .5D .68.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>19.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√2310.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= . 12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = . 13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 .14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 .15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A,B两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A快递公司的客户中随机抽取1人,估计该客户对A快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A和B快递公司的样本调查问卷中,各随机抽取1份,记X为这2份问卷中的服务满意度评价不低于75分的份数,求X的分布列和数学期望;(3)记评价分数x≥85为“优秀”等级,75≤x<85为“良好”等级,65≤x<75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A,B两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A,B哪家快递公司合适?说明理由.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C 的方程;(2)设O 为原点,过点T (4,0)的直线l 交椭圆C 于点M ,N ,直线BM 与直线x =1相交于点P ,直线AN 与y 轴相交于点Q .求证:△OAQ 与△OTP 的面积之比为定值. 20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024.2023-2024学年北京市大兴区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}解:U ={x |x >1},集合A ={x |x ≥2},则∁U A ={x |1<x <2}. 故选:C .2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .0解:∵i •(z +i )=1,∴z +i =1i=−i ,解得z =﹣2i ,∴z 的虚部为﹣2. 故选:A .3.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣15解:通项公式T r +1=∁6r (x 2)6﹣r(−1x)r =(﹣1)r ∁6r x 12﹣3r , 令12﹣3r =0,解得r =4.∴展开式中的常数项=∁64=15. 故选:C .4.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)解:设a →=(m ,n ),∵若|a →|=1,b →=(−3,4),b →=λa →(λ>0), ∴λm =﹣3,λn =4,且m 2+n 2=1,即9λ2+16λ2=1,∴λ2=25,又λ>0, ∴λ=5,∴m =−35,n =45,∴a →=(m ,n )=(−35,45).故选:D .5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( )A.(﹣∞,2]B.[0,1]C.[1,+∞)D.[1,2]解:令g(x)=f(x)﹣x=2x﹣x﹣1,则g′(x)=2x ln2﹣1,令g′(x)=0,得2x=1ln2=log2e,即x=log2(log2e),当x∈(﹣∞,log2(log2e))时,g′(x)<0,当x∈(log2(log2e),+∞)时,g′(x)>0,∴g(x)在区间(﹣∞,log2(log2e))上单调递减,在区间(log2(log2e),+∞)上单调递增,又g(0)=0,g(1)=0,∴当x∈[0,1]时,g(x)=f(x)﹣x=2x﹣x﹣1≤0,∴不等式f(x)≤x的解集为[0,1].故选:B.6.在△ABC中,“C=π2”是“sin2A+sin2B=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:在△ABC中,当C=π2时,则A+B=π2,故sin2A+sin2B=sin2A+sin2(π2−A)=sin2A+cos2A=1,故充分性成立,当A=120°,B=30°,满足sin2A+sin2B=1,但C≠π2,故必要性不成立,综上所述,在△ABC中,“C=π2”是“sin2A+sin2B=1”的充分不必要条件.故选:A.7.已知定点M(1,3)和抛物线C:x2=8y,F是抛物线C的焦点,N是抛物线C上的点,则|NF|+|NM|的最小值为()A.3B.4C.5D.6解:作出抛物线C:x2=8y的图象如图:点M(1,3)在抛物线C:x2=8y内,抛物线的准线方程为y=﹣2,过M作准线的垂线,垂足为K,垂线交抛物线于N,则此时|NF|+|NM|取最小值为|MK|=3﹣(﹣2)=5.8.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>1解:∵a >b >0且ab =10,∴a b>1,b =10a ,a >√10(若a ≤√10,则b <√10,ab <10,与已知矛盾),∴lgab =lga +lgb =lg 10=1>0,A 正确; ∴lg ab =lga ﹣lgb >lg 1=0,B 正确;由a >√10,得lga >12,∴(lga −12)2>0,∴lga •lgb =lga •lg 10a=lga (1﹣lga )=﹣(lga −12)2+14<14,C 正确;∵lga lgb −1=lga−lgb lgb 中,分子lga ﹣lgb >0,但分母lgb 的符号不确定,故lga lgb−1的符号不确定,D 错误. 故选:D .9.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√23解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,由四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为正三角形,EF ∥CD ,EF =4, 得EG =HF =1,AG =GD =BH =HC =√3. 取AD 的中点O ,连接GO ,可得GO =√2, ∴S △ADG =S △BCH =12×√2×2=√2. ∴该木楔子的体积V =V E ﹣ADG +V F ﹣BCH +V AGD ﹣BHC =2V E ﹣ADG +V AGD ﹣BHC =2×13×√2×1+√2×2=8√23.10.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 解:对于A ,不妨令a n =n ,则d =1,则t =sin a n ,由于y =sin x 的周期为2π,且对称轴为x =π2+kπ,k ∈Z ,则对任意的a i ,a j ,i ,j ∈N *,i ≠j ,必有sin a i ≠sin a j ,当a n 有无穷项时,T 中有无数元素,A 错误;对于B ,令a n =n π,此时d =π,此时sin n π=0,T 中只有一个元素0,B 错误;对于C ,若T 中只有两个元素,根据y =sin x 的周期性与中心对称性,sin a n 的值必一正一负,因为若两个值都为正,必不满足等差数列的定义,所以该两个数的乘积必为负,C 错误; 对于D ,当d =2πk ,k ≥2,k ∈N ∗时,在y =sin x 的一个周期[0,2π)内,取a 1=0,此时k ×2πk=2π,比如取k =5,此时sin a 1,sin a 2,⋯,sin a 5两两不相等,此时T 有5个元素;而结合y =sin x 的周期为2π可知,必有sin a i 必周期性重复出现,所以T 中最多有k 个元素; 再证明和为0,∑ k−1i=0sin(α+2iπk )=12sin πk ∑ k−1i=0[sin(α+2iπk )sin πk ]=12sin πk ∑ k−1i=0[cos(α+2i−1k π)−cos(α+2i+1k π)]=12sin πk[cos(α−πk )−cos (α+2k−1k π)]=0,D 正确. 故选:D .二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= 16 .解:因为等比数列{a n }中,a 1=1,a 2a 4=a 12⋅q 4=16,则q 4=16,所以a 5=a 1⋅q 4=16.故答案为:16.12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = 2 .解:双曲线x 2−y 2b2=1(b >0),则渐近线为y =±ba =±b , 双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,即y =2x ,b >0,则b =2. 故答案为:2.13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 ﹣1,﹣2,﹣3(答案不唯一) .解:当a =﹣1,b =﹣2,c =﹣3时,满足a >b >c , 但ab =2,c 2=9,ab <c 2,故“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题. 故答案为:﹣1,﹣2,﹣3(答案不唯一).14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 1 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 [6﹣2√3,6+2√3] .解:如图以O 为坐标原点,AD 所在直线为x 轴,AD 的垂直平分线所在直线为y 轴,建立平面直角坐标系,设点P (cos θ,sin θ)(0≤θ≤2π),由题意知,A (﹣2,0),O (0,0),C (1,−√3),直线AC 的斜率k =−√31−(−2)=−√33,AC 的方程为y ﹣0=√33(x +2),即x +√3y +2=0,故O 到线段AC 的距离d =2√1+(√3)2=1;又AC →=(3,−√3),AP →=(2+cos θ,sin θ),AC →⋅AP →=6+3cos θ−√3sin θ=6+2√3(√32cos θ−12sin θ)=6+2√3sin (π3−θ)∈[6﹣2√3,6+2√3].故答案为:1;[6﹣2√3,6+2√3].15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 ①③④ .解:∵将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,∴f (x )的图象关于x =2对称,∴f (﹣x )=f (x +4),∴f (1)=f (3),∴①正确;∵将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的函数为f (2x +1),又f (2x +1)的图象在R 上关于原点对称,∴f (﹣2x +1)+f (2x +1)=0,∴2f (1)=0,∴f (1)=0, ∴f (x )关于(1,0)对称,∴f (﹣x )=﹣f (x +2),又f (﹣x )=f (x +4), ∴f (x +4)=﹣f (x +2),∴f (x +2)=﹣f (x ), ∴f (x +4)=f (x ),∴f (x )的周期T =4,∵f (﹣x )=﹣f (x +2),∴f (0)=﹣f (2),而x =2是f (x )的对称轴,∴f (2)不一定为0, ∴f (0)=0不一定成立,∴②错误;∵f (0)=﹣f (2),∴f (2)+f (0)=0,由周期性可知f (0)=f (4), ∴f (2)+f (4)=0,∴③正确; ∵f (x )的周期T =4,∴f (112)=f (4+32)=f (32),又f (x +2)=﹣f (x ),∴f (32)=﹣f (−12),∴f (112)=f (4+32)=f (32)=﹣f (−12),∴f (−12)f (112)=−[f(−12)]2≤0,∴④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.(1)证明:由BB 1⊥平面ABC ,CD ⊂平面ABC ,可得BB 1⊥CD , 由CA =CB ,D 为AB 中点,可得CD ⊥AB , 又AB ∩BB 1=B ,AB ,BB 1⊂平面ABB 1A 1, 所以CD ⊥平面ABB 1A 1,又CD ⊂平面CDE , 所以平面CDE ⊥平面ABB 1A 1;(2)解:由(1)知:DA ,DC ,BB 1两两垂直, 过D 作Dz ∥BB 1,则DA ,DC ,Dz 两两垂直, 故以D 为坐标原点,建立如图所示空间直角坐标系,由CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点, 可得B (﹣1,0,0),C (0,2,0),C 1(0,2,2),E (1,0,1), 则CE →=(1,−2,1),CB →=(−1,−2,0),CC 1→=(0,0,2), 设平面BCC 1B 1的法向量为n →=(x ,y ,z),则有{n →⋅CB →=−x −2y =0n →⋅CC 1→=2z =0,令x =2,则y =﹣1,z =0,可得平面BCC 1B 1的一个法向量为n →=(2,−1,0),设直线CE 与平面BCC 1B 1所成角为θ,则有sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=4√6×√5=2√3015,故直线CE 与平面BCC 1B 1所成角的正弦值为2√3015.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)在△ABC中,a=1,b=2,c=2√2,由余弦定理,可得cos C=a2+b2−c22ab=1+4−82×2×1=−34,又C∈(0,π),可得sin C=√1−916=√74,故S△ABC=12ab⋅sinC=12×1×2×√74=√74;(2)若选条件①:由题意有B=2A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin2AsinA=2cos A=2,即cos A=1,又A∈(0,π),cos A≠1,故△ABC不存在;若选条件②:由题意有B=π3+A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin(π3+A)sinA=2,即32sinA−√32cosA=0,即√3sin(A−π6)=0,所以sin(A−π6)=0,又A∈(0,π),所以A−π6∈(−π6,5π6),故A−π6=0,即A=π6;若选条件③:由题意有C=2A,a=1,b=2,则由正弦定理,可得sinCsinA=ca,即sin2AsinA=2cosA=ca,由余弦定理,可得b2+c2−a22bc=c2a,即4+c2﹣1=2c2,解得c=√3,故cos A=c2a=√32,又A∈(0,π),所以A=π6;综上,只能选择条件②或③,解得A=π6.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A ,B 两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A 快递公司的客户中随机抽取1人,估计该客户对A 快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A 和B 快递公司的样本调查问卷中,各随机抽取1份,记X 为这2份问卷中的服务满意度评价不低于75分的份数,求X 的分布列和数学期望;(3)记评价分数x ≥85为“优秀”等级,75≤x <85为“良好”等级,65≤x <75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A ,B 两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A ,B 哪家快递公司合适?说明理由.解:(1)根据题中数据,该地区参与A 快递公司调查的问卷共120份,样本中对A 快递公司配送时效的评价不低于75分的问卷共29+47=76 份,所以样本中对A 快递公司配送时效的评价不低于75分的频率为76120=1930,估计该地区客户对A 快递公司配送时效的评价不低于75分的概率1930; (2)X 的所有可能取值为0,1,2,记事件C 为“从该地区A 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,事件D 为“从该地区B 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,由题设知,事件C ,D 相互独立,且P(C)=24+56120=23,P(D)=12+4880=34, 所以P (X =0)=P (CD )=(1−23)×(1−34)=112,P (X =1)=P (CD ∪C D )=(1−23)×34+23×(1−34)=512,P (X =2)=P (CD )=23×34=12,所以X的分布列为:故X的数学期望E(X)=0×112+1×512+2×12=1712;(3)答案不唯一,答案示例1:小王选择A快递公司合适,理由如下:根据样本数据,估计A快递公司配送时效评价为“优秀”的概率是29120,估计B快递公司配送时效评价为“优秀”的概率是1 5,因为29120>15,故小王选择A快递公司合适,答案示例2:小王选择B快递公司合适,理由如下:由(1)知,估计A快递公司配送时效评价为“良好”以上的概率是1930,由样本数据可知,估计B快递公司配送时效评价为“良好”以上的概率是16+4080=5680=710,因为1930<710,故小王选择B快递公司合适.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C的方程;(2)设O为原点,过点T(4,0)的直线l交椭圆C于点M,N,直线BM与直线x=1相交于点P,直线AN与y轴相交于点Q.求证:△OAQ与△OTP的面积之比为定值.解:(1)由题意可得a=2,e=ca=√32,可得c=√3,所以b2=a2﹣c2=4﹣3=1,所以椭圆C的方程为:x24+y2=1;证明:(2)显然直线l的斜率存在且不为0,由题意设直线l的方程为x=my+4,设M(x1,y1),N(x2,y2),联立{x=my+4x24+y2=1,整理可得:(4+m2)y2+8my+12=0,则Δ=82m2﹣4×12×(4+m2)>0,即m2>12,且y1+y2=−8m4+m2,y1y2=124+m2,可得y1y2y1+y2=−128m=−32m,即2my1y2=﹣3(y1+y2),设直线BM的方程为y=y1x1−2(x﹣2),令x=1,可得y P=−y1x1−2=−y1my1+2,直线AN 的方程为y =y 2x 2+2(x +2),令x =0,可得y Q =2y 2x 2+2=2y 2my 2+6, 所以S △OAQ S OTP=12|OA|⋅|y Q |12|OT|⋅|y P |=24•|2y 2my 2+6y 1my 1+2|=|my 1y 2+2y 2my 1y 2+6y 1|=|−32(y 1+y 2)+2y 2−32(y 1+y 2)+6y 1|=13•|y 2−3y 1−y 2+3y 1|=13,为定值. 即证得:△OAQ 与△OTP 的面积之比为定值,且定值为13.20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件. 解:(1)函数f(x)=ax +ln1−x 1+x 的导数为f ′(x )=a +1+x 1−x •−2(1+x)2=a +2x 2−1, 可得曲线y =f (x )在点(0,f (0))处的切线斜率为a ﹣2=0,解得a =2; (2)当a =4时,f (x )=4x +ln 1−x 1+x ,由1−x1+x>0,解得﹣1<x <1,f (x )的定义域为(﹣1,1),关于原点对称,f (﹣x )+f (x )=﹣4x +ln 1+x 1−x +4x +ln 1−x1+x=0+ln 1=0,即f (﹣x )=﹣f (x ),可得f (x )为奇函数,则f (0)=0, 当0<x <1时,f (x )的导数为f ′(x )=4+2x 2−1=4x 2−2x 2−1, 当0<x <√22时,f ′(x )>0,f (x )递增;当√22<x <1时,f ′(x )<0,f (x )递减, 可得f (x )在x =√22处取得最大值,又x →1时,f (x )→﹣∞,所以0<x <1时,f (x )有一个零点;由奇函数的性质可得﹣1<x <0时,f (x )有一个零点, 则当a =4时,f (x )的零点个数为3;(3)证明:由f (x )=ax +ln 1−x1+x为单调函数,即f (x )在(﹣1,1)内递增,或递减.由f ′(x )=a +2x 2−1,若f (x )在(﹣1,1)内递增,则f ′(x )≥0,即a ≥21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≥21−x 2不恒成立,即f (x )在(﹣1,1)内不为递增函数. 若f (x )在(﹣1,1)内递减,则f ′(x )≤0,即a ≤21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≤2, 所以,f (x )为单调函数的充要条件为a ≤2, 而{a |0≤a ≤2}⫋(﹣∞,2],则0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024. 解:(1)数列a n =√n 是D 数列.理由如下:a n+12−a n 2=(√n +1)2−(√n)2=1满足D 数列定义,数列a n =2n 不是D 数列.理由如下:a n+12−a n 2=(2n+1)2−(2n )2=22n+2−22n =3⋅22n 不是常数;(2)以下证明:d >0.假设d <0,由a n+12−a n 2=d 知{a n 2}为等差数列,故a n 2=a 12+(n −1)d ,因为{a n }是各项为正的无穷数列,当n 取大于[−a 12d ]+1 的整数时,a n 2≤a 12+([−a 12d]+2−1)d <0,与已知矛盾,所以假设不成立,所以d >0,以下证明{a n } 是递增数列.因为d >0,a n+12=a n 2+d >a n 2,且{a n }是各项为正的无穷数列,所以a n +1>a n , 所以{a n } 是递增数列,以下证明:∀t >0,∃k ∈N *,当n ≥k 时,a n >t , 若t <a 1,当n >1时,显然a n >t , 若t ≥a 1,取k =[t 2−a 12d]+2, 当n ≥k时,a n2≥a 12+([t 2−a 12d ]+2−1)d >t 2,即a n >t 成立, 因为b n =a n+1−a n =d a n+1+a n <d2a n,取t =d 2,当m ≥k 时,a n >t ,此时,b n <d2⋅d 2=1.所以若{a n } 是D 数列,则数列{b n }中存在小于1的项; (3)由(2)知,∃k ∈N ,当n ≥k 时,b n <1,即a π+1<a n +1, 以此类推,0<a k +m <a k +m ﹣1+1<a k +m ﹣2+2<…<a k +m ,m ∈N , 所以1a k+m>1a k +m,m ∈N *,设此时 2s−1≤a k <2s ,s ∈N *,令 n =k +m ,所以∑n i=11a i>∑k+mi=k1a i>1a k>1a k+1+1a k+2+⋯+1a k+m>12s+12s+1+12s+2+⋯+12s+m,因为12s+12s+1+12s+2+⋯+1s2s+(2s−1)>12s+2s=12,所以当m=2s+2×2024﹣1,m∈N*,∑n i=11a i >∑k+mi=k1a i>12s+12s+1+12s+2+⋯+12s+(2s+2×2024−1)=(12s+12s+1+⋯+12s+(2s−1))+(12s+1+12s+1+1+⋯+12s+1+(2s+1−1))+...+(12s+2×2024+12s+2×2024+1+⋯+12s+2×2024+(2s+2×2024−1))>2×20242=2024.所以存在正整数n,使得∑n i=11a n>2024.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。