【常考题】高三数学上期末试卷(带答案)

合集下载

高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

2015-2016学年某某省某某市正定中学高三(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.805.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.226.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.87.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.129.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.5010.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ=.14.若x,y满足约束条件,则z=x﹣2y的最大值为.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.2015-2016学年某某省某某市正定中学高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}【考点】交、并、补集的混合运算.【分析】先求出M∩N,从而求出M∩N的补集即可.【解答】解:集合M={x|x<3},N={x|x>﹣1},全集U=R,则M∩N={x|﹣1<x<3},则∁U(M∩N)={x|x≤﹣1或x≥3},故选:D.2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解: =1+i,∴=(3+i)(1+i)=2+4i,∴z=2﹣4i,则复数z在复平面上对应点(2,﹣4)位于第四象限.故选:D.3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】用二倍角公式把二倍角变为一倍角,然后同底数幂相乘公式逆用,变为二倍角正弦的平方,再次逆用二倍角公式,得到能求周期和判断奇偶性的表示式,得到结论.【解答】解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=sin22x==,故选D.4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.80【考点】等比数列的通项公式.【分析】由题意可得等比数列的公比q,而7+a8=(a1+a2)q6,代值计算可得.【解答】解:设等比数列{a n}的公比为q,∴q2===,∴a7+a8=(a1+a2)q6=40×=135,故选:C.5.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.22【考点】函数的值.【分析】利用分段函数的性质及对数函数性质、运算法则和换底公式求解.【解答】解:∵函数f(x)=,∴f(﹣98)=1+lg100=3,f(lg30)=10lg30﹣1==3,∴f(﹣98)+f(lg30)=3+3=6.故选:B.6.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.8【考点】由三视图求面积、体积.【分析】几何体为四棱锥,底面为直角梯形,高为侧视图三角形的高.【解答】解:由三视图可知几何体为四棱锥,棱锥底面为俯视图中的直角梯形,棱锥的高为侧视图中等腰三角形的高.∴四棱锥的高h==2,∴棱锥的体积V==4.故选A.7.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.【考点】圆的一般方程.【分析】设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),求出b,r,利用勾股定理求出|MN|.【解答】解:设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),可得,解得:b=2,r=5,所以|MN|=2=2,故选:D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,r=12,m=30,n=12,不满足退出循环的条件;第二次执行循环体后,r=6,m=12,n=6,不满足退出循环的条件;第三次执行循环体后,r=0,m=6,n=0,满足退出循环的条件;故输出的m值为6,故选:C;9.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.50【考点】球内接多面体.【分析】求出△ABC的外接圆的半径,可得O到平面ABC的距离,计算△ABC的面积,即可求出四面体OABC的体积.【解答】解:∵AB=12,AC=BC=12,∴cos∠ACB==﹣,∴∠ACB=120°,∴△ABC的外接圆的半径为=12,∴O到平面ABC的距离为5,∵S△ABC==36,∴四面体OABC的体积是=60.故选:A.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【考点】函数的图象与图象变化.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】根据△ABM是顶角θ满足cosθ=﹣的等腰三角形,得出|BM|=|AB|=2a,cos∠MBx=,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.【解答】解:不妨取点M在第一象限,如右图:∵△ABM是顶角θ满足cosθ=﹣的等腰三角形,∴|BM|=|AB|=2a,cos∠MBx=,∴点M的坐标为(a+,2a•),即(,),又∵点M在双曲线E上,∴将M坐标代入坐标得﹣=1,整理上式得,b2=2a2,而c2=a2+b2=3a2,∴e2==,因此e=,故选:C.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)【考点】利用导数研究函数的单调性;函数奇偶性的性质.【分析】令g(x)=xf(x),判断出g(x)是R上的奇函数,根据函数的单调性以及奇偶性求出f(x)<0的解集即可.【解答】解:令g(x)=xf(x),g′(x)=xf′(x)+f(x),当x∈(﹣1,1)时,xf′(x)+f(x)<0,∴g(x)在(﹣1,1)递减,而g(﹣x)=﹣xf(﹣x)=﹣xf(x)=﹣g(x),∴g(x)在R是奇函数,∵f(x)在区间(0,+∞)上的唯一零点为2,即g(x)在区间(0,+∞)上的唯一零点为2,∴g(x)在(﹣∞,﹣1)递增,在(﹣1,1)递减,在(1,+∞)递增,g(0)=0,g(2)=0,g(﹣2)=0,如图示:,x≥0时,f(x)<0,即xf(x)<0,由图象得:0≤x<2,x<0时,f(x)<0,即xf(x)>0,由图象得:﹣2<x<0,综上:x∈(﹣2,2),故选:D.二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ= 2 .【考点】平面向量数量积的运算.【分析】根据向量垂直,令数量积为零列方程解出.【解答】解:∵向量,是相互垂直的单位向量,∴=0,.∵λ+与﹣2垂直,∴(λ+)•(﹣2)=λ﹣2=0.解得λ=2.故答案为2.14.若x,y满足约束条件,则z=x﹣2y的最大值为 2 .【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=x可得.【解答】解:作出约束条件所对应的可行域(如图△ABC及内部),变形目标函数可得y=x﹣z,平移直线y=x可知,当直线经过点A(2,0)时,截距取最小值,z取最大值,代值计算可得z的最大值为2,故答案为:2.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m= 0 .【考点】二项式定理的应用.【分析】在所给的等式中,分别令x=1、x=﹣1,可得2个等式,再结合a1+a3+a5+a7=32,求得m的值.【解答】解:对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,令x=1,可得(m+1)(1+1)6=a0+a1+a2+…+a7①,再令x=﹣1,可得(m﹣1)(1﹣1)6=0=a0﹣a1+a2+…﹣a7②,由①﹣②可得 64(m+1)=2(a1+a3+a5+a7)=2×32,∴m=0,故答案为:0.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.【考点】数列的求和.【分析】通过对a n=(n≥2)变形可知2S n S n﹣1=S n﹣1﹣S n,进而可知数列{}是首项为1、公差为2的等差数列,计算即得结论.【解答】解:∵a n=(n≥2),∴2=2S n a n﹣a n,∴2﹣2S n a n=S n﹣1﹣S n,即2S n S n﹣1=S n﹣1﹣S n,∴2=﹣,又∵=1,∴数列{}是首项为1、公差为2的等差数列,∴S2016==,故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理化简已知等式,整理即可得解.(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.【解答】(本题满分为12分)解:(I)由正弦定理得,,…即,故.…(II)设b=5t(t>0),则a=3t,于是.即c=7t.…由余弦定理得.所以.…18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.【考点】点、线、面间的距离计算;空间中直线与直线之间的位置关系.【分析】(1)由题目条件结合勾股定理,即可证得结论;(2)建立空间直角坐标系,代入运用公式进行计算即可得出答案.【解答】(1)证明:由题设知,三棱柱的侧面为矩形.∵D为AA1的中点,∴DC=DC1.又,可得,∴DC1⊥DC.而DC1⊥BD,DC∩BD=D,∴DC1⊥平面BCD.∵BC⊂平面BCD,∴DC1⊥BC.…(2)解:由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,∴CA,CB,CC1两两垂直.以C为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系C﹣xyz.由题意知,,.则,,.设是平面BDC1的法向量,则,即,可取.设点P到平面BDC1的距离为d,则.…12分19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.【考点】线性回归方程.【分析】(I)根据分层抽样原理计算,使用组合数公式得出样本个数;(II)(i)使用乘法原理计算;(ii)根据回归方程计算回归系数,得出回归方程.【解答】解:(I)应选女生位,男生位,可以得到不同的样本个数是.(II)(i)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选3个与数学优秀分数对应,种数是(或),然后将剩下的5个数学分数和物理分数任意对应,种数是,根据乘法原理,满足条件的种数是.这8位同学的物理分数和数学分数分别对应的种数共有种.故所求的概率.(ii)变量y与x的相关系数.可以看出,物理与数学成绩高度正相关.也可以数学成绩x为横坐标,物理成绩y为纵坐标做散点图如下:从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩高度正相关.设y与x的线性回归方程是,根据所给数据,可以计算出,a=84.875﹣0.66×77.5≈33.73,所以y与x的线性回归方程是.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【考点】直线和圆的方程的应用.【分析】(Ⅰ)利用代入法,求曲线E的方程;(Ⅱ)分类讨论,设直线l:y=kx+2与椭圆方程联立,利用韦达定理,向量得出坐标关系,求出直线的斜率,即可求直线l的方程.【解答】解:(I)设M(x,y),则P(x,2y)在圆x2+4y2=4上,所以x2+4y2=4,即…..(II)经检验,当直线l⊥x轴时,题目条件不成立,所以直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则.…△=(16k)2﹣4(1+4k2)•12>0,得.….①,…②.…又由,得,将它代入①,②得k2=1,k=±1(满足).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2…21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(1)即可;(Ⅱ)问题转化为对x>0恒成立,根据函数的单调性求出h(x)的最小值,从而求出正整数k的最大值.【解答】解:(Ⅰ)∵f′(x)=﹣+,∴…(Ⅱ)当x>0时,恒成立,即对x>0恒成立.即h(x)(x>0)的最小值大于k.…,,记ϕ(x)=x﹣1﹣ln(x+1)(x>0)则,所以ϕ(x)在(0,+∞)上连续递增.…又ϕ(2)=1﹣ln3<0,ϕ(3)=2﹣2ln2>0,所以ϕ(x)存在唯一零点x0,且满足x0∈(2,3),x0=1+ln(x0+1).…由x>x0时,ϕ(x)>0,h'(x)>0;0<x<x0时,ϕ(x)<0,h'(x)<0知:h(x)的最小值为.所以正整数k的最大值为3.…请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.【考点】与圆有关的比例线段.【分析】(I)由PA是圆的切线结合切割线定理得比例关系,求得PD,再由角相等得三角形相似:△PAC∽△CBA,从而求得AC的长;(II)欲求证:“BE=EF”,可先分别求出它们的值,比较即可,求解时可结合圆中相交弦的乘积关系.【解答】解:(I)∵PA2=PC•PD,PA=2,PC=1,∴PD=4,…又∵PC=ED=1,∴CE=2,∵∠PAC=∠CBA,∠PCA=∠CAB,∴△PAC∽△CBA,∴,…∴AC2=PC•AB=2,∴…证明:(II)∵,CE=2,而CE•ED=BE•EF,…∴,∴EF=BE.…[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.【解答】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=﹣时,根据f(x)=的最小值为3,可得lnf(x)最小值为ln3>lne=1,不等式得证.(Ⅱ)由绝对值三角不等式可得 f(x)≥|a﹣|,可得|a﹣|≥a,由此解得a的X围.【解答】解:(Ⅰ)证明:∵当a=﹣时,f(x)=|x﹣|+|x+|=的最小值为3,∴lnf(x)最小值为ln3>lne=1,∴lnf(x)>1成立.(Ⅱ)由绝对值三角不等式可得 f(x)=|x﹣|+|x﹣a|≥|(x﹣)﹣(x﹣a)|=|a﹣|,再由不等式f(x)≥a在R上恒成立,可得|a﹣|≥a,∴a﹣≥a,或 a﹣≤﹣a,解得a≤,故a的最大值为.。

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)

高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。

【常考题】高三数学上期末试卷(附答案)

【常考题】高三数学上期末试卷(附答案)

【常考题】高三数学上期末试卷(附答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .43.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-4.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭5.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <6.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 7.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 8.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .39.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =10.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .3211.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________; 14.若为等比数列的前n 项的和,,则=___________15.计算:23lim 123n n nn→+∞-=++++L ________16.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223)S a b c =+-,则角C =__________. 17.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.18.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.设 的内角 的对边分别为 已知.(1)求角 ;(2)若,,求的面积.22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

高三期末数学试卷及答案

高三期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = √(x - 1)B. g(x) = |x|C. h(x) = 1/xD. k(x) = √(x^2 - 4)2. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值为()A. 1B. -1C. 3D. -33. 下列各对点中,与点P(2,3)关于直线y=x对称的是()A. A(3,2)B. B(2,4)C. C(4,2)D. D(3,3)4. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB 的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在6. 下列各对数函数中,单调递减的是()A. y = 2^xB. y = log2(x)C. y = 3^xD. y = log3(x)7. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n(n-1)(n-2)/3B. n(n+1)(n-2)/3C. n(n-1)(n+2)/3D. n(n+1)(n+2)/38. 已知等差数列{an}的前n项和为S_n,若S_5 = 50,公差d=2,则数列{an}的第六项a_6为()A. 16B. 18C. 20D. 229. 下列各不等式中,恒成立的是()A. x^2 + 1 < 0B. |x| > 1C. x^2 - 1 > 0D. x^2 + 1 > 010. 若函数f(x) = ax^2 + bx + c在x=1处取得极小值,则a、b、c应满足的关系式是()A. a > 0, b = 0, c > 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 0二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题含解析

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题含解析

2025届河南省信阳市第四高级中学数学高三第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x <<C .{|2}x x >D .{}1x x >2.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283C .5D .43.已知点(A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为( )A .3B .2C D .4.已知命题p :任意4x ≥,都有2log 2x ≥;命题q :a b >,则有22a b >.则下列命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨5.若()*3nx n N⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a ,则aa-=( ) A .36πB .812πC .252πD .25π6.已知定义在R 上的奇函数()f x 满足:(2)()f x e f x +=-(其中 2.71828e =),且在区间[,2]e e 上是减函数,令ln 22a =,ln33b =,ln 55c =,则()f a ,()f b ,()f c 的大小关系(用不等号连接)为( ) A .()()()f b f a f c >> B .()()()f b f c f a >> C .()()()f a f b f c >>D .()()()f a f c f b >>7.数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为( ) A .72B .5319C .2319-D .12-8.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( ) A .4πB .16πC .163πD .323π9.已知实数x ,y 满足约束条件2202202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则22x y +的取值范围是( )A .25,225⎡⎤⎢⎥⎣⎦B .4,85⎡⎤⎢⎥⎣⎦C .2,85⎡⎤⎢⎥⎣⎦D .[]1,810.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-的图象大致为( )A .B .C .D .11.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( ) A .12i -B .1i +C .1i -+D .12i +12.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

【常考题】高三数学上期末试卷及答案

【常考题】高三数学上期末试卷及答案

【常考题】高三数学上期末试卷及答案一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .14.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1765.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D16.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD7.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .18.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形9.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且223tan 2S B =+,则A 等于( )A .6π B .4π C .3π D .2π 10.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .911.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50512.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .3二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.16.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.17.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.18.已知平面四边形ABCD 中,120BAD ∠=︒,60BCD ∠=︒,2AB AD ==,则AC 的最大值为__________.19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若log 41,a b =-则+a b 的最小值为_________.三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC ∆面积的最大值.22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 23.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,满足()*2N n n S a n n =-∈.(Ⅰ)证明:{}1n a +是等比数列; (Ⅱ)求13521n a a a a -+++⋯+的值.25.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .26.在ABC ∆中,3sincos a C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若3ABC S ∆=,223b c +=+,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.4.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=,解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=⨯⨯将2AC =,22BC =,代入等式得到AB=5 再由等面积法得到112252522222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.8.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C.【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.9.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.10.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.11.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.12.C解析:C【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.二、填空题13.【解析】【分析】直接利用分组法和分类讨论思想求出数列的和【详解】数列满足:(且为常数)当时则所以(常数)故所以数列的前项为首项为公差为的等差数列从项开始由于所以奇数项为偶数项为所以故答案为:【点睛】 解析:1849【解析】 【分析】直接利用分组法和分类讨论思想求出数列的和. 【详解】数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩, 当100a =时,则1100a =, 所以13n n a a +-=-(常数), 故()10031n a n =--,所以数列的前34项为首项为100,公差为3-的等差数列. 从35项开始,由于341a =,所以奇数项为3、偶数项为1,所以()()1001001346631184922S +⨯=+⨯+=,故答案为:1849 【点睛】本题考查了由递推关系式求数列的性质、等差数列的前n 项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.14.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 15.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.16.4980【解析】【分析】表中第行共有个数字此行数字构成以为首项以2为公差的等差数列根据等差数列求和公式及通项公式确定求解【详解】解:表中第行共有个数字此行数字构成以为首项以2为公差的等差数列排完第行解析:4980 【解析】 【分析】表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解. 【详解】解:表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,共用去1124221k k -+++⋯+=-个数字,2018是该表的第1009个数字, 由19021100921-<<-,所以2018应排在第10行,此时前9行用去了921511-=个数字, 由1009511498-=可知排在第10行的第498个位置, 即104984980m n =⨯=g, 故答案为:4980 【点睛】此题考查了等比数列求和公式,考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.17.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C18.4【解析】【分析】由题知:四边形为圆内接四边形的最大值为四边形外接圆的直径由正弦定理即可求出的最大值【详解】因为所以故的最大值为四边形外接圆的直径当为四边形外接圆的直径时得到:又因为所以在中由正弦定解析:4 【解析】 【分析】由题知:四边形ABCD 为圆内接四边形,AC 的最大值为四边形外接圆的直径,由正弦定理即可求出AC 的最大值.【详解】因为120BAD ∠=︒,60BCD ∠=︒,所以 故AC 的最大值为四边形外接圆的直径. 当AC 为四边形外接圆的直径时,得到:90ADC ABC ∠=∠=︒,又因为2AB AD ==,60BCD ∠=︒, 所以30ACD ACB ∠=∠=︒. 在ABC V 中,由正弦定理得:sin 90sin 30AC AB=︒︒,解得:4AC =.故答案为:4 【点睛】本题主要考查正弦定理得应用,判断四边形ABCD 为圆内接四边形是解题的关键,属于中档题.19.【解析】【分析】利用1的代换将求式子的最小值等价于求的最小值再利用基本不等式即可求得最小值【详解】因为等号成立当且仅当故答案为:【点睛】本题考查1的代换和基本不等式求最值考查转化与化归思想的运用求解 解析:25【解析】 【分析】利用1的代换,将求式子43a b +的最小值等价于求43()(3)a b a b++的最小值,再利用基本不等式,即可求得最小值. 【详解】因为4343123123()(3)4913225b a b a a b a b a b a b a b+=++=+++≥+⋅, 等号成立当且仅当21,55a b ==. 故答案为:25. 【点睛】本题考查1的代换和基本不等式求最值,考查转化与化归思想的运用,求解时注意一正、二定、三等的运用,特别是验证等号成立这一条件.20.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1 【解析】试题分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.三、解答题21.(1)2224b c a+=(2 【解析】 【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值. 【详解】解:(I )∵2sin 3tan c B a A =, ∴2sin cos 3sin c B A a A =, 由正弦定理得22cos 3cb A a =,由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=,∴2224b c a+=. (II )因为2a =,由(I )知222416b c a +==,∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭,∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan 3A =≤=∴3tan S A =≤∴ABC ∆的面积S . 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.(1)3π;(2 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.23.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q-⎡⎤=++++-+++++⎣⎦L L()()213112n n n q q q --=+++++L .∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-.24.(I )见解析;(II )()2413n n --【解析】 【分析】(I )计算1n S -,根据,n n S a 关系,可得121n n a a -=+,然后使用配凑法,可得结果. (II )根据(1)的结果,可得n a ,然后计算21n a -,利用等比数列的前n 和公式,可得结果. 【详解】(I )由2n n S a n =-①当1n =时,可得111211S a a =-⇒= 当2n ≥时,则()1121n n S a n --=--② 则①-②:()12212n n n a a a n -=--≥ 则()1121121n n n n a a a a --=+⇒+=+ 又112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列(II )由(I )可知:1221n nn n a a +=⇒=-所以2121121412n n n a --=-=⋅-记13521n n T a a a a -=+++⋯+ 所以()2144 (42)n n T n =+++- 又()()241444144 (414)3n n n --+++==-所以()()4412411233nnnT n n --=⋅-=- 【点睛】本题考查,n n S a 的关系证明等比数列以及等比数列的前n 和公式,熟练公式,以及掌握,n n S a 之间的关系,属基础题.25.(1)n a n =(2)1(1)22n n T n +=-⋅+【解析】试题分析:(Ⅰ)因为数列是等差数列,所以根据等差数列的通项公式建立关于首项和公差的方程组11246{434102a d a d +=⨯+=,即可解得11{1a d ==,从而写出通项公式n a n =; (Ⅱ)由题意22n n n n b a n =⋅=⋅,因为是等差数列与等比数列相乘的形式,所以采取错位相减的方法,注意错位相减后利用等比数列前n 项和公式,化简要准确得1(1)22n n T n +=-⋅+.试题解析:(Ⅰ)设等差数列{}n a 的公差为d,由2446,10a a S +==,可得11246{434102a d a d +=⨯+=, 即1123{235a d a d +=+=, 解得11{1a d ==, ∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =(Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++L231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅L ,又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅L ,两式相减得2311(22222)2n n n n T n -+-=+++++-⋅L()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,∴1(1)22n n T n +=-⋅+考点:1、等差数列通项公式;2、等差数列的前n 项和;3、等比数列的前n 项和;4、错位相减法. 26.(1) 6A π=;(2) 2a =.【解析】试题分析:(1sin sin cos A C C A ⋅=⋅.消去公因式得到所以tan 3A =. 进而得到角A ;(2)结合三角形的面积公式,和余弦定理得到2b c +=+式得到2a =. 解析:(Isin cos C c A =,所以cos 0A ≠, 由正弦定理sin sin sin a b c A B C==,sin sin cos A C C A ⋅=⋅. 又因为 ()0,C π∈,sin 0C ≠,所以 tan 3A =. 又因为 ()0,A π∈, 所以 6A π=.(II )由11sin 24ABC S bc A bc ∆===bc =, 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即()()222212a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =. 因为 0a >, 所以 2a =.。

高三数学上学期期末考试试题含解析试题_1_1

高三数学上学期期末考试试题含解析试题_1_1

2021届高三数学上学期期末考试试题〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题{}16,M x x x N =<<∈,{}1,2,3N =-,那么MN =〔 〕A. {}1,2,3,4B. {}1,2,3,4,5C. {}2,3D.{}2,3,4【答案】C 【解析】 【分析】求出集合M ,然后利用交集的定义可求出集合M N ⋂. 【详解】{}{}16,2,3,4,5M x x x N =<<∈=,因此,{}2,3MN =,应选C.【点睛】此题考察交集的计算,考察计算才能,属于根底题.22y x 149-=的渐近线方程是 ( ) A. 3y x 2=±B. 2y x 3=±C. 9y x 4=±D.4y x 9=±【答案】B 【解析】由双曲线HY 方程可知,2,3a b ==,且焦点在x 轴上,所以双曲线的渐近线方程为32y x =±,应选A.{}n a 的公差为d ,前n 项和为n S ,那么“1532S S S +<〞是“0d <〞的〔 〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】 【分析】利用等差数列的定义以及前n 项和公式,结合充要条件的定义即可得到结论. 【详解】由1532S S S +<,得()111510233a a d a d ++<+,即0d <, 所以“1532S S S +<〞是“0d <〞的充分条件, 由0d <,()151********a a S S a a d ++=+=+,()1331322662a a S a d +=⨯=+, 所以,151********S S a d S a d +=+<=+, 所以“1532S S S +<〞是“0d <〞的必要条件, 综上,“1532S S S +<〞是“0d <〞的充要条件. 应选:C.【点睛】此题主要考察充分条件和必要条件的判断,根据充分条件和必要条件的定义结合不等式的性质是解决此题的关键,属于根底题.4.某几何体的三视图如图,那么该几何体的体积为〔 〕A.76B.476C.72D.236【答案】D 【解析】 【分析】由三视图可得几何体是三棱柱挖去一个三棱锥,用三棱柱体积减去三棱锥的体积即为该几何体的体积.【详解】由三视图得到几何体是三棱柱挖去一个三棱锥,所以几何体的体积为111232*********V ⎛⎫⎛⎫=⨯⨯⨯-⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.应选:D.【点睛】此题考察了几何体的三视图,属于根底题.()()2ln122x x f x xx ++=++-的图象大致是〔 〕A.B.C.D.【答案】D 【解析】 【分析】利用函数为奇函数,且()00f =,即可得到结论.【详解】由于()f x 是奇函数,故排除A ,B ;又()0f x =,那么0x =,即函数有唯一零点,再排除选C .应选:D.【点睛】此题主要考察函数图象的识别和判断,判断函数的奇偶性,利用排除法是解决此题的关键,属于根底题.X 的分布列是假设()116E X =,那么()D X 的值是〔 〕 A.1736B.1718C.239D.2318【答案】A 【解析】 【分析】根据分布列的性质得23a b +=,再由()116E X =,解得12a =,16b =,进而求得()D X 的值.【详解】由1231P P P ++=,得23a b +=①. 由()1112336a E Xb =++=②,得3232a b +=,联立①②,得12a =,16b =.所以()2221111111111712363626636D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.应选:A.【点睛】此题考察了离散型随机变量的分布列的性质,期望与方差,属于根底题.x 的二项式(x +3ax)n 展开式的二项式系数之和为32,常数项为80,那么a 的值是( ) A. 1 B. +1 C. 2 D. ±2【答案】C 【解析】由题意知2n=32,n =5,T r +1=5rC (x )5-r a r·r x13=5rC a r 5526r x -,令55026r -=,得3r =,∴a 335C =80,解得a =2.应选C. 8.1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的间隔 等于b ,那么椭圆E 的离心率为〔 〕A.13B.12C.23D.34【答案】B 【解析】 【分析】过2F 做直线1PF 的垂线,交1PF 于点H ,根据题意以及椭圆的定义,利用等腰三角形三线合一,得关于a ,b ,c 的方程,进而可求得离心率的值. 【详解】由得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-, 又2F 到直线1PF 的间隔 等于b ,即2F H b =, 由等腰三角形三线合一的性质可得:21F H PF ⊥, 可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,应选:B.【点睛】此题考察椭圆的方程及其简单几何性质,考察等腰三角形性质及勾股定理的应用,椭圆的离心率的取值,考察数形结合思想,属于中档题.()()()21,111,1x x a x x x e f x f x +⎧-+≥-⎪=⎨+--<-⎪⎩,假设函数()2y f x =-恰有两个零点,那么实数a 的取值范围为〔 〕A. )1,2B.}[)11,2C.}[)11,+∞D.)1,+∞【答案】B 【解析】 【分析】利用分段函数的单调性讨论a 的范围即可得到答案.【详解】由()()()21,111,1x x a x x x f x e f x +⎧-+≥-⎪=⎨+--<-⎪⎩()2221222(0)2(10)21(1)x x ax a x f x ax a x e a a x +⎧-+≥⎪⇒=-+-≤<⎨⎪++-<-⎩, 当0a <时,函数()f x 在R 上单调递增,不满足条件; 当0a =时,显然不满足条件;当0a >时,()f x 在(],1-∞-上为增函数,在1,2a ⎡⎤-⎢⎥⎣⎦上为减函数,在,2a ⎡⎫+∞⎪⎢⎣⎭上为增函数,∵x →-∞,()221f x a a →+-且()2f x =恰有两个零点,那么()12f -=或者221222a a a f a f ⎧⎛⎫+-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩或者222122212a a a f a f a a ⎧⎛⎫+-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪<≤+- ⎪⎪⎝⎭⎩,解得31a 或者12a ≤<.应选:B.【点睛】此题考察了利用函数有零点求参数的范围,分段函数单调性,属于中档题.ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD ∆沿对角线BD 翻折得到三棱锥'A BCD -,在此过程中,二面角'A BC D --、'A CD B --的大小分别为α,β,直线'A B 与平面BCD 所成角为γ,直线'A D 与平面BCD 所成角为δ,那么〔 〕 A. γδβ<<B. γαβ<<C. αδβ<<D.γαδ<<【答案】B 【解析】 【分析】利用定量分析结合最大角原理即可得到结论. 【详解】如图,因为AB AD >,所以点A 在BD 上的投影点H 靠近点D ,由翻折的性质,知点'A 在底面的投影点在AH 所在的直线上,如图设为点O ,那么'A FO α∠=,'A EO β∠=,'A BO γ∠=,'A DO δ∠=,由最大角原理知:γα<,δβ≤,当且仅当D 与E 重合时,取到等号;而'tan A O OB γ=,'tan A OOD δ=,如图易得,OB OD >,所以tan tan γδ<,即γδ<;又'tan A O OF α=,'tan A OOEβ=,由图易得,OF OE >,所以αβ<; 综上可得:γαβ<<. 应选:B.【点睛】此题考察二面角,线面角,利用平面四边形ABCD 中,90A C ∠=∠=︒,构造圆面解决问题是关键,属于中档题. 二、填空题()1z a i a R =+∈,21z i =+〔i 为虚数单位〕,那么2z =______;假设12z z 为纯虚数,那么a 的值是______.【答案】 (2). 1 【解析】 【分析】利用复数的模,复数的乘除运算化简,在令实部为0,即可得到答案.【详解】2z ==假设12z z 为纯虚数,那么()1211101z z a a i a a =-++⇒-=⇒=.;1.【点睛】此题考察复数代数形式的乘除运算,考察了复数的根本概念,属于根底题. 12.中国古代数学专著?九章算术?有问题:“五只雀,六只燕,一共重一斤〔等于16两〕,雀重燕轻,互换其中一只,恰好一样重〞,那么雀重______两,燕重______两. 【答案】 (1).3219 (2). 2419【解析】 【分析】分别设出雀与燕的重量,互换一只后,列出方程,解得即可. 【详解】设雀重x 两,燕重y 两, 由题意得:互换后有458x y y x +=+=,解得:3219x =,2419y =, 故答案为:3219;2419. 【点睛】此题考察了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解,属于根底题.x 、y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,且可行域表示的区域为三角形,那么实数m 的取值范围为______,假设目的函数z x y =-的最小值为-1,那么实数m 等于______. 【答案】 (1). 2m > (2). 5m = 【解析】 【分析】作出不等式组对应的平面区域,利用目的函数的几何意义,结合目的函数z x y =-的最小值,利用数形结合即可得到结论. 【详解】作出可行域如图,那么要为三角形需满足()1,1B 在直线x y m +=下方,即11m +<,2m >; 目的函数可视为y x z =-,那么z 为斜率为1的直线纵截距的相反数, 该直线截距最大在过点A 时,此时min 1z =-,直线PA :1y x =+,与AB :21y x =-的交点为()2,3A , 该点也在直线AC :x y m +=上,故235m =+=, 故答案为:2m >;5m =.【点睛】此题主要考察线性规划的应用,利用目的函数的几何意义,结合数形结合的数学思想是解决此类问题的根本方法,属于根底题.ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,cos cos 2cos a B b AC c+=,那么C =______;又23ABC S ∆=6a b +=,那么c =______. 【答案】 (1). 3π(2). 23【解析】 【分析】利用正弦定理或者余弦定理将边化为角或者角化为边,在结合三角形的面积公式,整理化简即可得到结论.【详解】解析1:〔边化角〕∵cos cos sin cos sin cos sin a B b A A B B A c C ++=()sin 1sin A B C+==,∴2cos 1C =,∴1cos 2C =, ∵0C π<<,∴3C π=;∵1sin 24ABC ab C b S a ∆===8ab =,又∵6a b +=〔可消元求出边a 、b 〕 ∴()()22222cos 21cos c a b ab C a b ab C =+-=+-+216281122⎛⎫=-⨯+= ⎪⎝⎭,∴c =.解析2:〔任意三角形射影定理〕∵cos cos 1a B b A cc c+==下同.故答案为:3π,【点睛】此题考察了正弦定理、余弦定理在解三角形中的应用,属于根底题. 15.a ,b 均为正实数,那么()124a a b b ⎛+⎫+ ⎪⎝⎭的最小值为______.【答案】【解析】 【分析】利用根本不等式即可得到结论.【详解】()1412284a b a b ab a b⎛⎫+=+++≥= ⎪⎝⎭+,当且仅当a =b =.故答案为:【点睛】此题考察了根本不等式的应用,构造根本不等式是解题的关键,属于根底题. 16.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,那么使a b c d e ⋅⋅+⋅为奇数的不同排列方法有______种.【答案】180 【解析】 【分析】分类讨论,先选后排,最后相加即可.【详解】假设a b c ⋅⋅为奇数d e ⋅为偶数时,有323336A A ⨯=种; 假设a b c ⋅⋅为偶数d e ⋅为奇数时,有2334144A A ⨯=种; 一共180种. 故答案为:180.【点睛】此题考察计数原理,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类,属于根底题.17.(b c k k ==>,0b c ⋅=,假设存在实数λ及单位向量a ,使得不等式()()()1112ab bc c b c λλ-+-++--≤成立,那么实数k 的最大值为______. 【答案】5【解析】 【分析】利用三点一共线,将不等式转化为求最值的间隔 问题,或者利用绝对值不等式a b a b +≥-,解得即可.【详解】解析:原题等价于()()()min1112a b b c c b c λλ⎧⎫-+-++--≤⎨⎬⎩⎭解析1:几何法〔三点一共线+将HY 饮马〕如图,()()()112a b b c c b c λλ-+-++--()()1112a b c c b c λλλλ⎡⎤⎡⎤=--++--+⎣⎦⎣⎦AP EP =+〔A 为单位圆上的,a OA =,b OB =,c OC =,P 为BC 上一点,E 为OC中点〕,由将HY 饮马模型,作E 关于BC 对称点'E ,那么()min '''1AP EP E A OE +==-225'112OC E C k =+-=-,所以,5451125k k -≤⇒≤.解析2:代数法〔建系坐标运算+将HY 饮马〕 设(),0c k =,()0,b k =,()cos ,sin a θθ=,()()()112a b b c c b c λλ-+-++--()()()2222221cos sin (1)12k k k k θλθλλλ⎛⎫=-+---+- ⎪⎝⎭()()()2222222212cos 21sin 1112k k k k k k λλθλθλλλ⎛⎫=---+-+-+- ⎪⎝⎭()()()()222222222222121sin 1112k k k k k k λλλθαλλλ⎛⎫=-+-++-+-+- ⎪⎝⎭()()222211112λλλλ⎛⎫≥+-+-+- ⎪⎝⎭那么k≤,由将HY 饮马可得2⎭2≥=⎝⎭,所以5k≤.解析3:绝对值不等式a b a b+≥-+将HY饮马因为()22122112b c k k aλλλλ--=-+≥≥=,所以()()()112a b b c c b cλλ-+-++--()()1112b c b caλλλλ⎛⎫≥--+-+--⎪⎝⎭12=-⎭,由解析2可得k≤解析4:绝对值不等式a b a b+≥-,{}max,a b a b a b+≥+-+对称转化因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()()112a b b c c b cλλ-+-++--()()1112b c b c aλλλλ⎛⎫≥--+-+--⎪⎝⎭,因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=-++-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=+-+-+-⎪⎝⎭,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭max,max,22222c c kb⎧⎫⎧⎫⎪⎪⎪⎪≥+==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,所以1125k k-≤⇒≤.故答案为:5.【点睛】此题考察不等式成立问题,构造不等式解不等式是关键,“将HY饮马〞模型的使用,对称问题,两点之间,线段最短,点到直线的间隔 ,垂线段最短,属于难题. 三、解答题()()()sin 0f x x ωϕϕπ=+<<图象上相邻两个最高点的间隔 为π.〔1〕假设()y f x =的图象过10,2⎛⎫ ⎪⎝⎭,且局部图象如下图,求函数()f x 的解析式;〔2〕假设函数()y f x =是偶函数,将()y f x =的图象向左平移6π个单位长度,得到yg x 的图象,求函数()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值. 【答案】〔1〕()5sin 26f x x π⎛=⎫+ ⎪⎝⎭〔2〕()max 52f x =,()min 13f x =【解析】 【分析】〔1〕由题意得2ω=,再由()102f =,进而可得解析式; 〔2〕由()y f x =是偶函数,得2ϕπ=,从而()cos2f x x =,经过平移得()g x ,再表示出()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,利用余弦型函数即可得最值. 【详解】解析:由题意得,2T ππω==,所以2ω=,()()sin 2f x x ϕ=+.〔1〕由于()102f =,那么1sin 2ϕ=,又0ϕπ<<, 那么56πϕ=或者6π=ϕ〔舍去〕,故()5sin 26f x x π⎛⎫=+⎪⎝⎭.〔2〕由于()()sin 2y f x x ϕ==+是偶函数,那么()0sin 1f ϕ==±, 又0ϕπ<<,所以2ϕπ=,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,将()cos2y f x x ==的图象向左平移6π个单位长度, 得到()cos 23x y g x π=⎛⎫=+ ⎪⎝⎭的图象,故()2222cos cos 223x y fg x x x π⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦13331cos 2cos 2sin 21cos 2sin 22222x x x x x =++-=+-3113cos 2sin 213cos 2226x x x π⎛⎫⎛⎫=+-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,72666x πππ≤+≤, 所以()()max 502f x f ==,()min 51312x f f π⎛⎫= ⎪⎭=-⎝. 【点睛】此题考察三角函数的图象与性质,图象的平移问题,余弦型函数求最值,属于根底题.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AD =,1AB =,PA ⊥平面PCD ,且1PC PD ==,设E ,F 分别为PB ,AC 的中点.〔1〕求证://EF 平面PAD ;〔2〕求直线DE 与平面PAC 所成角的正弦值.【答案】〔1〕证明见解析〔2〕33020【解析】 【分析】〔1〕利用线面平行的性质定理即可得到结论;〔2〕方法一:利用几何法求线面角,一作,二证,三求解;方法二:利用空间直角坐标系,线面角的向量关系即可得到结论.【详解】〔1〕解析:因为底面ABCD 为平行四边形,F 是AC 中点,所以F 是BD 中点,所以1//2EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面PAD . 〔2〕解析1:〔几何法〕 因为DE ⊂平面PBD ,平面PBD平面PAC PF =,所以直线DE 与平面PAC 的交点即为DE 与PF 的交点,设为G ,1PC PD CD ===,所以PCD ∆为等边三角形,取PC 中点O ,那么DO PC ⊥,因为PA ⊥平面PCD ,所以平面PAC ⊥平面PCD , 平面PAC平面PCD PC =,DO PC ⊥,所以DO ⊥平面PAC ,所以DGO ∠是直线DE 与平面PAC 所成角,因为E ,F 分别为PB ,AC 的中点,所以G 是PBD ∆的重心, 在Rt PAD ∆中,3PA =2PB AC ==,在平行四边形ABCD 中,6BD =,在PBD ∆中,4161cos 2214BPD +-∠==-⨯⨯,在PED ∆中,2511211cos 2DE EPD =+-⨯⨯⨯∠=,所以102DE =, 所以21033DG DE ==,又因为32OD =, 所以3sin 3020OD DGO DG ∠==,即直线DE 与平面PAC 所成角的正弦值为33020. 解析2:〔向量法〕取PC 中点O ,那么1//2OF PA ,因为PA ⊥平面PCD , 所以OF ⊥平面PCD ,因为1PC PD CD ===,所以PCD ∆为等边三角形, 所以OD PC ⊥,此时OD ,OF ,OP 两两垂直,如图,建立空间直角坐标系,10,0,2P ⎛⎫ ⎪⎝⎭,3,0,02D ⎛⎫ ⎪ ⎪⎝⎭,在Rt PAD ∆中,3PA =3F ⎛⎫ ⎪ ⎪⎝⎭,由12FE DP =,得3314E ⎛⎫ ⎪ ⎪⎝⎭,所以3333,,424DE ⎛⎫= ⎪ ⎪⎝⎭,平面PAC 的法向量为32OD ⎛⎫= ⎪ ⎪⎝⎭, 所以3cos ,3020DE OD DE OD DE OD⋅==-⋅, 所以3sin cos ,3020DE OD θ==即直线DE 与平面PAC 所成角的【点睛】此题考察线面平行,线面角,应用几何法求线面角,向量法求线面角,属于根底题.{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.〔1〕求{}n a ,{}n b 的通项公式;〔2〕设23,41,n n nn a b n n a c ⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:12313...6n c c c c +++⋅⋅+<.【答案】〔1〕n a n =,112n n b -=〔2〕证明见解析 【解析】 【分析】〔1〕由根本量思想的等差数列{}n a 的通项公式,由n b 与n S 的关系即可得到结论; 〔2〕利用放缩法和数列求和即可得到不等式.【详解】〔1〕由题意得11112349a d a a d a d +=⎧⎨+++=⎩,解得:111a d =⎧⎨=⎩,∴n a n =,即数列{}n a 的通项公式为n a n =, 由122n n S S +=+,得21322222S S S S =+⎧⎨=+⎩,两式相减整理得:322b b =,∴12q =,11b =, ∴112n n b -=,即数列{}n b 的通项公式为112n n b -=〔2〕解析1:〔应用放缩和错位相减求和证明不等式〕解:123n n C c c c c =+++⋅⋅⋅+,1321k k A c c c -=++⋅⋅⋅+,242k k B c c c =++⋅⋅⋅+,012110123135214444431352144444k k k k k A k A -+⎧-⎛⎫=+++⋅⋅⋅+ ⎪⎪⎪⎝⎭⎨+⎛⎫⎪=+++⋅⋅⋅+ ⎪⎪⎝⎭⎩两式相减整理得5511023346k k A k ⎛⎫=-+< ⎪⎝⎭,又因为()()()222121k k k >-+,∴()222111242k B k =++⋅⋅⋅+1111111213352121k k ⎛⎫<-+-+⋅⋅⋅- ⎪-+⎝⎭1326<=. 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 〔2〕解析2:〔应用放缩和裂项求和证明不等式〕 令()114n n d an b -=+,11214n n n n d d +--=-化简整理得:1841394n n d n -⎛⎫=-+ ⎪⎝⎭,∴115511023346k k k A d d k +⎛⎫=-=-+< ⎪⎝⎭,22221111123n T n =+++⋅⋅⋅+()111112231n n <+++⋅⋅⋅⨯⨯-⨯122n=-<,()222211111112242422n T n n =++⋅⋅⋅+<-<, 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 【点睛】此题考察等差数列与等比数列的通项公式,考察数列求和,考察放缩法,属于中档题.E :()220y px p =>过点()1,2Q ,F 为其焦点,过F 且不垂直于x 轴的直线l 交抛物线E 于A ,B 两点,动点P 满足PAB ∆的垂心为原点O .〔1〕求抛物线E 的方程;〔2〕求证:动点P 在定直线m 上,并求PABQABS S ∆∆的最小值.【答案】〔1〕24y x =〔2〕证明见解析,PABQABS S ∆∆的最小值为【解析】 【分析】〔1〕直接将()1,2Q 代入抛物线方程即可得到答案; 〔2〕设直线方程为1ty x =-,联立方程,表示出PABQABS S ∆∆,运用根本不等式即可得到结论. 【详解】〔1〕由题意,将点()1,2Q 代入22y px =,即222p =,解得2p =,所以,抛物线E 的方程为24y x =. 〔2〕解析1:〔巧设直线〕证明:设l :1ty x =-,()11,A x y ,()22,B x y ,联立24y x =,可得2104y ty --=,那么有121244y y ty y +=⎧⎨=-⎩,可设AP :()2112x y y x x y -=--,即21344y y x y =-+,同理BP :12344y y x y =-+,解得()3,3P t -,即动点P 在定直线m :3x =-上. 211221342122PAB QABAB d t S d S d t AB d ∆∆+===322t t =+≥,当且仅当3t =±1d ,2d 分别为点P 和点Q 到直线AB 的间隔 . 〔2〕解析2:〔利用向量以及同构式〕证明:设l :()10x my m =+≠,()11,A x y ,()22,B x y ,联立24y x =,可得2440y my --=,那么有121244y y m y y +=⎧⎨=-⎩.21001,4y PA y x y ⎛⎫=-- ⎪⎝⎭,222,4y y OB ⎛⎫= ⎪⎝⎭,又O 为PAB ∆的垂心,从而0PA OB ⋅=,代入化简得:20202304x y y y ++=,同理:20101304x y y y ++=,从而可知,1y ,2y 是方程200304xx y x ++=的两根,所以012012044124y y y m x y y x ⎧+=-=⎪⎪⎨⎪==-⎪⎩00000333y mx y m x x =-=⎧⎧⇒⇒⎨⎨=-=-⎩⎩,所以动点P 在定直线m :3x =-上. 211221342122PAB QABAB d m S d S d m AB d ∆∆+===322m m =+≥,当且仅当m =1d ,2d 分别为点P 和点Q 到直线AB 的间隔 .【点睛】此题考察抛物线的HY 方程,直线与抛物线的位置关系,考察韦达定理,考察根本不等式的应用,考察计算才能,属于中档题.()ln f x a x x b =-+,其中,a b ∈R .〔1〕求函数()f x 的单调区间;〔2〕使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【答案】〔1〕()f x 在()0,a 上单调递增,在(),a +∞单调递减〔2〕14,2e e e ⎡⎤++⎢⎥⎣⎦〔3〕42,2b c e ⎡⎤+∈+⎢⎥⎣⎦【解析】 【分析】〔1〕求出函数的导函数,通过讨论a 的范围,求出函数的单调区间即可;〔2〕别离变量k 得不等式,由恒成立把[]1,2a ∈,[]1,x e ∈放缩程一个新不等式,再构造一个新函数,讨论出c 的范围,即可得到结论. 【详解】〔1〕因()f x 的定义域为()0,∞+,()()'10af x x x=->,当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; 〔2〕()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x +-++-+-=⇒=,由〔1〕()ln p x x x b ⇒=-+-在()1,+∞上递增;〔1〕当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.〔2〕当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.〔3〕当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,那么当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>.∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增,()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 【点睛】此题考察函数的单调区间,考察不等式的恒成立转化为求函数的最值问题,运用不等式放缩、分类讨论思想是解题的关键,属于难题.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】高三数学上期末试卷(带答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( )A .2BC .2D .12.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD .23.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .05.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2016.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .857.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 8.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-9.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( )A .140B .280C .168D .5610.变量,x y 满足条件11y x ⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A .322B.5C .5D .9211.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-12.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________.14.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.15.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 . 16.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =,则cos A =__________17.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .18.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.19.已知x ,y 满足10510x y x y ⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 23.已知在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c 且2cos 2a C c b +=. (1)求角A 的大小;(2)若1a =,求ABC ∆面积的最大值。

24.等差数列{a n }的前n 项和为S n ,且3a =9,S 6=60. (I )求数列{a n }的通项公式;(II )若数列{b n }满足b n+1﹣b n =n a (n∈N +)且b 1=3,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和T n . 25.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,222sin 2cos 22B Aa b b c +=+. (1)求B ;(2)若6c =,[2,6]a ∈,求sin C 的取值范围.26.在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q 21222a a q ===,故选D. 3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t qf t q tt t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减.可得t=12处,此时f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.5.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A .本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.6.A解析:A 【解析】试题分析:由3cos 5A =得,又2a b =,由正弦定理可得sin B =.考点:同角关系式、正弦定理.7.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 223tan 2bc c B B +=+,结合正弦定理及三角恒等变换知识3sinA cosA 1-=,从而得到角A. 【详解】∵2tan 23tan 2bc c B S B +=+∴2tan 1acsinB 223tan 2bc c B B +=+即c tan asinB a 3tan 13sin b B B B cosB+==++()3sinAsin B sinAcosB sinB sinC sinB sin A B +=+=++ 3sinA cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.8.C解析:C【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.9.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 10.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.11.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍,联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。

相关文档
最新文档