高中数学随机事件及其概率 教案

合集下载

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案精细化处理后的文本一、教学内容本节课将深入探讨随机事件的内涵,并掌握等可能事件的概率计算方法。

我们会进一步了解条件概率与独立事件的概率,这两个概念在数学领域中极为重要,它们能够帮助我们更好地理解事件之间的关系,并应用于各种实际问题中。

二、教学目标1. 深刻理解随机事件的本质,掌握等可能事件的概率计算技巧。

2. 理解并运用条件概率与独立事件的概率知识,解决生活中的数学问题。

3. 培养学生的逻辑思维与数学应用能力,提高对概率论的兴趣。

三、教学难点与重点1. 教学难点:条件概率与独立事件的概率计算,这两个概念较为抽象,需要学生能够灵活运用。

2. 教学重点:等可能事件的概率计算,以及条件概率和独立事件概率的实际应用。

四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。

2. 学具:教材,笔记本,彩笔,计算器。

五、教学过程1. 实践情景引入:通过抛硬币、抽签等实际例子,引导学生思考随机事件的概率。

例如,抛硬币出现正面的概率是多少?抽签抽到红色的概率是多少?2. 讲解教材内容:详细介绍随机事件的定义,等可能事件的概率计算方法,条件概率和独立事件的概率概念。

我们将通过具体的例题来讲解这些概念的应用。

3. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法。

例如,甲、乙两人分别抛一枚均匀的硬币,求甲抛出正面且乙抛出正面的概率。

4. 随堂练习:让学生在课堂上完成练习题,巩固所学知识。

例如,已知事件A和事件B相互独立,且P(A)=0.3,P(B)=0.4,求P(AB)。

5. 小组讨论:分组讨论实际问题,引导学生运用概率知识解决问题。

例如,某学校举行篮球比赛,已知甲队获胜的概率为0.6,乙队获胜的概率为0.4,求甲队连续获胜两次的概率。

六、板书设计1. 随机事件的定义及其实例。

2. 等可能事件的概率计算公式及其解释。

3. 条件概率的计算公式及其应用。

4. 独立事件的概率计算公式及其应用。

高中数学教案概率与随机事件

高中数学教案概率与随机事件

高中数学教案概率与随机事件高中数学教案:概率与随机事件一、引言数学中的概率与随机事件是高中数学中的重要内容,它既有理论性的学习,也有实际应用的意义。

本教案旨在帮助学生全面理解概率与随机事件的基本概念,通过案例分析和练习提升他们的问题解决能力。

二、概率的基本概念1. 定义:简单介绍概率的定义,即某一特定事件发生的可能性。

2. 范围:说明概率的取值范围在0到1之间,0代表不可能事件,1代表必然事件。

3. 试验与样本空间:解释试验和样本空间的概念,以及如何描述一个试验的所有可能结果。

4. 事件与事件的概率:介绍事件的概念,并解释如何计算事件的概率。

三、概率的计算方法1. 等可能性原则:简要介绍等可能性原则,并通过具体的例子说明如何利用等可能性原则计算概率。

2. 集合运算与概率计算:介绍集合的概念,包括交集、并集、补集等,并说明如何利用集合运算来计算概率。

3. 条件概率:给出条件概率的定义,并通过实例演示如何计算条件概率。

四、随机事件的分析与应用1. 互斥事件:介绍互斥事件的概念,并通过实例说明如何计算互斥事件的概率。

2. 独立事件:给出独立事件的定义,并通过实际问题分析说明如何判断事件的独立性。

3. 排列与组合:简要介绍排列与组合的基本概念,并通过案例分析说明如何利用排列与组合解决概率问题。

五、综合练习根据所学知识,设计一系列概率与随机事件相关的问题,以提升学生的综合运用能力。

六、教学反思与总结总结本节课的教学内容,回顾学生的学习情况,并对学生的问题进行解答与指导。

请注意,以上教案仅为示例,实际教案的具体内容和排版格式可根据实际情况做出适当调整。

希望本教案能对您的教学工作有所帮助,祝您教学愉快!。

2024-2025学年新教材高中数学第十章概率10.1随机事件与概率(2)教案新人教A版必修第二册

2024-2025学年新教材高中数学第十章概率10.1随机事件与概率(2)教案新人教A版必修第二册
-跨学科应用:
a.与物理学科的关联:探讨物理实验中的概率现象,如量子力学中的概率波函数等。
b.与生物学科的关联:研究遗传学中的概率问题,如基因遗传概率、疾病发病率等。
c.与经济学科的关联:分析投资、风险管理等方面的概率问题,如股票收益率的概率分布等。
课后作业
1.计算题:抛掷两个公正的骰子,求两个骰子的点数和为7的概率。
d.条件概率:使用Venn图和实际案例,如疾病检测的准确性问题,帮助学生理解在给定一个事件发生的前提下,另一个事件发生的概率。
2.教学难点
-难点内容:概率乘法规则的适用条件及其理解;条件概率在实际问题中的运用;理解并区分独立事件与非独立事件。
-举例解释:
a.概率乘法规则的适用条件:解释在什么情况下可以使用乘法规则(即事件A和事件B的交集非空且A、B相互独立),通过具体问题让学生体会这一条件的重要性。
反馈作业情况:及时批改作业,提供个性化反馈,指导学生改进。
-学生活动:
完成作业:学生认真完成作业,巩固所学知识。
拓展学习:利用教师推荐的资源,进行自我学习和探索。
反思总结:学生对学习过程进行自我反思,提出改进建议。
-教学方法/手段/资源:
自主学习法:鼓励学生在课后进行自我学习和探索。
反思总结法:引导学生通过反思,促进自我提升。
4.探究题:一个袋子里有5个红球和5个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
答案:取出的两个球颜色相同的概率为P(两个红球) + P(两个蓝球) = (C(5,2) / C(10,2)) + (C(5,2) / C(10,2)) = 2 * (C(5,2) / C(10,2)) = 2 * (5 * 4 / (2 * 1)) / (10 * 9 / (2 * 1)) = 2/9 ≈ 0.2222,即22.22%。

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案一、教学内容本节课选自人教版《普通高中数学课程标准实验教科书·数学2》(A版)第四章“概率”的第三节“随机事件的概率”。

具体内容包括:随机事件的定义,频率与概率的关系,以及如何计算简单随机事件的概率。

二、教学目标1. 理解随机事件的定义,能区分不同类型的随机事件。

2. 掌握频率与概率的关系,了解如何通过频率估计概率。

3. 学会计算简单随机事件的概率,并能运用到实际问题中。

三、教学难点与重点重点:随机事件的定义,频率与概率的关系,简单随机事件的概率计算。

难点:如何将实际问题转化为随机事件,并正确计算其概率。

四、教具与学具准备教具:PPT,黑板,粉笔。

学具:练习本,铅笔。

五、教学过程1. 实践情景引入通过一个简单的实验(抛硬币、掷骰子等),让学生观察并记录实验结果,引导学生发现实验中的随机现象,并提出问题:如何描述这些随机现象?2. 知识讲解(1)随机事件的定义:介绍随机事件的定义,让学生理解什么是随机事件。

(2)频率与概率:讲解频率与概率的关系,引导学生通过实验数据来估计概率。

(3)简单随机事件的概率计算:通过例题,讲解如何计算简单随机事件的概率。

3. 例题讲解例题1:抛一枚硬币,求出现正面的概率。

例题2:掷一个骰子,求出现偶数的概率。

4. 随堂练习练习1:投掷两个骰子,求两个骰子的点数之和为7的概率。

练习2:一个袋子里有5个红球,3个蓝球,求从中随机取出一个球,得到红球的概率。

六、板书设计1. 随机事件的定义2. 频率与概率的关系3. 简单随机事件的概率计算4. 例题与练习七、作业设计1. 作业题目(1)抛一枚硬币,求出现反面的概率。

(2)掷一个骰子,求出现奇数的概率。

2. 答案(1)出现反面的概率为0.5。

(2)出现奇数的概率为0.5。

八、课后反思及拓展延伸本节课通过实践情景引入,让学生感受到随机事件在实际生活中的存在。

在讲解知识的过程中,注重理论与实践相结合,让学生在理解知识的同时,学会运用知识解决问题。

2024-2025学年高中数学第3章概率§11.11.2随机事件的概率(教师用书)教案北师大版必修3

2024-2025学年高中数学第3章概率§11.11.2随机事件的概率(教师用书)教案北师大版必修3
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调概率的重要性和意义。
过程:
简要回顾本节课的学习内容,包括概率的基本概念、组成部分、案例分析等。
强调概率在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用概率。
10.提高合作能力和解决问题的能力:通过小组讨论和案例分析,学生能够与他人合作,共同解决问题,提高合作能力和解决问题的能力。
内容逻辑关系
①随机事件的定义和分类:必然事件、不可能事件、随机事件
②概率的定义和性质:概率的计算方法,包括古典概率、几何概率和条件概率;概率的基本性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
-互斥事件的概率加法公式:P(A+B) = P(A) + P(B)
-独立事件的乘积公式:P(AB) = P(A) * P(B)
③概率的运用
-抽奖问题:计算获奖的概率
-概率论的基本问题:计算某个事件发生的概率
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的参与程度、提问和回答问题的积极性,以及学生的反应和理解程度,评价学生对概率知识的掌握情况。
布置课后作业:让学生撰写一篇关于概率的短文或报告,以巩固学习效果。
学生学习效果
1.理解概率的基本概念:学生能够理解概率的定义,掌握概率的基本计算方法和性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
2.掌握随机事件的分类:学生能够区分必然事件、不可能事件和随机事件,并能够运用这些概念解决实际问题。
2.数据分析:通过讲解概率的定义和性质,培养学生收集、整理、分析和处理数据的能力,使学生能够运用几何概率和条件概率的方法解决实际问题。

高中数学教案 第4讲 随机事件与概率

高中数学教案 第4讲 随机事件与概率

第4讲随机事件与概率1.了解随机事件发生的不确定性和频率的稳定性,理解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的□1基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E 的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.(2)随机事件①定义:将样本空间Ω的□2子集称为随机事件,简称事件.②表示:大写字母A ,B ,C ,….③随机事件的极端情形:必然事件、不可能事件.2.事件的关系定义表示法图示包含关系若事件A 发生,事件B □3一定发生,称事件B 包含事件A (或事件A 包含于事件B )□4B ⊇A (或A □5⊆B )互斥事件如果事件A 与事件B □6不能同时发生,称事件A 与事件B 互斥(或互不相容)若A ∩B =∅,则A 与B 互斥对立事件如果事件A 和事件B 在任何一次试验中□7有且仅有一个发生,称事件A 与事件B 互为对立,事件A 的对立事件记为A -若A ∩B =∅,且A ∪B =Ω,则A 与B 对立3.事件的运算定义表示法图示并事件事件A 与事件B 至少有一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)□8A ∪B (或A +B )交事件事件A 与事件B 同时发生,称这样一个事件为事件A 与事件B 的交事件(或积事件)□9A ∩B (或AB )4.概率与频率(1)频率的稳定性:一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率f n (A )会逐渐稳定于事件A 发生的□10概率P (A ).我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n (A )估计□11概率P (A ).常用结论1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).1.思考辨析(在括号内打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案:(1)×(2)√(3)√(4)×2.回源教材(1)某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都没有中靶解析:D连续射击两次中靶的情况如下:①两次都中靶;②只有一次中靶;③两次都没有中靶,故选D.(2)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:B射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.(3)把一枚质地均匀的硬币连续抛掷1000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为.解析:掷一次硬币正面朝上的概率是0.5.答案:0.5随机事件的关系运算例1(1)若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:A根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件.故选A.(2)(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则下列说法正确的是()A.A∪B=CB.B∪D是必然事件C.A∩B=CD.A∩D=C解析:AB根据已知条件以及利用和事件、积事件的定义进行判断.事件A∪B 指至少有一件次品,即事件C,故A正确;事件B∪D指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B正确;事件A和B 不可能同时发生,即事件A∩B=∅,故C错误;事件A∩D指恰有一件次品,即事件A,而事件A和C不同,故D错误.反思感悟1.事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析,也可类比集合的关系和运用Venn图分析事件.2.辨析互斥事件与对立事件的思路(1)在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能同时发生.(2)两个对立事件必有一个发生,但不可能同时发生.即两事件对立,必定互斥,但两事件互斥,未必对立.对立事件是互斥事件的一个特例.(3)互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.训练1(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件解析:C事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件,但由于这两个事件的和事件不是必然事件,故这两个事件不对立.(2)(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是()A.A与D为对立事件B.B与C是互斥事件C.C与E是对立事件D.P(C∪E)=1解析:AD当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.互斥事件与对立事件的概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解:(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=1 20 .(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-(11000+1100)=9891000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.反思感悟当所求概率的事件较为复杂时,可考虑把其分解为几个互斥的事件,利用互斥事件的概率公式求解,或求其对立事件的概率,利用对立事件的概率求解.训练2经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.随机事件的频率与概率例3(经典高考题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15(元).由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10(元).比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.反思感悟1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计意义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.训练3某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;若最高气温不低于25,则Y=450×(6-4)=900,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y大于零的概率的估计值为0.8.限时规范训练(七十六)A级基础落实练1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能解析:A从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.2.同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是()A.3B.4C.5D.6解析:D事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.3.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:C不可能事件的概率为0,必然事件的概率为1,故A错误;频率是由试验的次数决定的,故B错误;概率是频率的稳定值,故C正确,D错误.4.(2024·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,-)=()则P(AA.0.5B.0.1C.0.7D.0.8解析:A∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P(A-)=1-P(A)=1-0.5=0.5.5.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B,则()A.A∪B表示向上的点数是1或3或5B.A=BC.A∪B表示向上的点数是1或3D.A∩B表示向上的点数是1或5解析:A设A={1,3},B={1,5},则A∩B={1},A∪B={1,3,5},∴A≠B,A∩B表示向上的点数是1,A∪B表示向上的点数为1或3或5.6.(多选)下列说法中正确的有()A.若事件A与事件B是互斥事件,则P(AB)=0B.若事件A与事件B是对立事件,则P(A+B)=1C.某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件解析:ABC事件A与事件B互斥,则A,B不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A-,所以P(A+B)=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.7.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为双.解析:∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).答案:608.(2024·天津调研)某射击运动员平时100次训练成绩的统计结果如下:命中环数12345678910频数24569101826128如果这名运动员只射击一次,估计射击成绩是6环的概率为;不少于9环的概率为.解析:由题表得,如果这名运动员只射击一次,估计射击成绩是6环的概率为10100=110,不少于9环的概率为12+8100=15.答案:110159.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量(mm)(100,150)(150,200)(200,250)(250,300)概率0.210.160.130.12则年降水量在(200,300)(mm)范围内的概率是.解析:设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.2510.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为200 1000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.B级能力提升练12.(多选)(2023·枣庄调研)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地随机摸出2个球,每次摸出一个球.设事件R1=“第一次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两球颜色相同”,N=“两球颜色不同”,则()A.R1⊆RB.R∩G=∅C.R∪G=MD.M=N-解析:BCD样本空间为{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)},R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)},由集合的包含关系可知B,C,D正确.13.如果事件A,B互斥,记A-,B-分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A-∪B-是必然事件C.A-与B-一定互斥D.A-与B-一定不互斥-∪B-是必然事件,A-与B-不解析:B如图①所示,A∪B不是必然事件,A互斥;如图②所示,A∪B是必然事件,A-∪B-是必然事件,A-与B-互斥.图①图②14.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦·时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,降雨量为160毫米的有7个,降雨量为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70110140160200220频率120320420720320220(2)根据题意,Y=460+X-7010×5=X2+425,故P(“发电量低于490万千瓦·时或超过530万千瓦·时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率为310 .。

概率论与数理统计教案随机事件与概率

概率论与数理统计教案随机事件与概率

概率论与数理统计教案-随机事件与概率一、教学目标1. 了解随机事件的定义和分类,理解必然事件、不可能事件和随机事件的概念。

2. 掌握概率的基本性质,理解概率的计算公式。

3. 学会使用概率论解决实际问题,提高分析问题和解决问题的能力。

二、教学内容1. 随机事件的定义和分类2. 必然事件、不可能事件和随机事件的概念3. 概率的基本性质4. 概率的计算公式5. 概率论在实际问题中的应用三、教学重点与难点1. 教学重点:随机事件的定义和分类,概率的基本性质,概率的计算公式。

2. 教学难点:概率的计算公式的灵活运用,概率论在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解随机事件的定义和分类,概率的基本性质,概率的计算公式。

2. 采用案例分析法,分析概率论在实际问题中的应用。

3. 采用互动教学法,引导学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

五、教学步骤1. 导入新课:通过生活中的实例,引入随机事件的概念,激发学生的学习兴趣。

2. 讲解随机事件的定义和分类:讲解必然事件、不可能事件和随机事件的定义,引导学生理解这些概念。

3. 讲解概率的基本性质:讲解概率的定义、概率的基本性质,如加法原理、乘法原理等。

4. 讲解概率的计算公式:讲解必然事件的概率、不可能事件的概率、独立事件的概率等计算公式。

5. 案例分析:分析实际问题,如抛硬币、抽奖等,引导学生运用概率论解决实际问题。

6. 课堂互动:引导学生积极参与课堂讨论,解答学生的疑问。

7. 总结与复习:总结本节课的主要内容,布置课后作业,要求学生巩固所学知识。

8. 课后作业:布置相关的习题,巩固随机事件与概率的知识。

六、教学拓展1. 讲解条件概率和联合概率的概念,引导学生理解这两个概念的区别和联系。

2. 讲解贝叶斯定理,让学生了解如何利用条件概率和联合概率进行推断。

3. 通过实例讲解概率论在实际领域的应用,如统计学、经济学、生物学等。

七、教学互动1. 组织学生进行小组讨论,探讨随机事件与概率之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件及其概率
二、教学重点: 事件的分类与概率的统计定义.
三、教学难点:概率统计定义的理解.
四、教学方法:合作探究,启发式,发现法
五、教学手段:多媒体课件
六、教学过程:
一)问题情境:
1.在足球比赛前,主裁判以抛硬币的方式确定比赛场地,这公平吗?
2.我们去购买福利彩票时,早去晚去对中奖的可能性有没有影响呢?
3.在座的100多人中至少有两个人生日相同的概率又有多大呢?
由此引出课题(板书课题)。

二)学生活动
思考、讨论以上问题,学生活动贯穿于课堂教学中。

三)数学理论
1.事件的含义
幻灯片展示现象(1)~(4)图片:
(1)木柴燃烧,产生热量;
(2)明天,地球仍会转动;
(3)实心铁块丢入水中,铁块浮起;
(4)在标准大气压00C以下,雪融化。

引出概念:确定性现象——在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象。

幻灯片展示现象(5)、(6)图片:
(5)转动转盘后,指针指向黄色区域
(6)两人各买1张彩票,均中奖引出概念:随机现象——在一定条件下,某种现象可能发生也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象。

对于某个现象,如果能让其条件实现一次,就是进行了一次试验。

而试验的每一种可能的结果,都是一个事件。

2.事件的分类
给出先前展示的六个现象对应的各个事件,判断它们发生的可能性。

由这些事件发生的可能性情况,引导学生归纳出必然事件、不可能事件和随机事件的定义。

必然事件:在一定条件下必然要发生的事件叫必然事件。

不可能事件:在一定条件下不可能发生的事件叫不可能事件。

随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。

由上述几个事件:(1)木柴燃烧,产生热量;(2)实心铁块丢入水中,铁块浮起;(3)两人各买1张彩票,均中奖,说明事件的条件和结果。

请学生讨论,举日常生活中这三种事件各一例。

3.事件的表示:我们用A、B、C等大写字母表示随机事件,简称事件。

注:对于必然事件和不可能事件也可以这样表示。

4.频率与概率
(1)将学生分为四人一组做抛硬币实验:每组抛1枚硬币10次,记录实验数据,并将各组的实验数据进行比较;
(2)计算机模拟次数比较多时的抛硬币实验,观察出现正面向上的频率值;
一般地,如果随机事件A在n次试验中发
生了m次,当试验的次数n很大时,我们可以将事件A发生的频率
n
m
作为事件A发生的概率的近似值,

n
m
A
P≈
)
(。

(1)随机事件A的概率范围:必然事件与不可能事件可看作随机事件的两种特殊情况.因此,随机事件发生的概率都满足:0≤P(A)≤1;
(2)频率与概率的关系:联系——随着试验次数的增加,频率会在概率的附近摆动,并趋于稳定.在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别——频率本身是随机的,在试验前不能
确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同.而概率是一个确定数,是客观存在的,与每次试验无关.
你觉得求一个随机事件的概率可以采用什么方法?(大量重复试验)
四)数学应用
例1.判断哪些事件是随机事件,哪些是必然事件, 哪些是不可能事件?
⑴抛一颗骰子两次,向上的面的数字之和大于12
⑵抛一石块,下落
⑶打开电视机,正在播放新闻
⑷在2010年的世界杯上,中国足球队以2:0战胜巴西足球队
答案:⑴不可能事件;⑵必然事件;⑶随机事件;⑷随机事件
(1)试计算男婴各年出生频率(精确到0.001);
(2)该市男婴出生的概率约是多少?
解题示范:(1)1999年男婴出生的频率为:524
.0
21840
11453
≈,同理可求得2000年、2001年和2002年男婴出生的频率分别为:0.521,0.512,0.512.
(2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生的概率约是0.52.
课堂练习:
1.抛掷100枚质地均匀的硬币,有下列一些说法:
①全部出现正面向上是不可能事件;
②至少有1枚出现正面向上是必然事件;
③出现50枚正面向上50枚正面向下是随机事件,
以上说法中正确说法的个数为 ( )
A.0个 B.1个 C.2个 D.3个
2.下列说法正确的是 ( )
A.任何事件的概率总是在(0,1)之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,频率一般会非常接近概率
D.概率是随机的,在试验前不能确定
3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约是多少?
(3)这位运动员进球的概率是0.8,那么他投10次篮一定能投中8次吗?
课堂练习答案:
1.B
2.C
3.(1)0.75,0.80,0.80,0.85,0.83,0.80,0.78;(2)概率约是0.8;(3)不一
定. 投10次篮相当于做10次试验,每次试验的结果都是随机的, 所以投10次篮的结果也是随机的.
但随着投篮次数的增加,他进球的可能性为80%.
五)回顾小结
1.事件的含义(
2.事件的分类(必然事件,不可能事件,随机事件)
3.事件的表示(用大写字母A、B、C等)
4.频率与概率(概率的定义,随机事件的范围,频率与概率的关系)
六)作业布置
1.课本P91: 练习第1、2、3题;P91: 习题7.1 感受理解第1、3题
2.设计一个求某个随机事件概率的实验方案,并体会随机事件的概率与哪些因素有关.
3.课后探究:查找以下网址,阅读有关材料,结合生活中的概率问题,写一篇对概率的体会短文。

赌博与概率论
概率的起源与发展。

相关文档
最新文档