新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

合集下载

中考数学专题复习--函数应用题(有答案)

中考数学专题复习--函数应用题(有答案)

专题复习 函数应用题类型之一 与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型,在人们的生产、生活中有着广泛的应用,利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用. 1.(莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。

每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? 注:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a--2.(贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式.(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少? 类型之二 图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题,解题时要通过观察、比较、分析,从中提取相关信息,建立数学模型,最终达到解决问题的目的。

3.(08江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?类型之三 方案设计方案设计问题,是根据实际情境建立函数关系式,利用函数的有关知识选择最佳方案,判断方案是否合理,提出方案实施的见解等。

中考数学专题复习--函数--应用题(有答案)

中考数学专题复习--函数--应用题(有答案)

专题复习函数应用题类型之一与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型,在人们的生产、生活中有着广泛的应用,利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.1.(莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。

每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?2.(贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?例3:某商场经营某种品牌的服装,进价为每件60元,根据市场调查发现,在一段时间内,销售单价是100元时,销售量是200件,而销售单价每降低1元,就可多售出10件(1)写出销售该品牌服装获得的利润y(元)与销售单价x(元)之间的函数关系式。

(2)若服装厂规定该品牌服装销售单价不低于80元,且商场要完成不少于350件的销售任务,则商场销售该品牌服装获得最大利润是多少元?3(2014江苏省常州市)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表所示:假定试销中每天的销售号(件)与销售价x(元/件)之间满足一次函数.(1)试求与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)类型之二 图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题,解题时要通过观察、比较、分析,从中提取相关信息,建立数学模型,最终达到解决问题的目的。

2023年九年级中考数学专题复习:实际问题与二次函数应用题(含简单答案)

2023年九年级中考数学专题复习:实际问题与二次函数应用题(含简单答案)

2023年九年级中考数学专题复习:实际问题与二次函数应用题1.某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月降价()0x x >元,销售这批T 恤能获利w 元. (1)填表:(2)求w 与x 的函数关系式,并写出自变量x 的取值范围; (3)批发商通过销售这批T 恤最多能获利多少元?2.如图,用一段长为36m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m .设AB 长为m x ,矩形的面积为2m y .(1)写出y 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为2144m 时,AB 长为多少米?3.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.4.某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数2100y x=-+.(利润=售价-进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得不低于350元的利润,则销售单价应在哪个范围内?5.某商店销售A,B两种类型的篮球,具体信息如下表:(注:厂家要求该商店每季度B类篮球的销量是A类篮球销量的2倍)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该商店销售A,B两种类型篮球的利润恰好相同(利润不为0),试求x 的值;(3)求该商店第四季度销售这两种类型的篮球能获得的最大利润.6.某商品的进价为每件40元,售价为每件50元,每月可卖出500件.市场调查反映:如果调整价格,售价每涨价1元,月销售量就减少10件,但每件售价不能高于75元.设每件商品的售价上涨x元(x为整数),月销售利润为y元.(1)根据题意填表:(2)求y与x之间的函数关系式和x的取值范围;(3)当售价定为多少时,商场每月销售这种商品所获得的利润y(元)最大,最大利润是多少?7.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y与投资量x成正比例关系,如图1所示;种植花卉的利润y与投资量x成二次函数关系,如图2所示(注:利润与投资量的单位都是万元).(1)直接写出利润1y与2y关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(3)在(2)的基础上要保证获利不低于22万元,该园林专业户至少应投资种植花卉 万元.(直接写出结果)8.如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A ,B ,C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC ,BC .动点P 从A 点出发,在线段AC C 做匀速运动;同时,动点Q 从B 点出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)b = ,c = ;(2)在P ,Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)已知点M 是该抛物线对称轴上一点,当点P 运动1秒时,若要使得线段MA MP +的值最小,则试求出点M 的坐标.9.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.实验中学数学兴趣小组统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为()351225,,其中035x ≤≤.校门口有一个体温检测棚,每分钟可检测48人.(1)求y 与x 之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第2分钟时,为减少排队等候时间,学校在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).10.某商场将每件进价为80元的某商品按每件100元出售,每天可售出100件.后来经过市场调查发现:这种商品单价每降低1元,其销售量就增加10件.若该商品降价销售,设每件商品降价x 元,商场每天获利y 元. (1)求y 与x 之间的函数关系式;(2)①若商场经营该商品每天要获利2160元,则每件商品应降价多少元? ①每件商品降价多少元时,每天的销售利润最大?最大利润是多少?(3)商场为避免恶意竞争,规定降价范围为16x ≤≤(元),请直接写出销售该商品每天的销售利润y (元)的取值范围.11.古镇景区研发了一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元.试销售期间发现,每天的销售数量m (件)与销售单价x (元/件)满足一次函数关系,部分数据如下表所示:(1)求m 与x 的函数关系式;(2)若每天销售所得利润记为y 元,请求出y 与x 的函数关系式;(3)若要保证利润不低于1200元,销售单价至少定为多少元?12.网络直播销售已经成为一种热门的销售方式,某生产商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于32元/kg.设公司销售板栗的日获利为w(元),(1)直接写出日销售量y与销售单价x之间的函数关系式为________;(不用写自变量的取值范围)(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?13.某运动器材批发市场销售一种篮球,每个篮球进价为50元,规定每个篮球的售价不低于进价.经市场调查,每月的销售量y(个)与每个篮球的售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数关系式;(不需求自变量x的取值范围)(2)该批发市场每月想从这种篮球销售中获利8000元,又想尽量多给客户实惠,应如何给这种篮球定价?(3)物价部门规定,该篮球的每个利润不允许高于进货价的50%,设销售这种篮球每月的总利润为w(元),那么销售单价定为多少元可获得最大利润?最大利润是多少?14.农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x 元/千克(6x 且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w 元,求w 关于x 的函数表达式,并求w 的最大值和最小值;(3)市政府每日给农户补贴a 元后(a 为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a 的值.15.某农场拟建两间矩形种牛饲养室,饲养室的一面靠已有的墙(墙长大于48m ),中间用一道墙隔开,正面开两个门,如图所示,已知每个门的宽度为1.5m ,计划中的建筑材料总长45m ,设两间饲养室的宽度为m x ,总占地面积为2m y .(1)求y 关于x 的函数表达式和自变量x 的取值范围. (2)求饲养室的宽度为多少m 时,饲养室最大面积多少2m ?(3)若要使两间饲养室合计占地总而积不低于2189m ,求饲养室的宽度m x 的范围.16.某商场销售一种小商品,进货价为40元/件.当售价为60元/件时,每天的销售量为300件.在销售过程中发现:销售单价每上涨2元,每天的销售量就减少20件.设销售价格上涨x 元/件(x 为偶数),每天的销售量为y 件. (1)当销售价格上涨10元时,每天对应的销售量为______件. (2)请写出y 与x 的函数关系式.(3)设每天的销售利润为w 元,为了让利于顾客,则每件商品的销售单价定为多少元时,每天获得的利润最大,最大利润是多少?17.九年级体育课上,男同学正在进行原地掷实心球训练.如图所示,某同学实心球出手(点A 处)的高度是2米,出手后的实心球沿一段抛物线运行,当实心球运行到最高点时,运行高度为185米,水平距离为4米.(1)试求实心球运行高度y (米)与水平距离x (米)之间的函数表达式;(2)设实心球落地点为C ,实心球落地点与出手点之间的水平距离为原地掷实心球的成绩,求某同学的成绩;(3)如果某同学想把他的原地掷实心球成绩提高到12米,则在出手高度不变的情况下,求此时满足条件的实心球运行高度y (米)与水平距离x (米)之间的函数表达式.(实心球运行到最高点时,水平距离范围()9m m 5m 2x ≤≤)18.11月1日,区里进行了一次全民核酸检测.某小区上午9点开始检测,设6个采样窗口,每个窗口采样速度相同,居民陆续到采集点排队,10点半排队完毕,小明就排队采样的时间和人数进行了统计,得到下表.小明把数据在平面直角坐标系里,描成点连成线,得到如图所示函数图象,在0~90分钟,y 是x 的二次函数,B 是二次函数图象的顶点;在90~110分钟,y 是x 的一次函数.(1)求二次函数表达式.(2)若排队人数在220人及以上,即为满负荷状态,问满负荷状态的时间持续多长? (3)采样进行45分钟后,为了减少扎堆排队的时间,社区要求10点15分后,采样可以随到随采,那么至少需新增多少个采样窗口?参考答案:1.(1)80x -,20010x +;40010x -; (2)2102008000(030)w x x x =-++<<(3)批发商通过销售这批T 恤最多能获利9000元2.(1)2236y x x =-+;(2)当AB 长为9m 时,花圃面积最大,最大面积为2162m ; (3)当花圃的面积为2144m 时,AB 长为6米或12米.3.(1)10300y x =-+(2)定价为19元时,利润最大,最大利润是1210元 (3)不能销售完这批蜜柚,4.(1)221361800w x x =-+-(2)当销售单价为34元时,厂商每周能获得最大利润是512元 (3)2530x ≤≤时350≥w5.(1)25y x =- (2)x 的值为90(3)该商店第四季度销售这两种类型的篮球能获得的最大利润为675元6.(1)50x +,50010x -(2)y 与x 之间的函数关系式为2104005000(025,y x x x x =-++≤≤为整数)(3)当售价定为70元时,商场每月销售这种商品所获得的利润最大,最大利润是9000元7.(1)12(0)y x x =≥;221(0)2y x x =≥ (2)他至少获得14万元利润,他能获取的最大利润是32万元 (3)68.(1)2,3(2)当=2t 时,四边形BCPQ 的面积最小,最小值为4 (3)21,3M ⎛⎫ ⎪⎝⎭9.(1)270y x x =-+(2)排队等待人数最多时是121人(3)人工检测10分钟时间后,校门口不再出现排队等待的情况10.(1)2101002000y x x =-++(2)①2元或8元,①每件商品降价5元时,商场可获得最大利润,最大利润为2250元 (3)20902250y ≤≤11.(1)2160m x =-+ (2)222204800y x x =-+- (3)至少定价为50元12.(1)1005000y x =-+;(2)当销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元.13.(1)101100y x =-+ (2)70元(3)售价定为75元可获得最大利润,最大利润是8750元14.(1)14(2)2252w x x =-+,最大338元,最小240元 (3)110,111,112a =答案第3页,共3页 15.(1)()234816y x x x =-+0<<(2)当8x =时,饲养室的宽度为8m 时,饲养室最大面积2192m(3)79x ≤≤16.(1)200(2)y 与x 的函数关系式为30010y x =-(3)每件商品的销售单价定为64元时,每天获得的利润最大,最大利润是6240元.17.(1)()21184105y x =--+ (2)10米 (3)2112182y x x =-++(答案不唯一)18.(1)2146045y x x =-++ (2)953分 (3)4个。

人教版中考数学《函数》专项练习题(含答案)

人教版中考数学《函数》专项练习题(含答案)

人教版中考数学《函数》专项练习题(含答案)一、单选题1.若方程组y mx n y kx b =+⎧⎨=+⎩的解为x 2y 1=⎧⎨=⎩,则一次函数y mx n =+图象和y kx b =+图象的交点坐标是( )A .()21,B .()12,C .()21-,D .()21--,2.将抛物线y =x 2-2x +3向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为( )A .y =(x +1)2+5B .y =(x -4)2+4C .y =(x +2)2+4D .y =(x -3)2+53.如图,点A 是反比例函数()20=>y x x 的图象上任意-点,//AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作平行四边形ABCD ,其中C ,D 在x 轴上,则平行四边形ABCD 的面积为( )A .5B .4C .3D .2 4.函数()211my m x +=+是二次函数,则m 的值是( ) A .±1B .1C .-1D .以上都不对5.如图,二次函数y =ax 2+bx +c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1、x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .5a +b +2c >0C .2a +b <0D .4ac +8a >b 26.下列各曲线中,反映了变量y 是x 的函数的是( )A .B .C .D .7.抛物线23y x =先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( )A .23(1)1y x =++B .23(1)1y x =+-C .23(1)1y x =-+D .23(1)1y x =-- 8.已知反比例函数y=3x-,下列结论不正确的是( ) A .图象必经过点(﹣1,3) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则﹣3≤y<0 9.对于二次函数()22110()y ax a x a a =--+-≠,有下列结论:①其图象与x 轴一定相交;②若0a <,函数在1x >时,y 随x 的增大而减小;③无论a 取何非零实数,抛物线的顶点始终在同一条直线上;④无论a 取何非零实数,函数图象都经过同一个点,其中正确结论个数是( )A .1个B .2个C .3个D .4个10.若对于任意非零实数a ,抛物线22y ax ax a =+-总不经过点200316P x x --(,),则符合条件的点P ( )A .有无穷多个B .有且只有1个C .有且只有2个D .至少有3个11.(2006•临沂)如图,点A 是反比例函数图象的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,则此函数的表达式为( )A .B .C .D .12.已知二次函数y 1=mx 2+4mx ﹣5m (m ≠0),一次函数y 2=2x ﹣2,有下列结论: ①当x >﹣2时,y 随x 的增大而减小;②二次函数y 1=mx 2+4mx ﹣5m (m ≠0)的图象与x 轴交点的坐标为(﹣5,0)和(1,0); ③当m =1时,y 1≤y 2;④在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 2≤y 1均成立,则m 13=. 其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题13.如图,平行四边形ABCD 中,AB =2cm ,BC =2cm ,∠ABC =45°,点P 从点B 出发,以1cm /s 的速度沿折线BC →CD →DA 运动,到达点A 为止,设运动时间为t (s ),△ABP 的面积为S (cm 2),则S 与t 的函数表达式为_______________.14.已知点()1,1A a a -+在x 轴上,则a 等于________.15.抛物线y=2(x -4)2+1的顶点坐标为_______________.16.根据函数y=的图象判断,当x<-2时,y 的取值范围是___,当y>-1时,x 的取值范围是_____17.若一次函数y ax b =+(0a ≠)的图象经过()3,2和()3,1--两点,则方程1ax b +=-的解为______.18.点P 既在反比例函数y =-3x(x >0)的图象上,又在一次函数y =-x -2的图象上,则P 点的坐标是_______________.19.若点A(1,-2)、B(-2,a)在同一个反比例函数的图象上,则a 的值为_______.20.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.三、解答题21.根据所学一次函数的经历和经验,下面我们一起来探究函数:|21|1y x =+-的图像和性质.(1)请写出函数解析式: ①当12x <-时,____________; ②当21x ≥-时,___________; (2)请在所给的平面直角坐标系中画出该函数的图像;(3)若函数2(0)y kx k =+≠与|21|1y x =+-的图像有且只有一个交点,请直接写出k 的取值范围是________.22.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y 关于x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?23.(2018·河师大附中模拟)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?24.在矩形ABCD 中,AB=2cm ,BC=3cm ,点P 沿B→A→D 运动,运动到点D 时停止运动,点P 运动的同时,另一点Q 从B→C 运动,速度是点P 的一半,当点P 停止运动时,点Q 也停止运动.设点P 运动的路程为xcm ,其中设12,BDP DCQ y S y S ∆∆==,可可根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究,下面是可可的探究过程,请补充完整.(1)如图是画出的函数1y 与x 的函数图象,观察图象.当x=1时,1y =_____;并写出函数的一条性质:________________________________________.(2)请帮助可可写出2y 与x 的函数关系式(不用写出取值范围)__________________.(3)请按照列表、描点、连线的步骤在同一直角坐标系中,画出函数2y 的图象.(4)结合画出函数图象,解决问题:当BDP DCQ S S ∆∆=时,点P 运动的路程x=_______.25.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.26.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+(b﹣4)2=0(1)求a,b的值;(2)在y轴上是否存在一点M,使△COM的面积=12△ABC的面积,求出点M的坐标.27.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?28.四个容量相等的容器形状如图1所示,用同一流量的水管分别向这四个容器注水,所需时间都相同,如图2所示的是容器水位(h)与时间(t)的关系的图象.请把适当的图象序号与相应容器形状的字母代号用线段相连接.29.在平面直角坐标系xOy中,函数ayx=(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围参考答案1.A2.D3.A4.B5.B6.D7.A8.B9.C10.C11.D12.C13.S=()((1022{12221(42)2242 2t ttt t≤≤<≤++<≤+-14.-115.(4,1)16.0<y<2 x>4 17.3x=-18.P(1,-3)19.120.(a ,b ).21.(1)①22y x =--,② 2y x =;(2)画图见解析;(3)2k ≥或2k ≤-.22.(1)0.032299y x =-+;(2)260.6克/立方米23.(1)甲种牲畜的单价为1100元,乙种牲畜的单价为2400元;(2)购买两种牛各25头时,费用最低.24.(1)32,当02x ≤≤时,1y 随x 的增大而增大;(2)2132y x =-;(3)见详解;(4)1.5cm 或4cm .25.(1)y =2x+1;(2)(0,1)和(﹣12,0) 26.(1)a =﹣2,b =4;(2)存在,M (0,6)或(0,﹣6)27.(1)z =﹣2x 2+136x ﹣1800;(2)25元或43元;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)648万元.29.(1)a=3,b=-2;(2) m ≥8或m ≤-2。

人教版数学九年级中考复习训练专题四 函数实际应用 附答案

人教版数学九年级中考复习训练专题四  函数实际应用  附答案

专题四函数实际应用类型一行程问题典例精析例(2019河北24题10分)长为300 m的春游队伍,以v(m/s)的速度向东行进,如图①和图②,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进,设排尾从位置O开始行进的时间为t(s),排头..与O的距离为s头(m).(1)当v=2时,解答:①求s头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求s头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为s甲(m),求s甲与t的函数关系式(不写t的取值范围).(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.例题图针对演练1.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B 出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发x min时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?第1题图2. (2020迁西三模)如图①,长为120 km的某段线段AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B,A后立刻返回到出发站停止,速度均为40 km/h,设甲车,乙车距南站A的距离分别为y甲(km),y乙(km),行驶时间为t(h).(1)图②已画出y甲与t的函数图象,其中a=____,b=________,c=________;(2)求y乙与t之间的函数关系式,并写出t的取值范围;(3)在图②中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.第2题图3.(2020滦县二模)如图是某山区一段铁路的示意图,AB段和CD段都是高架桥,BC段是隧道.已知AB=1500 m,BC=300 m,CD=2000 m,在AB段高架桥上有一盏吊灯,当火车驶过时,灯光可垂直照射到车身上.已知火车甲沿AB方向行驶,当火车甲经过吊灯时,灯光照射到火车甲上的时间是10 s,火车甲通过隧道的时间是20 s.如果从车尾经过点A时开始计时,设行驶时间为x s,车头距离点B的路程是y m.(1)求火车甲的速度和火车甲的长;(2)求y关于x的函数解析式(写出x的取值范围),并求当x为何值时,车头差500米到达D点;(3)若长度相同的火车乙以相同的速度沿DC方向行驶,且火车甲、乙不在隧道内会车(火车甲先进隧道),那么当火车甲的车头到达A点时,火车乙的车头能否到达D点?若能到达,至多驶过D点多少米?若不能到达,至少距离D点多少米?第3题图4.嘉淇一家利用五一假期开车去某景区旅游,出发前汽车油箱剩余油量为36L,行驶若干小时后,在途中加油站加油若干升(加油时间忽略不计),后继续向景点行驶,汽车油箱内剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.根据图象回答下列问题:(1)求剩余油量Q与行驶时间t的函数关系式;(2)汽车行驶多长时间时,油箱内剩余油量为出发时的一半?(3)如果汽车在行驶过程中所消耗油量的速度不变,加油站距景点300 km,车速为80 km/h,要到达目的地,油箱中的油是否够用?请说明理由.第4题图类型二利润问题(10年3考:2017.26,2016.24,2012.24)典例精析例(2020承德二模)某公司生产甲、乙两种产品,已知生产甲种产品每千克的成本费是30元,生产乙种产品每千克的成本费是20元.物价部门规定,这两种产品的销售单价(每千克的售价)之和为80元.经市场调研发现,甲种产品的销售单价为x(元),在公司规定30≤x≤60的范围内,甲种产品的月销售量y1(千克)符合y1=-2x+150;乙种产品的月销售量y2(千克)与它的销售单价成正比例,当乙产品单价为30元(即:80-x=30)时,它的月销售量是30千克.(1)求y2与x之间的函数关系式;(2)公司怎样定价,可使月销售利润最大?最大月销售利润是多少?(销售利润=销售额-生产成本费)(3)是否月销售额越大月销售利润也越大?请说明理由.针对演练1. (2020宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.某食品加工厂以2万元引进一条新的生产加工线,生产销售一种食品.已知加工这种食品的成本价为每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y(千袋)与销售单价x(元)之间的函数关系为:y =⎩⎨⎧600x(20<x ≤30),12x +10(30<x ≤35).(月获利=月销售收入-生产成本-投资成本)(1)当销售单价定为25元时,该食品加工厂的月销量为多少千袋; (2)求该加工厂的月获利M (千元)与销售单价x (元)之间的函数关系式;(3)求销售单价在30<x ≤35之间时,该加工厂是盈利还是亏损?若盈利,求出最大利润;若亏损,最小亏损是多少?3. 小米利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小米所有玩具的进价均为2元/个,在销售过程中发现:每天玩具销售量y 件与销售价格x 元/件的关系如图所示,其中AB 段为反比例函数图象的一部分,BC 段为一次函数图象的一部分,设小米销售这种玩具的日利润为w 元.(1)根据图象,求出y 与x 之间的函数关系式;(2)求出每天销售这种玩具的利润w(元)与x(元/件)之间的函数关系式,并求每天利润的最大值;(3)若小米某天将价格定为超过4元(x>4),那么要使得小米在该天的销售利润不低于54元,求该天玩具销售价格的取值范围.第3题图4.小红利用暑假40天的时间参与了妈妈的网店经营,了解到一种新商品成本为20元/件,设第x天销售量为p件,销售单价为q元,且得到了表中的数据.x(天) 10 21 35q(元/件) 35 45 35她发现:0<x ≤20时,q 与x 满足关系q =ax +30;20<x ≤40时,q 是基础价与浮动价的和,其中基础价保持不变,浮动价与x 成反比,另外这些天中p 与x 的关系一直保持不变.(1)请确定a 的值;(2)20<x ≤40时,求q 与x 满足的关系式;(3)设该网店第x 天获得的利润y 元,小红已经求得0<x ≤20时y 与x 的函数关系式为y =-12x 2+15x +500.①请你直接..写出这些天中p 与x 的关系式; ②求这些天里该网站第几天获得的利润最大?最大值是多少?5. 某公司计划投资A 、B 两种产品,若只投资A 产品,所获得利润W A (万元)与投资金额x (万元)之间的关系如图所示,若只投资B 产品,所获得利润W B (万元)与投资金额x (万元)的函数关系式为W B =-15x 2+nx+300.(1)求W A 与x 之间的函数关系式;(2)若投资A产品所获得利润的最大值比投资B产品所获得利润的最大值少140万元,求n的值;(3)该公司筹集50万元资金,同时投资A、B两种产品,设投资B产品的资金为a万元,所获得的总利润记作Q万元,若a≥30时,Q随a的增大而减少,求n的取值范围.第5题图类型三实物模型典例精析例(2020衡水模拟)在小明的一次投篮中,球出手时离地面高2米,与篮筐中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米.篮球运行的轨迹为抛物线,篮筐中心距离地面3米,通过计算说明此球能否投中.探究一:若出手的角度、力度和高度都不变的情况下,求小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮筐中?探究二:若出手的角度、力度和高度都发生改变的情况下,但是抛物线的顶点等其他条件不变,求小明出手的高度需要增加多少米才能将篮球投入篮筐中?探究三:若出手的角度、力度都改变,出手高度不变,篮筐中心的坐标为(6,3.44),球场上方有一组高6米的电线,要想在篮球不触碰电线的情况下,将篮球投入篮筐中,直接写出二次函数解析式中a的取值范围.例题图针对演练1. (2020唐山路北区二模)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图②所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请直接写出扩建改造后喷水池水柱的最大高度.图① 图②第1题图2. (2018河北26题11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道y =kx (x ≥1)交于点A ,且AB =1米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t =1时h =5;M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求出y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出t的值及v乙的范围.第2题图3.如图①是由两根等长的立柱和一根晾衣绳构成的简易晾衣架,建立如图所示的坐标系,晾衣绳可看成抛物线y=0.1x2-0.8x+5.(1)求晾衣绳的最低点离地面BD的距离;(2)在晾衣服时为防止衣服接触到地面,在距离立柱AB 5米的位置处用一根立柱MN撑起绳子,如图②,使左边抛物线F1的最低点距MN为1米,距离地面2米,求MN的长;(3)将立柱MN 的长度提升为5米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为13,设MN 与AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,2≤k ≤3时,求m 的取值范围.第3题图类型四几何图形问题典例精析例如图,某住宅小区有一块矩形场地ABCD,AB=16 m,BC=12 m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设观赏鱼用地LJHF的面积为y m2,AG长为x m,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.例题图针对演练1. (2020秦皇岛一模)熊组长准备为我们年级投资1万元围一个矩形的运动场地(如图),其中一边靠墙,另外三边选用不同材料建造且三边的总长为50 m,墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用150元/m,设平行与墙的边长为x/m.(1)若运动场地面积为300 m2,求x的值;(2)当运动场地的面积最大时是否会超过了预算?第1题图2.如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为y m2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13 m2,求x的值;(3)若要求0.6≤x≤1,求改造后油菜花田地所占面积的最大值.第2题图3.某农场要建一个饲养场(矩形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(矩形ABCD)的宽为a米.(1) 饲养场的长为________米(用含a的代数式表示);(2) 若饲养场的面积为288 m2,求a的值;(3) 当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?第3题图专题四函数实际应用类型一行程问题例解:(1)①由题意知s头=vt+300,∵v=2 m/s,∴s头=2t+300;(3分)②∵v=2,甲的速度为2v,∴甲的速度为4m/s,当甲从排尾赶到排头时,4t=2t+300,解得t=150(s),代入可得,s头=2×150+300=600(m);(4分)设甲从排头返回到排尾的过程中所用的时间为(t -150)s , 则s 甲=600-4(t -150)=-4t +1200;(7分)(2)设甲从排尾赶到排头所用时间为t 1,则2vt 1=vt 1+300,∴t 1=300v .(8分)设甲从排头返回排尾时所用时间为t 2, 则t 2=300v +2v =100v ,∴T =t 1+t 2=400v;(9分)∴队伍在此过程中行进的路程为400v ×v =400 m .(10分)1. 解:(1)设甲、乙两人的速度分别为a m /min ,b m /min ,则y 1=⎩⎪⎨⎪⎧1200-ax ax -1200,y 2=bx ,由题图知:x =3.75或7.5时,y 1=y 2,∴⎩⎪⎨⎪⎧1200-3.75a =3.75b 7.5a -1200=7.5b ,解得⎩⎪⎨⎪⎧a =240b =80.答:甲的速度为240 m /min ,乙的速度为80 m /min ; (2)设甲、乙之间距离为d , 则d 2=(1200-240x )2+(80x )2 =64000(x -92)2+144000,∴当x =92时,d 2的最小值为144000,即d 的最小值为12010;答:当x =92时,甲、乙两人之间的距离最短.2. 解:(1)120,3,6;(2)当0≤t ≤3时,y 乙与时间t 之间的函数关系式为y 乙=120-40t ,即y 乙=-40t +120; 当3<t ≤6时,y 乙与时间t 之间的函数关系式为y 乙=40(t -3)=40t -120; 综上所述,y 乙=⎩⎪⎨⎪⎧-40t +120(0≤t ≤3),40t -120(3<t ≤6).(3)y 乙与t 之间的函数图象如解图所示,由图象可知,在整个行驶过程中两车相遇次数为2.第2题解图3. 解:(1)设火车甲的速度是a m /s ,火车甲的长是b m .由题意得⎩⎪⎨⎪⎧10a =b ,20a =300+b ,解得⎩⎪⎨⎪⎧a =30,b =300,答:火车甲的速度是30 m /s ,火车甲的长是300 m ;(2)当车头到达B 点前,即x <40时,y =1500-300-30x =1200-30x ; 当车头在B 点时,y =0; 当车头经过B 点后,即x >40时, y =(x -40)×30=30x -1200,综上,y =⎩⎪⎨⎪⎧1200-30x (x ≤40),30x -1200(x >40).当车头差500米到达D 点时,y =BC +CD -500=1800,即30x -1200=1800,解得x =100, ∴当x =100时,车头差500米到达D 点;(3)火车甲从车头到达A 点,到车尾离开隧道,共用时(1500+300+300)÷30=70(s ),因此要使两列火车不在隧道内会车,则当火车甲车头到达A 点时,火车乙的车头距C 点至少要有70 s 的车程,也就是70×30=2100(m ),∵2100-2000=100(m ),∴当火车甲车头到达A 点时,火车乙车头不能到达D 点,至少距离D 点100 m . 4. 解:(1)加油前:汽车每小时耗油36-63=10L ,则Q 1=-10t +36(0≤t ≤3);加油后:设加油后函数表达式为Q 2=-10t +b (3<t ≤6), 把(3,30)代入,解得b =60,∴Q 2=-10t +60 (3<t ≤6),∴Q =⎩⎪⎨⎪⎧-10t +36(0≤t ≤3)-10t +60(3<t ≤6); (2)∵出发前汽车油箱剩余油量为36L ,∴36×12=18(L ). 令-10t +36=18,解得t 1=1.8,令-10t +60=18,解得t 2=4.2.∴汽车行驶1.8h 或4.2h 时,油箱内剩余油量为出发时的一半;(3)油箱中的油不够用,理由如下:∵80×3010=80×3=240 km <300 km , ∴油箱中的油不够用.类型二 利润问题例 解:(1)∵甲种产品的销售单价为x 元,乙种产品的销售单价为(80-x )元,∴设y 2与x 之间的函数关系式y 2=k (80-x ),∵当80-x =30时,y 2=30,∴30=30k ,得k =1,即y 2与x 之间的函数关系式为y 2=80-x ;(2)设月销售利润为w 元,w =(x -30)(-2x +150)+(80-x -20)(80-x )=-(x -35)2+1525,∴当x =35时,w 取得最大值,此时w =1525,80-x =45,∴甲种产品的销售单价定为35元,乙种产品的销售单价定为45元时,月销售利润最大,最大月销售利润是1525元;(3)不是月销售额越大月销售利润也越大,理由:设月销售额为z ,z =x (-2x +150)+(80-x )(80-x )=-(x +5)2+6425,∴当x >-5时,z 随x 的增大而减小,∴在公司规定30≤x ≤60的范围内,当x =30时,月销售额最大,由(2)知,当x =35时,月销售利润最大,∴不是月销售额越大月销售利润也越大.1. 解:(1)∵该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系, ∴设y =kx +b ,由表中数据可得⎩⎪⎨⎪⎧55k +b =7060k +b =60, 解得⎩⎪⎨⎪⎧k =-2b =180, ∴y 与x 之间的函数关系式为y =-2x +180;(2)当这天获得600元销售利润时,x (-2x +180)-50(-2x +180)=600,解得x =60或x =80. 答:该天的销售单价应定为60元/千克或80元/千克时,该天销售利润为600元;(3)设利润为w 元,则w =x (-2x +180)-50(-2x +180)=-2x 2+280x -9000=-2(x -70)2+800, ∵-2<0,∴当x =70时,才能使当天的销售利润最大,最大利润是800元.答:当销售单价定为70元/千克时,当天销售利润最大,最大利润为800元.2. 解:(1)∵当x =25时,y =60025=24(千袋), ∴当销售单价定为25元时,该食品加工厂的月销量为24千袋;(2)当20<x ≤30时,M =600x (x -20)-20=580-12000x; 当30<x ≤35时,M =(12x +10)(x -20)-20=12x 2-220; ∴M (千元)与x (元)之间的函数关系式为M =⎩⎨⎧580-12000x (20<x ≤30)12x 2-220 (30<x ≤35);(3)盈利.∵当30<x ≤35时,M =12x 2-220,M 随x 的增大而增大, ∴当x =30时,M 最小,M 最小=12×302-220=230>0; ∴盈利,∴当x =35时,M 最大,M 最大=12×352-220=392.5(千元)=39.25(万元). 答:此时该工厂盈利最大利润为39.25万元.3. 解:(1)设AB 段的反比例函数的解析式为y =k x,将A (2,40)代入得,k =80, ∴当2≤x ≤4时,y =80x, ∵BC 段为一次函数图象的一部分,且B (4,20)、C (14,0),∴设BC 段的函数关系式为y =k ′x +b ,有⎩⎪⎨⎪⎧4k ′+b =2014k ′+b =0, 解得⎩⎪⎨⎪⎧k ′=-2b =28, ∴当4<x ≤14时,y =-2x +28,∴y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧80x (2≤x ≤4)-2x +28(4<x ≤14); (2)当2<x ≤4时,w =(x -2)y =(x -2)·80x =-160x+80, ∵随着x 的增大,-160x 增大,∴-160x+80也增大, ∴当x =4时,w 取得最大值为40;当4<x ≤14时,w =(x -2)y =(x -2)(-2x +28)=-2x 2+32x -56=-2(x -8)2+72,∵-2<0,4<8≤14,∴当x =8时,w 取得最大值为72,综上所述,每天利润的最大值为72元;(3)当x >4时,w =-2x 2+32x -56=-2(x -8)2+72,令w =54,即-2x 2+32x -56=54,解得x 1=5,x 2=11,由函数图象可知,要使w ≥54,则5≤x ≤11,∴当5≤x ≤11时,小米的销售利润不低于54元.4. 解:(1)由表格可知:当x =10时,q =35,代入q =30+ax 中得:35=30+10a ,a =0.5;(2)设当20<x ≤40时,q 与x 满足的关系式:q =b +k x, 把(21,45)和(35,35)代入得:⎩⎨⎧b +k 21=45b +k 35=35, 解得⎩⎪⎨⎪⎧k =525b =20, ∴q =20+525x; (3)①p =50-x ;5. 解:(1)由题中图象可知点(20,240)是抛物线的顶点坐标,∴设W A 与x 之间的函数关系式为W A =a (x -20)2+240,又∵点(10,230)在抛物线W A =a (x -20)2+240上,∴230=a (10-20)2+240,解得a =-110. ∴W A 与x 之间的函数关系式为W A =-110(x -20)2+240=-110x 2+4x +200; (2)由(1)得,投资A 产品所获得利润的最大值为240,W B =-15x 2+nx +300=-15(x -5n 2)2+300+54n 2, ∴投资B 产品所获得利润的最大值为300+54n 2. 由题意可得,240+140=300+54n 2,解得n =±8. ∵n =-8时不符合题意,∴n =8;(3)由题意可知,Q =W B +W A =-15a 2+na +300-110x 2+4x +200=-310a 2+(n +6)a +450. ∵当a ≥30时,Q 随a 的增大而减小,∴-n +62×(-310)≤30,解得n ≤12. ∴n 的取值范围为n ≤12.类型三 实物模型例 解:∵抛物线的顶点为(4,4),设抛物线的解析式为y =a (x -4)2+4,∵抛物线过点(0,2),∴2=16a +4,∴a =-18, ∴y =-18(x -4)2+4, 当x =7时,y =-98+4=238≠3. ∴此球不能投中.探究一:设向前平移h 米,由题意可得y =-18(x -4-h )2+4,代入点(7,3),得3=-18(7-4-h )2+4, 解得h =3±22,根据实际情况h =3-22,即向前平移3-22米,可投入篮筐;探究二:设y =a (x -4)2+4,∵投入篮筐,即代入x =7,y =3得3=a (7-4)2+4,解得a =-19, ∴y =-19(x -4)2+4, 当x =0时,y =209,209-2=29,即小明出手的高度要增加29米,可将篮球投入蓝筐中; 探究三:-925<a ≤-125. 1. 解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a (x -3)2+5(a ≠0), 将点(8,0)代入y =a (x -3)2+5,得25a +5=0,解得a =-15, ∴水柱所在抛物线(第一象限部分)的函数表达式为y =-15(x -3)2+5(0<x <8); (2)当y =1.8时,有-15(x -3)2+5=1.8. 解得x 1=-1(舍去),x 2=7,∵当3<x <8时,y 随x 的增大而减小,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)28920米. 2. 解:(1)根据题意,点A (1,18)在反比例函数y =k x的图象上, ∴k =1×18=18,(1分)设h =at 2,根据题意,将t =1,h =5代入得a =5,∴h =5t 2;(2分)(2)当v =5时,∵M ,A 的水平距离为vt ,∴点M 的横坐标为x =5t +1;(3分)∵M ,A 的竖直距离为h =5t 2,∴点M 的纵坐标y =18-5t 2,(4分)∵x =5t +1,∴t =x -15, ∴y =18-5(x -15)2=-15(x -1)2+18,(6分) 当y =13时,-15(x -1)2+18=13, 解得x =6或x =-4(舍),(7分)当x =6时,代入反比例函数y =18x得y =3,(8分) ∴运动员与正下方滑道的竖直距离为13-3=10米;(9分)(3)t =1.8秒,v 乙的取值范围是v 乙>7.5米/秒. (11分)3. 解:(1)∵a =0.1>0,∴抛物线顶点为最低点.∵y =0.1x 2-0.8x +5=0.1(x -4)2+175, ∴绳子最低点离地面BD 的距离为175米; (2)由(1)可知,对称轴为直线x =4,则BD =8,令x =0得y =5,∴A (0,5),C (8,5).由题意可得,抛物线F 1的顶点坐标为:(4,2),设抛物线F 1的解析式为:y =a (x -4)2+2,将(0,5)代入得:16a +2=5,解得a =316, ∴抛物线F 1的解析式为y =316(x -4)2+2. 当x =5时,y =316+2=3516, ∴MN 的长为3516米; (3)∵MN =DC =5,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上.∴抛物线F 2顶点的横坐标为:12(8-m )+m =12m +4. ∴抛物线F 2的顶点坐标为(12m +4,k ). ∴抛物线F 2的解析式为y =13(x -12m -4)2+k . 把C (8,5)代入得,13(8-12m -4)2+k =5, 解得,k =-13(4-12m )2+5, ∴k =-112(m -8)2+5. ∴k 是关于m 的二次函数.又∵0<m <8,∴k 随m 的增大而增大.∴当k =2时,-112(m -8)2+5=2, 解得,m 1=2,m 2=14(不符合题意,舍去),当k =3时,-112(m -8)2+5=3, 解得,m 3=8-26,m 4=8+26(不符合题意,舍去),∴m 的取值范围是:2≤m ≤8-2 6.类型四 几何图形问题例 解:(1)在矩形ABCD 中,CD =AB =16,AD =BC =12,∵正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,AG =x , ∴DG =12-x ,BE =16-x ,FL =x -(12-x )=2x -12,LJ =(16-x )-x =16-2x , ∴y =LJ ·FL =(16-2x )·(2x -12)=-4x 2+56x -192;(2)由(1)得y =-4x 2+56x -192=-4(x -7)2+4,∵a =-4<0,0<x <12,FL =2x -12>0,LJ =16-2x >0,∴6<x <8,∴当x =7时,y 最大为4,即矩形观赏鱼用地LJHF 面积的最大值为4 m 2.1. 解:(1)根据题意,得:(50-x 2)x =300, 解得:x =20或x =30,∵墙的长度为24 m ,∴x =20;(2)设运动场的面积是S ,则S =(50-x 2)x =-12x 2+25x =-12(x -25)2+6252, ∵-12<0, ∴当x <25时,S 随x 的增大而增大,∵x ≤24,∴当x =24时,S 取得最大值,∴总费用=24×200+26×150=8700<10000,∴当运动场地的面积最大时,不会超过预算.2. 解:(1)由题图可知,y =6×8-2×12×(6-x )(8-x )=-x 2+14x (0<x <6); (2)当y =13时,-x 2+14x =13,解得x =1或x =13,∵0<x <6,∴x =1;(3)设油菜花田地占地面积为w ,则w =48-y =x 2-14x +48=(x -7)2-1,∵1>0,∴当x <7时,w 随x 的增大而减小,又∵0.6≤x ≤1,∴当x =0.6时,w 取得最大值,最大值为(0.6-7)2-1=39.96. 答:改造后油菜花田地所占面积的最大值为39.96 m 2.3. 解: (1)60-3a ;(2) 由(1)可知,饲养场面积为a (60-3a )=288,解得a =12或a =8;当a =8时,60-3a =60-24=36>27,故a =8舍去,当饲养场的面积为288时,a 的值为12;(3) 设饲养场面积为y ,则y =a (60-3a )=-3a 2+60a =-3(a -10)2+300, ∵2<60-3a ≤27,∴11≤a <583, ∵-3<0∴a ≥10时,y 随a 的增大而减小∴当a =11时,饲养场面积最大,最大面积为297平方米.。

2021年九年级数学中考复习——函数专题:一次函数实际应用(二)【有答案】

2021年九年级数学中考复习——函数专题:一次函数实际应用(二)【有答案】

2021年九年级数学中考复习——函数专题:一次函数实际应用(二)1.某县成立草莓合作社,帮助草莓种植户统一销售.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图1所示(0≤x≤100),已知草莓的产销投人总成本p (万元)与产量x(吨)之间的关系如图2所示.(1)当30≤x≤70时,求草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)设该合作社所获利润为w(万元),当产量x(吨)为多少时,利润w(万元)达到最大值?2.某社会团体准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进5件甲种防护服和4件乙种防护服需要2万元,购进10件甲种防护服和3件乙种防护服需要3万元.(1)甲种防护服和乙种防护服每件各多少元?(2)实际购买时,发现厂家有两种优惠方案,方案一:购买甲种防护服超过20件时,超过的部分按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买x(x>20)件甲种防护服和30件乙种防护服.①求两种方案的费用y与件数x的函数解析式;②请你帮该社会团体决定选择哪种方案更合算.3.为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.4.《榜样阅读》是中国青年报•中青在线联合酷我音乐共同打造的首档青年阅读分享类音频节目,青春偶像传颂经典、讲述成长故事,用声音掀起新时代青年阅读热潮.某中学为了满足学生的阅读需求,购进了一批图书,并前后两次购买两种书架,其中第一次购买铁质书架10个,木质书架30个,共花费1150元;第二次购买铁质书架30个,木质书架20个,共花费1350元,且两次购买的两种书架单价不变.(1)求这两种书架的单价分别为多少元?(2)若该学校计划再次购买这两种书架共50个,且要求铁质书架的数量不多于木质书架数量的3倍,请设计出最省钱的购买方案,并求出最少费用.5.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服x套(x为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为y 元.(1)求y与x的函数关系式;(2)该服装店计划投入2万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低a元(其中20<a<40),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案.运动服款式甲款乙款进价(元/套)6080售价(元/套)1001506.国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,如图所示l1和l2分别表示每辆车的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系.(1)哪条线表示每辆车改装后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系?(2)每辆车的改装费b=元,正常营运天后,就可以从节省的燃料费中收回改装成本;(3)每辆车改装前每天的燃料费为元;改装后每天的燃料费为元;(4)直接写出每辆车改装前、后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式.7.温度通常有两种表示方法:华氏度(单位:°F)与摄氏度(单位:℃),已知华氏度数y与摄氏度数x之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:…0…35…100…摄氏温度x(℃)…32…95…212…华氏温度y(°F)(1)选用表格中给出的数据,求y关于x的函数解析式;(2)有一种温度计上有两种刻度,即测量某一温度时左边是摄氏度,右边是华氏度,把这个温度计拿到中国最北城市“漠河”,发现两个温度显示刻度一样,求当天漠河的气温.8.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过220kW•h时实行“基础电价”;第二档是当用电量超过220kW•h时,其中的220kW•h仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为xkW•h时,应交电费为y元.具体收费情况如图所示,请根据图象回答下列问题:(1)“基础电价”是元/kw•h;(2)求出当x>220时,y与x的函数解析式;(3)若小豪家六月份缴纳电费121元,求小豪家这个月用电量为多少kW•h?9.快递行业的高速发展也催生了校园勤工俭学“的门路,王小龙同学大学期间在校广播站播出了一条“校内快递”业务,收费方式有两种:方式一:快递物品不超过3千克的,按每千克2元收费;超过3千克,前3千克每千克2元,超过的部分按每千克1.5元收费;方式二:基础服务费4元,另外每千克加收1元.元旦来临,某班级辅导员准备雇用王小龙同学从校内果品店购买一箱桔子回各自班级举办新年茶话会,一箱桔子的质量为x(x>3)千克.(1)请分别写出该辅导员用两种付费方式所需的快递费用y(元)与x(千克)之间的函数关系式,并在下面的平面直角坐标系中画出图象;(2)若两种付费方式所需快递费用相同,求这箱桔子的质量;(3)若采用方式二所需要快递费用比采用方式一便宜5元,求这箱桔子的质量.10.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:品种购买数量低于50箱购买数量不低于50箱新红星原价销售以八折销售红富士原价销售以九折销售如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富士的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;参考答案1.解:(1)当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得:,解得,∴y=﹣0.01x+2.7;(2)由题意可得p=x+1,w=yx﹣p,①当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1,=41(万元);∴当x=30时,w最大②当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1,∴当x=70时,w=69(万元);最大③当70≤x≤100时,w=2x﹣(x+1)=x﹣1;=99(万元).∴当x=100时,w最大综上所述,当产量为100时吨,利润达到最大值.2.解:(1)设甲种防护服每件x元,乙种防护服每件y元,根据题意得:,解得,答:甲种防护服每件2400元,乙种防护服每件2000元;(2)①方案一:y1=2400×20+2400×0.8×(x﹣20)+2000×30=1920x+69600;方案二:y2=(2400x+2000×30)×0.9=2160x+54000.②当y1=y2时,1920x+69600=2160x+54000,解得x=65;当y1>y2时,即1920x+69600>2160x+54000,解得:x<65;当y1<y2时,即1920x+69600<2160x+54000,解得x>65.∴当购买甲种防护服65件时,两种方案一样;当购买甲种防护服的件数超过20件而少于65件时,选择方案二更合算;当购买甲种防护服多于65件时,选择方案一更合算.3.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w 元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当a=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.4.解:(1)设铁质书架的单价是x元,木质书架的单价是y元,由题意得,解得,答:铁质书架的单价是25元,木质书架的单价是30元;(2)设购买木质书架m个,购买两种书架的总费用为w元,则购买铁质书架(50﹣m)个.由题意得w=30m+25(50﹣m)=5m+1250,∵5>0,w随m的增大而增大,∴当m最小时,w有最小值,∵50﹣m≤3m,解得m≥12.5,且m为正整数,∴当m=13时,w=5×13+1250=1315(元),最小此时50﹣m=50﹣13=37(个),答:最省钱的购买方案是购进铁质书架37个,木质书架13个,最少费用为1315元.5.解:(1)根据题意得y=(100﹣60)x+(150﹣80)(300﹣x)=﹣30x+21000;即y=﹣30x+21000.(2)由题意得,60x+80(300﹣x)≤20000,解得x≥200,∴至少要购进甲款运动服200套.又∵y=﹣30x+21000,﹣30<0,∴y随x的增大而减小,∴当x=200时,y有最大值,y=﹣30×200+21000=15000,最大∴若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是15000元.(3)由题意得,y=(100﹣60+a)x+(150﹣80)(300﹣x),其中200≤x≤240,化简得,y=(a﹣30)x+21000,∵20<a<40,则:①当20<a<30时,a﹣30<0,y随x的增大而减小,∴当x=200时,y有最大值,则服装店应购进甲款运动服200套、乙款运动服100套,获利最大.②当a=30时,a﹣30=0,y=21000,则服装店应购进甲款运动服的数量应满足200≤x≤240,且x为整数时,服装店获利最大.③当30<a<40时,a﹣30>0,y随x的增大而增大,∵200≤x≤240,∴当x=240时,y有最大利润,则服装店应购进甲款运动服240套、乙款运动服60套,获利最大.6.解:(1)根据图象可知l1表示每辆车改装后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系;(2)每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;故答案为:4000;100;(3)每辆车改装前每天的燃料费为9000÷100=90元;改装后每天的燃料费为(9000﹣4000)÷100=元;故答案为:90;50;(4)设改装前燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=k1x,根据题意得100k1=9000,解得k1=90,∴改装前燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=90x;设改装后燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=k2x+b,根据题意得,解得,∴改装后燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=50x+4000.7.解:(1)设y=kx+b,把(0,32)和(35,95)代入得:,解得,∴y=+32;(2)根据题意得:+32=x,解得x=﹣40.答:当天漠河的气温为﹣40℃.8.解:(1)“基础电价”是=0.5元/度,故答案为:0.5;(2)当x>220时,设y=kx+b,由图象可得:,解得,∴y=0.55x﹣11;(3)∵y=121>110∴令0.55x﹣11=121,得:x=240.答:小豪家这个月用电量为240kW•h.9.解:(1)∵x>3,∴y1=3×2+1.5(x﹣3)=1.5x+1.5;∴方式一付费方式所需的快递费用y1(元)与x(千克)之间的函数关系为:y1=1.5x+1.5(x>3);方式二付费方式所需的快递费用y2(元)与x(千克)之间的函数关系为:y2=x+4(x>3).如图所示:(2)1.5x﹣2.5=x+4,解得x=5,答:若两种付费方式所需快递费用相同,则这箱桔子的质量为5kg;(3)1.5x+1.5﹣(x+4)=5,解得x=15.答:这箱桔子的质量为15kg.10.解:(1)设每箱新红星a元,每箱红富士b元,由题意可得:,解得,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x箱,则购置红富士(120﹣x)箱,所需的总费用为y元,由题意可得:,解得60≤x≤80,所以新红星箱数x的取值范围60≤x≤80,设购买付款费用为y元,当60≤x≤70时,即新红星大于50箱,购买红富士数量大于50箱,则y=40×0.8x+50×0.9(120﹣x)=﹣13x+5400,∵k=﹣13<0,∴y随x的增大而减小,∴当x=70时,y的值最小,最小值为:y=﹣13×70+5400=4490;当70<x≤80时,即新红星大于50箱,购买红富士数量小于50箱,则y=40×0.8x+50(120﹣x)=﹣18x+6000,∵k=﹣18<0。

初三函数练习题及答案

初三函数练习题及答案

初三函数练习题及答案函数是数学中一个重要的概念,也是初中数学学习的重点内容之一。

通过解决函数练习题,可以帮助学生更好地理解和掌握函数的概念和性质。

下面是一些初三函数练习题及答案,供同学们参考。

练习一:函数的定义与判断1. 函数的定义是什么?函数是两个集合之间的一种特殊对应关系。

对于定义域内的每一个元素,都有唯一对应的值域元素与之对应。

2. 下列哪些对应关系是函数?(1) (1, 2), (2, 3), (3, 4), (1, 5)(2) (1, 2), (2, 3), (1, 4), (2, 5)(3) (1, 2), (2, 3), (3, 4), (4, 2)(4) (1, 2), (2, 3), (3, 2), (4, 1)答案:(1) 是函数。

(2) 不是函数。

(3) 不是函数。

(4) 是函数。

练习二:函数的图像与性质3. 画出函数 y = 2x + 1 的图像,并描述其特点。

答案:函数 y = 2x + 1 的图像为一条直线,通过点 (0, 1)。

斜率为 2,表示函数图像上任意两点的纵坐标之差与横坐标之差的比例为 2:1。

函数图像是上升的,斜率大于 0,表示随着自变量的增大,因变量也增大。

练习三:函数的性质应用4. 已知函数 f(x) 的定义域为实数集 R,值域为区间 [-1, 3]。

若函数g(x) = f(2x),求函数 g(x) 的定义域和值域。

答案:因为 f(x) 的定义域为实数集 R,所以 g(x) 的定义域为实数集 R。

对于任意的 x,有 2x 在 R 上取值。

因此,g(x) 的定义域也为实数集 R。

对于任意的 x,2x 都在定义域内,根据 f(x) 的值域为 [-1, 3],得出f(2x) 的值域也为 [-1, 3]。

因此,函数 g(x) 的值域为 [-1, 3]。

练习四:函数关系的综合应用5. 已知函数 h(x) = |x - 2| + |3 - x|,求使 h(x) 最小的 x 的值,及最小值是多少。

人教版九年级中考数学专题:实际问题与二次函数(销售问题)训练含答案

人教版九年级中考数学专题:实际问题与二次函数(销售问题)训练含答案

人教版九年级中考数学专题:实际问题与二次函数(销售问题)训练一、单选题1.某种商品的成本是120元,试销阶段每件商品的售价x (元)与产品的销售量y (件)满足当130x =时,70y =,当150x =时,50y =,且y 是x 的一次函数,为了获得最大利润S (元),每件产品的销售价应定为( )A .160元B .180元C .140元D .200元 2.一台机器原价60万元,如果每年的折旧率为x ,两年后这台机器的价位为y 万元,则y 关于x 的函数关系式为( )A .260(1)y x =-B .()2601y x =-C .260y x =-D .260(1)y x =+ 3.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( )A .8元或10元B .12元C .8元D .10元4.将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .y=(x ﹣35)(400﹣5x )B .y=(x ﹣35)(600﹣10x )C .y=(x+5)(200﹣5x )D .y=(x+5)(200﹣10x )5.某超市将进货单价为l8元的商品按每件20元销售时,每日可销售100件,如果每件提价1元,日销售就要减少10件,那么把商品的售出价定为多少元时,才能使每天获得的利润最大?( )A .22元B .24元C .26元D .28元 6.“星星书店”出售某种笔记本,若每个可获利x 元,一天可售出()8x -个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 7.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是( )A .600元B .625元C .650元D .675元8.某旅社有100张床位,若每张床位每晚收费100元,床位可全部租出,若每张床位每晚收费提高20元,则减少10张床位租出;若每张床位每晚收费再提高20元,则再减少10张床位租出.以每次提高20元的这种方法变化下去,为了投资少而收入最多,每张床位每晚应提高( )A .60元B .50元C .40元D .40元或60元二、填空题9.进入九月后,某电器商场为减少库存,对电风扇连续进行两次降价,若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为_________________.10.已知某商品每箱盈利10元,现每天可售出50箱,如果每箱商品每涨价1元,日销售量就减少2箱.设每箱涨价x 元时(其中x 为正整数),每天的总利润为y 元,则y 与x 之间的关系式为_______.11.一件工艺品进价为100元,标价135元售出,每天可售出100件. 根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为_______元.12.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元. 13.服装店将进价为每件100元的服装按每件()100x x >元出售,每天可销售()200 x -件,若想获得最大利润,则x 应定为_____元.14.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件,则商场按_______元销售时可获得最大利润__________.15.某花圃用花盆培育花苗,经试验发现,每盆的盈利与每盆种植的株数构成一定的关系.每盆植入4株时,平均每株盈利4元,以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆盈利达到最大,则每盆应植______株.16.小华大学毕业创业,他成功研发出一种产品.产品生产成本为5元/件.已知此产品每一季度的销售量y (万件)与售价x (元/件)之间满足函数关系式20y x =-+.销售量等于产量,那么小华每一季度生产的这种产品利润的最大值是__________.三、解答题17.某精品店购进甲、乙两种商品,已知购进2件甲商品和1件乙商品共需36元,购进3件甲商品与2件乙商品共需64元.(1)求甲商品的和乙商品的进价.(2)甲商品售价是10元一件,可售出200件,据商家统计,甲商品每涨价0.5元,其销售量就减少10件,请问售价定为多少时,才能使利润最大,并求出最大利润.18.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:2240.w x =-+设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y 与x 的关系式;(2)当销售单价定为多少元时,可获得最大利润?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,应将销售单价定为多少元?19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.(1)若商场平均每天要盈利2400元,每件衬衫应降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?20.九年级某班数学小组经过市场调查,整理出某种商品在第()190x x ≤≤天的销售量的相关信息如下表:已知该商品的进价为每件30元,设当天销售该商品的利润为y 元(1)求出y 与x 之间的函数关系式(2)问销售该商品第几天时,当天的销售利润最大?(3)该商品在销售过程中,共有多少天销售利润不低于4800元?请直接写出结果参考答案:1.A2.A3.A4.A5.B6.D7.B8.A9.2(1)y a x=-10.2230500y x x=-++(x为正整数)11.512.7013.15014.95225015.616.2254元17.(1)甲、乙两种商品进价分别为8元/件,20元/件(2)甲商品售价为14元/件时,获得利润最大,最大利润为720元18.(1)2234012000y x x=-+-;(2)当销售单价定为85元时,可获得最大利润;(3)将销售单价定为75元时,可获得2250元的销售利润.19.(1)每件衬衫应降价20元(2)每件衬衫降价18元时,商场所获得的利润最大为2420元20.(1)()()221802000150120120005090x x xyx x⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)45(3)41答案第1页,共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。

相关文档
最新文档