高一物理相遇与追及问题

合集下载

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追及、相遇问题班级:________姓名:____________1、在同一水平面上,一辆小车从静止开始以1m/s2的加速度前进。

有一人在车后与车相距S0=25m处,同时开始以6m/s的速度匀速追车,人与车前进方向相同,则人能否追上车?若追不上,求人与车的最小距离。

2、客车以的速度行驶,突然发现同轨道的前方120m处有一列货车正以6m/s的速度同向行驶,于是客车紧急刹车,以0.8m/s2的加速度作匀减速运动,问两车能否相碰?3、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰好此时一辆自行车以6m/s速度驶来,从后边超越汽车.试求:①汽车从路口开动后,追上自行车之前经过多长时间两车相距最远?最远距离是多少?②经过多长时间汽车追上自行车,此时汽车的速度是多少?4、公共汽车从车站开出以4m/s的速度沿平直公路行驶,2s后一辆摩托车从同一车站开出匀加速追赶,加速度为2m/s2。

试问(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发点多远?(3)摩托车追上汽车前,两者最大距离是多少?5、某人骑自行车以4m/s的速度匀速前进,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.6、羚羊从静止开始奔跑,经过50m 距离能加速到最大速度25m/s并能维持一段较长的时间,猎豹从静止开始奔跑,经过60m距离能加速到最大速度30m/s,以后只能维持这个速度4s,设猎豹距离羚羊x 时开始攻击,羚羊则在猎豹开始攻击后1s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑。

求:(1)猎豹要在其最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追上羚羊,x值应在什么范围?。

高一物理相遇与追及问题

高一物理相遇与追及问题

高一物理相遇与追及问题
高一物理相遇与追及问题是一个比较复杂的问题,主要涉及两个物体的运动和时间关系。

在相遇问题中,两个物体从不同的位置出发,朝着相同的方向运动,最终在某一时刻相遇。

在追及问题中,一个物体在后面追赶前面的物体,当两个物体速度相等时,它们之间的距离达到最大值。

解决相遇与追及问题需要掌握以下几个关键点:
1.确定临界状态:在相遇与追及问题中,临界状态是两个物体速度相等或位移相等。

当速度相等时,两个物体之间的距离最大;当位移相等时,两个物体之间的距离最小。

2.画图分析:通过画图可以直观地分析两个物体的运动情况,例如用位移时间图像表示两个物体的运动轨迹。

3.相对运动:在相遇与追及问题中,通常需要将其中一个物体视为静止,从而简化问题。

例如,在追及问题中,通常将前面的物体视为静止,从而得出后面物体的速度和时间关系。

4.公式运用:在相遇与追及问题中,需要运用速度、位移、时间等物理量之间的关系式进行计算。

例如,在追及问题中,需要运用速度相等时的时间关系式进行计算。

总之,解决相遇与追及问题需要灵活运用物理知识,掌握临界状态的分析方法和画图技巧,从而得出正确的结论。

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。

解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。

一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。

解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。

定义变量设被追物体为A,追赶物体为B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。

解决相遇问题的关键是找出两个物体之间的位移和速度关系。

定义变量设相遇的两个物体分别为A、B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

如果A、B不能相遇,还可以求出它们之间的距离。

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。

若甲的速度小于乙的速度,则两者之间的距离。

若一段时间内两者速度相等,则两者之间的距离。

2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。

⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。

②若甲乙速度相等时,甲的位置在乙的前方,则追上。

③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。

3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。

二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。

⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。

【典型例题】例1.在十字路口,汽车以3米每二次方秒的加速度从停车线启动做匀加速运动,恰好有一辆自行车以6米每秒的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【针对训练】1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.4、某人在室内以窗户为背景摄影时,恰好把窗外从高处落下的一小石子摄在照片中。

高一物理必修一追及与相遇问题

高一物理必修一追及与相遇问题

汽车的速度是多大?汽车运动的位移又是多大?
[方法一] 公式法
当汽车的速度与自行
x汽
车的速度相等时,两车之
间的距离最大。设经时间t
x
两车之间的距离最大。则:
x自
v汽 at v自 t v自 / a 2s
xm
x自
x汽
v自t
1 2
at 2
6m
那么,汽车经过多少时间能追上自行车?此时
汽车的速度是多大?汽车运动的位移又是多大?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯, 当绿灯亮时汽车以3m/s2的加速度开始加速行 驶,恰在这时一辆自行车以6m/s的速度匀速 驶来,从后边超过汽车。试求:汽车从路口 开动后,在追上自行 车之前经过多长时间 两车相距最远?此时 距离是多少?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯,
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候。
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候 是分析讨论两物体在相同时间内能否到 达相同的空间位置的问题。
(1)追及
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻

高一物理追及相遇问题

高一物理追及相遇问题
A B
追及及相遇问题
• 3.若两者位移相等时追者的速度仍大于被 3.若两者位移相等时追者的速度仍大于被 追者的速度, 追者的速度,则被追者还有一次追上追者 的机会,这个过程当中速度相等 速度相等时两者间 的机会,这个过程当中速度相等时两者间 距离有一个最大 最大值 距离有一个最大值.
A B
追及及相遇问题
追及及相遇问题解题步骤
• 1.做出物理情境草图,由情境判断类型, 1.做出物理情境草图,由情境判断类型, 做出物理情境草图 确定解题思路. 确定解题思路. • 2.根据题中信息,建立相关的物理量关系, 2.根据题中信息 建立相关的物理量关系, 根据题中信息, 列方程进行求解. 列方程进行求解. • 3.解题过程中,思路要清晰,考虑问题要 3.解题过程中 思路要清晰, 解题过程中, 全面,避免解题的片面性. 全面,避免解题的片面性.
追及及相遇问题
• 1.当两者的速度相等时,若追者位移大小 1.当两者的速度相等时, 当两者的速度相等时 仍小于二者之间的距离时 则追不上, 二者之间的距离时, 仍小于二者之间的距离时,则追不上,此时 两者之间距离有最小值. 两者之间距离有最小值.
A B
• 2.若两者恰好追及且两者速度相等时,也 2.若两者恰好追及且两者速度相等时 若两者恰好追及且两者速度相等 是两者避免碰撞的临界条件
x0 x2
x1
基础练习
• 2.有两辆同样的列车各以72km/h的速度在同 2.有两辆同样的列车各以72km/h的速度在同 有两辆同样的列车各以72km/h 一条铁路是面对面向对方驶去, 一条铁路是面对面向对方驶去,已知这种列 车刹车时能产生的最大加速度为0.4m/s 车刹车时能产生的最大加速度为0.4m/s2,为 避免列车相撞, 避免列车相撞,双方至少要在两列车相距多 远时同时刹车? 远时同时刹车? • 解题思路:两列车各自刹车至停止所走过的 解题思路:两列车各自刹车至停止所走过 刹车至停止所走过的 位移之和即为题中所求. 位移之和即为题中所求.

高一物理 追及和相遇问题

高一物理 追及和相遇问题

【典型例题】(一).匀加速运动追匀速运动的情况:(开始时v1<v2):v1<v2时,两者距离变大;v1=v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇(即追上)一次。

【例1】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?(二).匀速运动追匀加速运动的情况:(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例2】一个步行者以6m/s的最大速率跑步去追赶被红绿灯阻停的公共汽车,当它距离公共汽车25m时,绿灯亮了,车子以1m/s2的加速度匀加速起动前进,则()A.人能追上汽车,追车过程中共跑了36mB.人不能追上汽车,人和车最近距离为7mC.人不能追上汽车,自追车开始后人和车间距越来越大D.人能追上汽车,追上车前人共跑了43m(三).匀减速运动追匀速运动的情况(同上)【例3】A、B两列火车,在同轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s.因大雾能见度低,B车在距A车700 m时才发现前方有A车,这时B车立即刹车,但B车要经过1 800 m才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.(四).匀速运动追匀减速运动的情况:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

高一物理追及和相遇问题

高一物理追及和相遇问题

△x
x
v自t
1 2
at 2
6t
3 2
t2
x自
当t
6 2 (
3)
2s时
xm
62 4( 3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x
6T
3 2
T
2
0 x汽
T 4s
1 aT 2=24m 2
v汽
aT
12m /
s
【模型二】匀速(匀加速)运动的物体 A (速度小)追及 同向的匀减速运动的物体B (速度大)
6、(2007全国)甲、乙两运动员在训练交接棒的过程中发现:
甲经短距离加速后能保持9m/s的速度跑完全程;乙从起跑后
到接棒前的运动是匀加速的。为了确定乙起跑的时机,需在
接力区前适当的位置标记。在某次练习中,甲在接力区前
s0=13.5m处作了标记,并以v=9m/s的速度跑到此标记时向乙 发出起跑口令,乙在接力区的前端听到口令时起跑,并恰好
③有可能A恰能追上B:当VA=VB时,A、B距离为0。 全过程只相遇一次
例题:甲乙两运动员在训练交接棒的过程中发现: 甲经短距离加速后能保持9 m/s的速度跑完全程; 乙从起跑后到接棒前的运动是匀加速的,为了确定 乙起跑的时机,需在接力区前适当的位置设置标记, 在某次练习中,甲在接力区前S0=13.5 m处作了标 记,并以V=9 m/s的速度跑到此标记时向乙发出起 跑口令,乙在接力区的前端听到口令时起跑,并恰 好在速度达到与甲相同时被甲追上,完成交接棒, 已知接力区的长度为L=20 m。 求:⑴此次练习中乙在接棒前的加速度a。 ⑵在完成交接棒时乙离接力区末端的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理相遇与追及问题
相遇与追及问题在物理中属于运动学内容,是解决两个运动物体相互追及的问题。

这类问题也是高一物理学习中的重点部分。

本文将详细介绍相遇与追及问题,包括解题方法和示例,为同学们提供一定的帮助。

相遇与追及问题是指两个物体从不同位置同时出发,其中一个物体以一定的速度追赶另一个物体,求它们相遇的时间、相遇的位置或相遇时的速度等。

这类问题常见于日常生活中,如两辆车相向而行、两个人互相追赶等。

解决这类问题需要确定两个物体的运动方程,并利用相遇条件进行方程的联立和求解。

首先,我们来看一个最简单的相遇与追及问题的例子。

假设小明以10m/s的速度从A点出发,小红以8m/s的速度从B点出发,A、B点之间的距离为100m。

问小明多长时间能追上小红?
解法如下:设小明追上小红的时间为t,小红此时的位置为x,小明此时的位置为y。

根据运动学的基本公式,可以得到以下方程组:x = 8t + 100 (1)
y = 10t (2)
由于小明追上小红时,两个位置相等,即x = y,我们将方程(1)和方程(2)联立,可以得到:
8t + 100 = 10t
化简得到:
2t = 100
解得t = 50s。

所以小明追上小红的时间为50秒。

这是一个简单的问题,通过解方程就可以得到答案。

但是在实际应用中,相遇与追及问题往往不是这么简单。

下面我们来看一个稍复杂一些的例子。

例题:A、B两车分别从相距240km的A、B两地同时出发,A以10m/s的速度向B驶去,B以15m/s的速度向A驶去。

问A、B两车相遇需要多长时间?
解法如下:我们同样设A、B两车相遇的时间为t,此时A、B两车的位置分别为x、y。

根据题目中的条件,我们可以列出以下方程组:x = 10t (1)
y = 15t (2)
x + y = 240 (3)
其中方程(1)、(2)表示A、B两车的位置随时间的变化,方程(3)表示A、B两车的位置之和等于总距离240km。

将方程(1)和方程(2)联立,可以得到:
10t + 15t = 240
化简得到:
25t = 240
解得t = 9.6小时。

所以A、B两车相遇需要9.6小时。

通过以上两个例子,我们可以总结出解决相遇与追及问题的一般步骤:
1.根据题目中的条件,设定未知量和变量。

确定两个物体的初始位置、速度和相遇的时间等。

2.根据运动学的基本公式,列出两个物体的运动方程。

3.根据相遇条件,将运动方程联立,得到方程组。

4.求解方程组,得到未知量的值。

需要注意的是,在解决相遇与追及问题时,我们需要根据具体的情况确定未知量和变量的意义,理清思路,逐步推导,最终得到问题的解答。

相遇与追及问题是高一物理中的重点内容,通过解决这类问题可以巩固和应用运动学知识。

希望同学们在学习中能够认真理解相遇与追及问题的解决方法,并能够灵活运用于实际生活中的问题解决中。

相关文档
最新文档