新初一数学的知识点及重点难点

合集下载

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点知识点一:整数的加减运算包括带符号整数的相加、相减,掌握正负数的加减法规则,注意进位借位等概念。

知识点二:小数的加减运算掌握小数点的对齐,小数的进位和退位规则,注意小数的加减运算要多注意精度。

知识点三:分数的加减运算掌握分数的相加、相减运算方法,注意通分和约分的规则。

知识点四:平方数与平方根了解平方数的概念和性质,掌握求平方数和平方根的方法。

知识点五:计算器的使用了解计算器的基本功能和使用方法,能够使用计算器进行简单的四则运算。

知识点六:倍数和公约数了解倍数和公约数的概念,能够求一个数的倍数和公约数。

知识点七:分数的乘除运算掌握分数的乘法和除法运算方法,注意化简分数和约分的规则。

知识点八:比例与比例关系了解比例和比例关系的概念,能够根据已知的比例关系求解未知量。

知识点九:几何图形的认识了解常见的几何图形,如直线、尖角、直角、钝角、平行线等,并能够辨认不同的几何图形。

知识点十:面积与周长的计算掌握常见几何图形的面积和周长的计算方法,如矩形、正方形、三角形等。

知识点十一:三角形的性质了解三角形的性质,包括三角形的内角和为180度等。

知识点十二:百分数的计算掌握百分数的转化和计算方法,能够将百分数转化为小数和分数,并进行相关运算。

知识点十三:二次根式的运算了解二次根式的概念和运算方法,包括二次根式的加减运算和化简。

知识点十四:代数式的计算能够进行代数式的加减乘除运算,了解代数式的计算规则。

知识点十五:一元一次方程掌握一元一次方程的基本概念和解法,能够根据题意列方程并求解。

知识点十六:数据的收集与整理了解数据的收集方法和整理方法,能够根据已有的数据绘制图表。

知识点十七:统计与概率了解统计与概率的基本概念,能够进行简单的统计和概率计算。

知识点十八:商与余数的计算掌握除法的基本概念和计算方法,能够计算商和余数。

知识点十九:直角坐标系与图形了解直角坐标系的概念和特点,能够根据已知的坐标绘制图形。

初一数学知识点总结归纳重点

初一数学知识点总结归纳重点

初一数学知识点总结归纳重点一、数的认识1.自然数:自然数的概念,零的引入;2.整数:正整数、负整数、零的概念,数轴的认识;3.分数:分数的概念,分数的意义和表示方法;4.小数:小数的概念,小数的意义和表示方法;5.数轴:正数、零、负数在数轴上的位置和比较。

二、算式和四则运算1.算式:加减法、乘除法相关的概念;2.加法和减法:加减法的运算法则,各种类型算式的解法;3.乘法和除法:乘除法的运算法则,各种类型算式的解法;4.混合运算:将多种运算符号混合运用进行计算。

三、整数的运算1.整数的加减法:整数加减法的运算法则,绝对值大小的比较;2.整数的乘除法:整数乘除法的运算法则,绝对值大小的比较;3.混合运算:将整数加减乘除运算符号混合运用进行计算。

四、小数的运算1.小数加减法:小数加减法的运算法则,金钱问题的计算;2.小数乘法:小数乘法的运算法则,精确计算和估算;3.小数除法:小数除法的运算法则,约分和归纳。

五、分数的运算1.分数加减法:分数加减法的运算法则,通分化简,运算后的化简;2.分数乘法:分数乘法的运算法则,化简和分数序关系的判断;3.分数除法:分数除法的运算法则,化简和分数序关系的判断;4.多种运算符号混合运算:将分数加减乘除运算符号混合运用进行计算。

六、数的应用1.比例:概念、同比例的增减、反比例的增减;2.百分数:百分数的概念、百分数的转化、利息和手续费的计算;3.利益与代价:利润、利率、买卖差价的计算;4.单位换算:长度、容量、质量的换算。

七、图形的认识和计算1.点、线、面的认识和分类;2.直线、曲线的特点和区别;3.正方形、长方形、三角形、圆形的特点和计算;4.棱柱、棱锥、球体的特点和计算。

八、数据与统计1.数据的收集和整理;2.数据的表达方式和统计图的绘制;3.平均数的计算;4.简单的概率问题。

初一数学涉及的知识点非常的广泛,上述列举的只是其中的一部分重点。

初一数学的学习是以打好数学基础为主线,将知识点逐步展开,培养学生的思维能力和解决问题的能力。

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数运算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数运算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、运算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不明白如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。

当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。

平常我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,如此幼儿学得生动爽朗,轻松愉快,既训练了听的能力,强化了经历,又进展了思维,为说打下了基础。

重点:直线、射线、线段、角的认识、中点和角平分线的相关运算、余角和补角,方位角等难点:中点和角平分线的相关运算、余角和补角的应用我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

分析初一数学教学中的常见教学难点及解决方法

分析初一数学教学中的常见教学难点及解决方法

分析初一数学教学中的常见教学难点及解决方法数学作为一门理论性强且抽象的学科,对于初一学生来说,常常会遇到一些困难与障碍。

本文将分析初一数学教学中的常见难点,并提出解决方法。

一、基础知识理解不牢固很多初一学生在数学学习中最大的困难是基础知识理解不牢固。

这导致他们在后续的学习中无法建立起扎实的数学基础。

为了解决这一问题,教师应该采取以下措施:1. 知识串联:将不同章节的知识点联系起来,形成知识上的连贯性,帮助学生建立更全面的数学思维。

2. 多种教学方法:采用多种教学方法,如游戏、角色扮演、实践操作等,激发学生的学习兴趣,提高知识的吸收力和理解力。

二、解题思路不清晰初一学生在数学解题过程中常常存在解题思路不清晰的问题。

这导致他们往往迷失在解题的过程中,无法准确地把握解题思路。

为了帮助学生解决这一问题,教师可以采取以下措施:1. 提供示例:给学生提供一些典型的解题示例,引导他们了解问题的解题思路和步骤,培养他们的解题思维。

2. 剖析解题过程:在解题过程中,教师要逐步剖析解题思路,解释每一步的目的和方法,帮助学生理清思路,明确解题方向。

三、公式记忆困难初一数学中,涉及到许多公式的记忆。

学生常常在记忆公式时遇到困难,导致无法正确运用公式解题。

为了解决这一问题,教师可以采取以下措施:1. 记忆技巧:提供一些简单易记的技巧,帮助学生记忆公式,例如制作关键词卡片、编写公式歌曲等。

2. 反复操练:通过大量的习题操练,巩固学生对公式的记忆,提高其应用能力。

四、思维定势影响创新思维初一学生在数学学习中往往存在思维定势,习惯性地采用固定的思维方式解题,缺乏创新思维。

为了培养学生的创新思维能力,教师可以采取以下措施:1. 培养问题解决能力:引导学生面对问题,培养他们主动思考、独立解决问题的能力。

2. 探索实践:引导学生通过实验、实践等方式来验证和探索数学规律,激发他们的创新思维能力。

综上所述,初一数学教学中的常见难点主要包括基础知识理解不牢固、解题思路不清晰、公式记忆困难和思维定势影响创新思维。

初一数学上册必考的知识点及重难点

初一数学上册必考的知识点及重难点

初一数学上册必考的知识点及重难点1.整数:-整数的概念及表示方法;-整数之间的大小关系;-整数的加法、减法、乘法和除法运算;-整式的化简和展开。

2.分数:-分数的概念及表示方法;-分数与数轴的关系;-分数的加法、减法、乘法和除法运算;-分数的化简和约分。

3.小数:-小数的概念及表示方法;-小数与分数的相互转换;-小数的加法、减法、乘法和除法运算;-小数的进位与舍位计算。

4.平方根:-平方根的概念及表示方法;-平方根的计算;-平方根与平方的关系;-平方根的应用。

5.比例与比例的应用:-比例的概念及表示方法;-比例的性质与判定方法;-比例的四种基本关系;-比例的应用,如物体相似、线段分割等。

6.百分数与百分数的应用:-百分数的概念及表示方法;-百分数与分数、小数的相互转换;-百分数的基本计算;-百分数的应用,如利润、增长率、折扣等。

7.几何图形:-点、线、面、角的基本概念;-直线、射线、线段的区别与判定方法;-正方形、长方形、菱形、平行四边形等各种图形的性质;-三角形及各种特殊三角形的性质。

8.平面与空间:-平面与立体图形的概念;-各种立体图形的性质,如长方体、正方体、棱锥、棱柱等;-空间几何体的展开与折叠。

9.统计与概率:-了解统计学的基本概念;-数据的收集、整理与分析方法;-概率的基本概念及计算方法;-利用概率进行问题解答。

1.整数运算中的进位与舍位计算;2.分数和小数之间的转换;3.平方根的计算和应用;4.比例和百分数的应用问题;5.图形的性质及判定方法;6.立体图形的展开与折叠;7.数据的收集、整理与分析方法;8.概率的计算和应用。

要提高数学水平,建议学生重点掌握以下方法:1.培养数学的逻辑思维能力,学会分析问题并找出解决方法;2.注重基础知识的掌握,特别是对概念和运算规则的理解;3.多进行练习,通过做题来巩固知识,理清思路;4.注意归纳总结,将不同类型的题目归类整理,帮助记忆和应用;5.多与同学和老师进行交流和讨论,探讨解题思路和方法;6.及时查漏补缺,对于不懂的知识点可以与老师或同学请教。

人教版初一数学各章重难点

人教版初一数学各章重难点

初一上册重点知识第一章:有理数1.本章的知识点有:负数,数轴,相反数,绝对值,加法法则,减法法则,乘法法则,除法法则,乘方,乘方的相关符号法则,科学记数法,有效数字等相关知识点。

2. 本章的难点是:绝对值的性质(难题常从这里处出)学生一般理解不够透彻,运用得灵活度不够。

3.有理数的运算不难,但易错,不容易得分。

易错处:(1)加法法则;(2)在去括号与添括号中变号问题易错(符号易错);(3)乘法中也是符号易错,除法常忘记变倒数:(4)乘方部分易和乘法混:如:(-2)3=-6,(×)(-1)2010与-12010;(5)科学记数法与有效数字(中考必考)精确位数易错,但较简单。

同时很多老师和学生很容易忽略掉的知识点是:加法法则(很多学生因为加法法则没学好导致第二章整式只考二三十分,这是我在教学过程中悟出来的)。

本章在预习过程中所需的课时是6-8次课,即12-16小时。

第二章:整式1.本章的知识点有:单项式,多项式,同类项,合并同类项及相关知识点。

2.本章的易错点是:(1)单项式和多项式的次数问题;(2)含参数的多项式;(3)单项式的相关概念与方程结合;(4)同类项概念与参数结合;(5)整式的加减法运算(中考必考5分)化简求值对熟练程度和准确度要求较高,初学时易错(符号变换问题)较难的是那种一眼看不出个所以然的,一般都把握不好。

(整体代入是基本思想)本章在预习过程中所需的课时是2-4次课,即4-8小时。

第三章:一元一次方程:1.重点在于思维的转换和数学模型的建立。

对于本章的概念理解即可,稍难一些的是含有参数的方程求参数值;2.解一元一次方程中较难的是绝对值方程;列方程解应用题(较难),几种常见的类型有①和差倍分、②行程问题、③工程问题、④数位问题、⑤商品销售中的盈亏问题、⑥比例问题、⑦生活中的投资决策问题、⑧体育比赛中的积分问题。

小学学过奥数的一般都没有问题。

这一章所有学生都觉得很难的是与商品销售有关的应用题。

初一数学各章重难点

初一数学各章重难点

初一第一章:有理数本章的知识点有:负数,数轴,相反数,绝对值,加法法则,减法法则,乘法法则,除法法则,乘方,乘方的相关符号法则,科学记数法,有效数字等相关知识点。

本章的难点是:绝对值的性质(难题常从这里处出)学生一般理解不够透彻,运用得灵活度不够。

有理数的运算不难,但易错,不容易得分。

易错处:(1)加法法则;(2)在去括号与添括号中变号问题易错(符号易错);(3)乘法中也是符号易错,除法常忘记变倒数:(4)乘方部分易和乘法混:如:(-2)3=-6,(×)(-1)2010与-12010;(5)科学记数法与有效数字(中考必考)精确位数易错,但较简单。

同时很多老师和学生很容易忽略掉的知识点是:加法法则(很多学生因为加法法则没学好导致第二章整式只考二三十分,这是我在教学过程中悟出来的)。

本章在预习过程中所需的课时是6-8次课,即12-16小时。

第二章:整式本章的知识点有:单项式,多项式,同类项,合并同类项及相关知识点。

在我一对一的教学过程中感觉本章的易错点是:(1)单项式和多项式的次数问题;(2)含参数的多项式;(3)单项式的相关概念与方程结合;(4)同类项概念与参数结合;(5)整式的加减法运算(中考必考5分)化简求值对熟练程度和准确度要求较高,初学时易错(符号变换问题)较难的是那种一眼看不出个所以然的,一般都把握不好。

(整体代入是基本思想)本章在预习过程中所需的课时是2-4次课,即4-8小时。

第三章:一元一次方程:重点在于思维的转换和数学模型的建立。

对于本章的概念理解即可,稍难一些的是含有参数的方程求参数值;解一元一次方程中较难的是绝对值方程;列方程解应用题(较难),几种常见的类型有①和差倍分、②行程问题、③工程问题、④数位问题、⑤商品销售中的盈亏问题、⑥比例问题、⑦生活中的投资决策问题、⑧体育比赛中的积分问题。

小学学过奥数的一般都没有问题。

这一章所有学生都觉得很难的是与商品销售有关的应用题。

初一数学重难点总结复习

初一数学重难点总结复习

初一数学重难点总结复习初一数学重难点总结复习【4篇】复习总结还可以跨学科地进行,将不同学科的知识点联系起来,形成知识网络。

复习总结应该注重对自己的要求,不断提高自己的学术标准和道德水平。

下面就让小编给大家带来初一数学重难点总结复习,希望大家喜欢!初一数学重难点总结复习1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.初一数学重难点总结复习2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。

0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初一数学的知识点及重点难点(上册)第一章有理数: 1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值. 易错点:绝对值、有理数计算. 中考必考:科学计数法、相反数(选择题)第二章整式的加减:1.整式 2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程: 1.从算式到方程 2.解一元一次方程——合并同类项与移项3.解一元一次方程——去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系第四章图形认识实步 1.多姿多彩的图形 2.直线、射线、线段3.角4.课题实习——设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清新初一生如何做好数学衔接做好小升初衔接对之后初中学习大有帮助,那么在没有进入初中之前,我们要对其有一个大概的把握,首先从数学学习入手。

初中数学是一个整体。

初二的难点最多,初三的考点最多。

相对而言,初一数学知识点虽然很多,但都比较简单。

很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。

—2—有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。

这个问题究其原因,主要是对初一数学的基础性,重视不够。

我们这里先列举一下在初一数学学习中经常出现的几个问题:1、对知识点的理解停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

那怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

(2)总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

—4—我们的建议是:“总结归纳”是将题目越做越少的最好办法。

(3)收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。

但这恰恰又是最需要解决的问题。

同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

另外一个就是,找出自己的不足,然后弥补它。

这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

(4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。

这是很平常的道理。

但就是这一点,很多同学都做不到。

原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。

抱着这样的心态,学习任何东西都不可能学好。

“闭门造车”只会让你的问题越来越多。

知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。

这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。

直到无法赶上步伐。

讨论是一种非常好的学习方法。

一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。

需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

我们的建议是:“勤学”是基础,“好问”是关键。

(5)注重实战(考试)经验的培养考试本身就是一门学问。

有些同学平时成绩很好,上课老师一提问,什么都会。

课下做题也都会。

可一到考试,成绩就不理想。

出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。

心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。

每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。

做题速度慢的问题,需要同学们在平时的做题中解决。

自己平时做作业可以给自己限定时间,逐步提高效率。

另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

—6—我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

初一下册的数学怎么样才能掌握的更好1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率!3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!总之,学时数学,不要怕难,不要怕累,不要怕问!初一的大多数占几何题,你只要上课听老师说的重点,然后结合自己记住的知识(公式什么的)多练些题,要做到不懂就问的习惯,这样你的长久一定有所提高,但是数学要慢慢来,不能你一下就要爆练爆写,要根据自己的实力来做一些适合你的奥数题!你太急的话,反而成绩下降,心情会更烦!~~~还有就是数学是最容易学的,不用背诵、重在听讲和多做题希望你能读好数学!初一下册数学的重点和难点重点:三线八角的认识,平行线的判定和性质,坐标,三角形内角和定理,二元一次方程组的解法,实际问题中的等量关系(用于解决实际问题),不等式的解法,不等式组的解集求法,调查方法的选择,统计图的选择,直方图。

难点:使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法初一数学(下)应知应会的知识点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:—8—(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;—10— 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔ 0b a >⇔ ⎩⎨⎧>>0b 0a 或⎩⎨⎧<<0b 0a ; ab <0 ⇔ 0b a < ⇔ ⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0a ; ab=0 ⇔ a=0或b=0; ⎩⎨⎧≤≥m a m a ⇔ a=m .7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设 a >b9.几个重要的判断: 是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭⎬⎫><+, 异号且正数绝对值、y x 0xy 0y x ⇔⎭⎬⎫<>+.y x 0xy 0y x 异号且负数绝对值大、⇔⎭⎬⎫<<+整式的乘除1.同底数幂的乘法:a m ·a n =a m+n,底数不变,指数相加.2.幂的乘方与积的乘方:(a m)n=a mn,底数不变,指数相乘;(ab)n=a n b n,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;② (a-b)2=a2-2ab+b2, 两个数差的平方,等于它们的平方和,减去它们的积的2倍;※③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.—12—7.配方:(1)若二次三项式x 2+px+q是完全平方式,则有关系式:q 2p 2=⎪⎭⎫⎝⎛;※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k.※(3)注意:2x 1x x 1x 222-⎪⎭⎫ ⎝⎛+=+. 8.同底数幂的除法:a m ÷a n =a m-n,底数不变,指数相减. 9.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n=na1,(a ≠0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)—14——16——18—几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平—20— 行.三 公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″. 四 常识:1.定义有双向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数. 6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析. 7.方向角:北偏西30°南偏东60°30°60°北南东西东北东南西北西南(1)(2)8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.。

相关文档
最新文档