六年级用比例解决问题
六年级数学 用比例解决问题

03
解:设王大爷家上个月用水x吨, 19.2:x=12.8:8 x=19.2×8÷12.8 x=12 答:王大爷家上个月用水12吨。
04
2.一批书如果每包20本,要捆18 包。如果每包30本,要捆多少包?
因为书的总数一定,所以包数和每包的本数成反 比例.也就是说,每包的本数和包数的乘积相等。
解:设要捆x包, 30x=20×18 x=360÷30 x=12 答:要捆12包。
用比例 解决问题
Template
WINTER
01
02
1.张大妈上个月用了8吨水,水费12.8元, 李奶奶家用了10吨水,李奶奶家上个月 的水费是多少钱?
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例,也就是说,两家的水费和用水吨数的的比值相等。
解:设李奶奶家上个月的水费是x元, 12.8:8=x:10 王大爷家上个月的 8x=12.8×10 水费是19.2元,他 x=128÷8 们家上个月用了多 x=16 少吨水? 答:李奶奶家上个月的水费是16元。
05
1.500千克的海水中含盐25千克, 6800吨的海水含盐几吨?
2.服装厂2天加工西装120套, 照这样计算,加工540套西装 需要多少天?
谢谢观赏Biblioteka
六年级数学用比例解决问题试题

六年级数学用比例解决问题试题1.甲乙丙三人共同生产100个零件,甲完成了三成,乙和丙完成的数量比是2:5,乙和丙各完成多少个?【答案】乙完成20个,丙完成50个。
【解析】现已知乙丙完成的数量之比,只要找到他们两个完成的总数,就很容易“按比例分配”了。
解:100×(1-)=70(个),2+5=7,70×=20(个),70×=50(个)答:乙完成20个,丙完成50个。
【考点】比的应用。
2.某工厂采用最新技术,每天用料14吨,这样原来7天的用料,现在可用10天,原来每天用料几吨?【答案】20吨【解析】先求出木料的总量,再用这个总量除以原来使用的天数即可。
解:14×10=140(吨)140÷7=20(吨)答:原来每天用料20吨。
3.师徒两人加工一种零件.用同样的时间,徒弟可以加工3个,师傅可以加工5个。
如果两人共同加工200个这样的零件,师傅、徒弟分别要加工多少个?【答案】师傅加工125个,徒弟加工75个【解析】根据“用同样的时间,徒弟可以加工3个,师傅可以加工5个,”知道徒弟和师傅的工作效率的比是3:5,由此知道徒弟的工作效率是两人工作效率的和的,再根据在时间一定时,工作量与工作效率成正比例,即徒弟的工作量是两人工作量和的,进而解决问题。
解:他们的效率之比是3:5。
徒弟加工零件的个数:200×=200×=75(个)师傅加工零件的个数:200-75=125(个)答:师傅加工125个,徒弟加工75个。
4.某俱乐部男、女会员的人数之比是,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是,甲组中男、女会员的人数之比是,乙组中男、女会员的人数之比是.求丙组中男、女会员人数之比.【答案】5:9【解析】以总人数为1,则甲组男会员人数为,女会员为,乙组男会员为,女会员为;丙组男会员为,女会员为;所以,丙组中男、女会员人数之比为.5.一班和二班的人数之比是,如果将一班的名同学调到二班去,则一班和二班的人数比变为.求原来两班的人数.【答案】48 42【解析】原来一班的人数为两班总人数的,调班后一班的人数是两班人数的,调班前后一班人数的比值为,所以一班原来的人数为人,二班原来的人数为人.6.甲本月收入的钱数是乙收入的,甲本月支出的钱数是乙支出的,甲节余240元,乙节余480元.甲本月收入多少元?【答案】600【解析】甲、乙本月收入的比是,分别节余240元和480元,支出的钱数之比是.如果乙节余480元,甲节余元,那么两人支出的钱数之比也是,现在甲只节余240元,多支出了60元,结果支出的钱数之比从变成了(即),所以这60元就对应份,那么甲支出了元,所以甲本月收入为元.7.甲、乙两车分别从、两地同时相向开出,甲车速度是千米/小时,乙车速度是千米/小时,当甲车驶过、距离的多千米时与乙车相遇,、两地相距()千米.【答案】225【解析】在相同的时间内,两车行驶的路程比等于两车的速度之比,由于两车的速度之比等于,那么、距离的多千米即是、距离的,所以千米的距离相当于全程的,全程的距离为(千米).8.甲、乙、丙三个数,已知,,求。
六年级下册 用比例解决问题应用题

用比例解决问题
班级: 姓名:
1.李叔叔开车从甲地到乙地一共用了5小时,每小时行60km ,返回时每小时行75km ,返回时用了多少时间?
2.六年级同学进行广播操表演,如果每排站15人,正好站8排,如果要站成10排,每排应站多少人?
3.一个晒盐场用100克海水可以晒出3克盐,照这样计算,多少吨海水可以晒出180吨盐?
4.修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?
5.一个客厅,用边长3dm 的方砖铺地,需要112块,如果用边长4dm 的方砖铺地,需要多少块?
6.一个手机组装车间完成一批生产任务,若每天组装手机500台,需要24天完成.现在要求15天完成任务,每天需要组装多少台?
7.火车从甲站开往乙站,4.2小时行了全程的
9
7,照这样的速度,火车行完剩下的路程还需几小时?
8.加工一批零件,刘叔叔前3小时加工了135个零件.照这样的速度,刘叔叔加工完这批零件一共需要8小时.这批零件共有多少个?
9.李阿姨家装修房间,如果用边长为0.4m的方砖来铺,350块刚好铺满;如果用边长为0.5m的方砖来铺,需要多少块刚好铺满?
10.有一项工作,原计划40个人工作18天正好完成任务,如果每个人的工作效率相同,现在增加5个人,可以提前几天完成任务?
11.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?
12.有一项工作,原计划40个人工作18天正好完成任务,如果每个人的工作效率相同,现在增加5个人,可以提前几天完成任务?
13.榨油厂用300千克花生可以榨出39千克花生油,照这样计算,要榨出104千克油需要多少千克的花生?。
六年级数学下册用比例解决问题

用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。
到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。
请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。
六年级下4.3用比例解决问题

六年级下4.3用比例解决问题《六年级下 43 用比例解决问题》在六年级的数学学习中,用比例解决问题是一个非常重要的知识点。
它不仅能够帮助我们更轻松地解决一些实际的数学问题,还能培养我们的逻辑思维和分析能力。
比例,简单来说,就是两个比相等的式子。
比如,2:3 = 4:6,这就是一个比例。
而用比例解决问题,就是根据题目中给出的条件,找出其中的比例关系,然后通过设未知数、列比例式、解比例等步骤来求出答案。
我们先来看一个常见的例子。
比如,一辆汽车 2 小时行驶了 100 千米,按照这样的速度,5 小时可以行驶多少千米?在这个问题中,我们知道汽车行驶的速度是一定的,也就是路程和时间的比值是不变的。
那么,我们可以设5 小时行驶的路程为x 千米。
因为速度=路程÷时间,所以第一次行驶的速度为 100÷2 = 50(千米/小时),第二次行驶的速度为 x÷5。
由于速度不变,所以可以列出比例式:100:2 = x:5接下来,我们就可以根据比例的性质来解这个比例。
在比例里,两个内项的积等于两个外项的积。
所以 2x = 100×5,2x = 500,x = 250。
这就求出了 5 小时行驶的路程是 250 千米。
再来看另一个例子。
小明买 5 本同样的练习本用了 10 元,那么买 8 本这样的练习本需要多少钱?同样的,我们设买 8 本需要 x 元。
因为练习本的单价是一定的,所以可以列出比例式:5:10 = 8:x根据比例的性质,5x = 10×8,5x = 80,x = 16所以买 8 本练习本需要 16 元。
用比例解决问题的时候,关键是要找到题目中不变的量,以及与之相关的两个变量,然后判断它们是成正比例还是反比例关系。
正比例关系是指两个量的比值一定,比如上面汽车行驶的例子,速度一定,路程和时间成正比例。
反比例关系则是指两个量的乘积一定,比如做一项工作,工作总量一定,工作效率和工作时间成反比例。
苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。
(1)以AB为轴,将三角形ABC旋转一周能形成________。
(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。
(3)在适当的位置按1∶2的比画出长方形缩小后的图形。
3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。
若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。
(1)按3∶1的比画出图形A放大后得到的图形B。
(2)按1∶2的比画出图形B缩小后得到的图形C。
我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。
5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。
(单位:分米)12.根据图中提供的信息,完成下列问题。
(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。
(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。
广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。
乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。
数学六年级下册《用比例解决问题》教案

数学六年级下册《用比例解决问题》教案一、教学目标1.知识与技能:理解比例意义,掌握解比例的方法,能够运用比例解决简单的实际问题。
能够区分正比例和反比例关系,并能根据实际问题选择合适的比关系进行解答。
2.过程与方法:通过观察、分析、比较、归纳等活动,经历用比例解决问题的过程体会数学与生活的联系,发展学生的分析问题和解决问题的能力。
能够运用多种方法(例如:方程法、比例法)解决同一个问题,并比较不同方法的优缺点。
3.情感态与价值观:培养学生认真细致的学习态度,增强学生运用数学知识解决实际问题的自信心,体会数学的应用价值。
二、教学重点运用比例解决实际问题,区分正比和反比例关系。
三、教学难点分析实际问题中的数量关系,选择合适的比例式列式解答。
四、教学准备多媒体课件、练习题、比例尺模型、实物投影仪五、教学过程(一复习旧知 (5分钟)1.什么是比例?比例的基本性质是什么?2.如何解比例?举例说明。
3.举例说明正比例和反比例的意义。
(二) 导入新课 (5分钟)教师展示一些生活中的图片例如:地图、比例模型、工程进度图等,引导学生思考这些图片中蕴含的数学知识,引出比例的应用。
(三) 探究新知 (30分钟)1.例题讲解:选择几个不同类型的例题进行讲解,例如:•例题1 (正比例):如果5个苹果重1千克,那么15个苹果重多少千克?引导学生分析题意,找出题中的数量关系,列出比例式并解答。
讲解解题步骤,并强调单位的统一。
•例题2 (反比例): 5个人完成一项工程需要10天,如果增加到10个人,完成这项工程需要多少天?引导学生分析题意,找出题中的数量关系,列出比例式并解答。
比较正比例和反比例的区。
o例题3 (稍复杂的应用题):某地图的比例尺是1:50000,地图上两地相距4厘米,实际距离是多少千米?引导学生理解比例尺的意义,并运用比例解决问题。
2.*小组合作:** 将学生分成小组,让学生尝试解决课本上的练习题,教师巡视指导,帮助学生解决遇到的问题。
人教版小学数学六年级下学期第4单元—用比例解决问题

用比例解决问题
班级:姓名:
一、判断两种相关联的量是否成比例?成什么比例?
1、总路程一定,速度和时间。
()
2、总页数一定,看了的页数和剩下的页数。
()
3、购买铅笔的单价一定,总价和数量。
()
4、汽车行驶的速度一定,所走的路程和时间。
()
二、解决问题。
1、小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔,要用多少钱?
2、小兰的身高1.5m,她的影长是2.4m,如果同一时间、同一地点测得一棵树的影子长4m,这棵树有多高?
3、王叔叔开车从甲地到乙地、前2小时行了100km照这样的速度从甲地到乙地一共要用3小时,甲乙两地相距多远?
4、一辆货车前往灾区运送救灾物资,2小时行驶了30千米。
从出发地点到灾区有90千米,按照这样的速度,全程需要多少小时?
5、一个办公楼原来平均每天照明用电100千瓦时。
改用节能灯以后,平均每天只用电25千瓦时。
原来5天的用电量现在可以用多少天?
6、学校小商店有两种圆珠笔,小明带的钱刚好可以买4支单价是1.5元的,如果他只买单价是2元的,可以买多少支?
7、小明家用收割机收割小麦。
如果每小时收割0.3公顷,40小时能完成任务。
(1)现在想用30小时收割完,那么每小时应收割多少公顷?
(2)每公顷产小麦8t,这块地共产小麦多少吨?
8、一间房子要用方砖铺地,用边长0.6m的方砖铺地,需要100块。
如果改用边长是0.5m的方砖铺地,需要多少块?
9、中国发射的科学气象卫星,在太空中绕地球运行6周需10.6小时,如果运行15周需要多少小时?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级比例知识应用题
1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?
2、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)
3、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?
4、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?
5.用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?
6、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?
7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?
8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?
9、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?
10、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?
11、一间房五铺地砖,用面只是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?
12、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?
13、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?
14、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?
15.同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)
16.飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?(用比例方法解)
17.修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?(用比例方法解)
18.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
19.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)
20.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)
21.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本? (用比例方法解)
22.配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?。