遗传算法

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)

改善 (独立于问题的) 否
终止?
终止? 是 结束

结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。

遗传算法

遗传算法
适应度越高的染色体被选择的可能性越大,其遗传 基因在下一代群体中的分布就越广,其子孙在下一代 出现的数量就越多。
2019/12/10
4
轮盘法
6.5% 25.4%
42.2%
(1) 计算每个染色体xi 的适应度f(xi);
35.9%
popsize
(2) 找出群体的适应度之和;SUM f ( xi )
群体(population) 由染色体组成的集合。
代遗传操作 遗传操作作用于群体而产生新的群体。
2019/12/10
2
二、基本算法
用于比较不同的解以 确定哪 一个解是更好 的一个措施。
2019/12/10
3
三、基本遗传算子
选择算子(Selection)
用于模拟生物界去劣存优的自然选择现象。它从旧 种群中选择出适应性强的某些染色体,放人匹配集(缓 冲区),为染色体交换和变异运算产生新种群作准备。
1
一、相关概念
染色体(chromosome)或个体(individual) 把每一个 可能的解编码为一个向量,用来描述基本的遗传结构。 例如,用0,1 组成的串可以表示染色体。
基因
向量中的每一个元素
适应度(fitness) 每个染色体所对应的一个适应值。 在优化问题中,适应度来自于一个目标评价函数。
(7) 重复执行(5)(6)直到缓冲区中有足够多的染色体。
2019/12/10
5
交叉算子(Crossover)
具体做法:
(1) 缓冲区中任选两个染色体(双染色体);
(2) 随机选择交换点位置J,0<J<L(染色体长度);
(3) 交换双亲染色体交换点右边的部分。(单点交叉)

什么是遗传算法

什么是遗传算法

什么是遗传算法遗传算法的基本意思就是说象人的遗传一样,有一批种子程序,它们通过运算得到一些结果,有好有坏,把好的一批取出来,做为下一轮计算的初值进行运算,反复如此,最终得到满意的结果。

举个例子,假如有一个动物群体,如果你能让他们当中越强壮的越能优先交配和产籽,那么千万年后,这个动物群体肯定会变得更加强壮,这是很容易理解的。

同样,对于许多算法问题,特别是NP问题,比如说最短路径,如果有400个城市,让你找出最短的旅游路线,采用穷举比较,复杂度为O(n!),这时,你可以先随机产生100种路径,然后让他们之中路程越短的那些越能优先互相交换信息(比如每条里面随机取出10个位置互相交换一下),那么循环几千次后,算出来的路径就跟最短路径非常接近了(即求出一个近似最优解)。

遗传算法的应用还有很多,基本思想都一样,但实现上可能差别非常大。

现在有许多搞算法的人不喜欢遗传算法,因为,它只给出了一种“有用”的方法,却不能保证有用的程度,与此相反,能保证接近最优程度的概率算法更受青睐。

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。

它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

它是现代有关智能计算中的关键技术之一。

1.遗传算法与自然选择 达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。

这种学说认为,生物要生存下去,就必须进行生存斗争。

生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。

在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。

遗传算法

遗传算法
1.4 遗传算法的应用领域
数学建模专题之遗传算法
(1)函数优化(经典应用) (2)组合优化(旅行商问题——已成为衡量算法优劣的标准、背包问 题、装箱问题等) (3)生产调度问题 (4)自动控制(如航空控制系统的优化设计、模糊控制器优化设计和 在线修改隶属度函数、人工神经网络结构优化设计和调整人工神 经网络的连接权等优化问题) (5)机器人智能控制(如移动机器人路径规划、关节机器人运动轨迹 规划、机器人逆运动学求解等) (6)图像处理和模式识别(如图像恢复、图像边缘特征提取、几何形 Hotspot 状识别等) (7)机器学习(将GA用于知识获取,构建基于GA的机器学习系统) 此外,遗传算法在人工生命、遗传程序设计、社会和经济领域等 方面的应用尽管不是很成熟,但还是取得了一定的成功。在日后,必 定有更深入的发展。
内容 应用Walsh函数分析模式 研究遗传算法中的选择和支配问题 遗传算法应用于非稳定问题的粗略研究 用遗传算法解决旅行商问题(TSP) 基本遗传算法中用启发知识维持遗传多样性
1985
1985 1985 1985 1985
Baker
Booker Goldberg, Lingle Grefenstette, Fitzpattrick Schaffer
试验基于排序的选择方法
建议采用部分分配计分、分享操作和交配限制法 TSP问题中采用部分匹配交叉 对含噪声的函数进行测试 多种群遗传算法解决多目标优化问题
1 遗传算法概述
续表1.1
年份 1986 贡献者 Goldberg 最优种群大小估计
数学建模专题之遗传算法
内容
1986
1987 1987 1987 1987
2 标准遗传算法
2.4 遗传算法的应用步骤

遗传算法

遗传算法

5.3.3 多交配位法
单交配位方法只能交换一个片段的基 因序列,但多交配位方法能够交换多 个片段的基因序列 1101001 1100010 1100000 1101011
交配前
交配后
5.3.4 双亲单子法
两个染色体交配后,只产生一个子染 色体。通常是从一般的交配法得到的 两个子染色体中随机地选择一个,或 者选择适应值较大的那一个子染色体
6.1.4 基于共享函数的小生境实现方 法
6.1.1 小生境遗传算法的生物 学背景
•小生境是特定环境下的生存环境
•相同的物种生活在一起,共同繁 衍后代 •在某一特定的地理区域内,但也 能进化出优秀的个体 •能够帮助寻找全部全局最优解和 局部最优解(峰顶)
6.1.2 基于选择的小生境实现 方法
•只有当新产生的子代适应度超过 其父代个体的适应度时,才进行 替换,否则父代保存在群体中 •这种选择方式有利于保持群体的 多样性 •这种方法有利于使得某些个体成 为它所在区域中的最优个体
5.1.3 实数编码的实现方法(续)
•适合于精度要求较高的问题 •便于较大空间的遗传搜索 •改善了遗传算法的计算复杂性, 提高了效率 •便于遗传算法与经典优化算法混 合使用 •便于设计针对问题的专门知识型 算子 •便于处理复杂的决策约束条件
5.2 选择算子
5.2.1 概率选择算子
5.2.2 适应值变换选择算子
•pm: 变异概率,一般取0.0001—0.1
4.1 问题描述 4.2 问题转换和参数设定 4.3 第0代情况 4.4 第0代交配情况 4.5 第1代情况 4.6 第1代交配情况 4.7 第1代变异情况 4.8 第2代情况 4.9 第2代交配情况
4. 基本遗传算法举例
4.1 问题描述

遗传算法实例参考

遗传算法实例参考
03 交换基因是指在解空间中随机选择两个位置,将 两个位置上的基因进行交换。
05 遗传算法实例:其他问题
问题描述
旅行商问题
给定一系列城市和每对城市之间 的距离,要求找出一条旅行路线, 使得每个城市恰好经过一次并最 终回到起始城市,且总距离最短。
背包问题
给定一组物品和它们的价值、重 量,要求在不超过背包承重限制 的情况下,选择一些物品放入背 包,使得背包中物品的总价值最 大。
2
在调度问题中,常用的编码方式包括二进制编码、 整数编码和实数编码等。
3
二进制编码将每个任务表示为一个二进制串,串 中的每个比特代表一个时间点,1表示任务在该 时间点执行,0表示不执行。
适应度函数
01
适应度函数用于评估解的优劣程度。
02
在调度问题中,适应度函数通常根据总成本计算得出,总成 本越低,适应度越高。
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题, 旨在寻找一条旅行路线,使得一个销售代表能够访问所有指定的城市,并最后返回 出发城市,且所走的总距离最短。
问题可以描述为:给定一个包含n个城市的集合,以及每对城市之间的距离,求 一条总距离最短的旅行路线。
函数优化
用于求解多峰函数、离散函数等复杂函数的 最大值或最小值问题。
机器学习
用于支持向量机、神经网络等机器学习模型 的参数优化。
组合优化
用于求解如旅行商问题、背包问题、图着色 问题等组合优化问题。
调度与分配问题
用于求解生产调度、车辆路径规划、任务分 配等问题。
02 遗传算法实例:旅行商问 题
问题描述
交叉操作
• 交叉操作是将两个个体的部分基因进行交换,以 产生新的个体。常用的交叉方法有单点交叉、多 点交叉等。在背包问题中,可以采用单点交叉方 法,随机选择一个交叉点,将两个个体的基因进 行交换。

遗传算法

遗传算法

缺点:该算法只是对每个落点进行单独的考虑,没有反应不同组 合所产生的共同效果,所以只是近似的算法,不能获得最优的结果。 基于单个的优化不能保证在整体情况下能获得最大值。 如果对所有的可能方案进行评价,找到最佳方案。例如在N*N的
栅格空间中确定n个 目标的最佳位置,则所要对比的组合高达
2.遗传算法和GIS结合解决空间优化问题
所谓交叉运算,是指对两个相互配对的染色体依据
交叉概率 Pc 按某种方式相互交换其部分基因,从而形 成两个新的个体。
交叉前: 00000|011100000000|10000 11100|000001111110|00101 交叉后: 00000|000001111110|10000 11100|011100000000|00101 染色体交叉是以一定的概率发生的,这个概率记为Pc
行一点或多点交叉的操作,但这样很容易产生断路或环路。针对路径 的具体需要,这里采用只允许在除首、尾结点之外的第一个重复结点位
置交叉且只进行一点交叉的操作方式。例如:设从起始结点1到目标结
点9的一对父代个体分别是G1和G2,分别如下表示: G1(1,3,5,6,7,8,9)
G2(1,2,4,5,8,9)
是一种有效的解最优化问题的方法。 其基本思想是:首先随机产生种群,对种群中的被选中染色体进行交
叉或变异运算生成后代,根据适值选择部分后代,淘汰部分后代,但种群
大小不变。经过若干代遗传之后,算法收敛于最好的染色体,可能是问题 的最优解或次优解。
适应度函数
遗传算法对一个个体(解)的好坏用适应度函数
值来评价,适应度函数值越大,解的质量越好。适应 度函数是遗传算法进化过程的驱动力,也是进行自然
篇论文。此后Holland教授指导学生完成了多篇有关遗传算法研究的论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[编辑本段]遗传算法定义遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

[编辑本段]遗传算法特点遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。

搜索算法的共同特征为:①首先组成一组候选解;②依据某些适应性条件测算这些候选解的适应度;③根据适应度保留某些候选解,放弃其他候选解;④对保留的候选解进行某些操作,生成新的候选解。

在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。

这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。

这是遗传算法与传统优化算法的极大区别。

传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。

遗传算法从串集开始搜索,覆盖面大,利于全局择优。

(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。

遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。

适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。

这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。

遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

[编辑本段]遗传算法的应用由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:1、函数优化。

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。

2、组合优化随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。

对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

实践证明,遗传算法对于组合优化中的NP问题非常有效。

例如遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等方面得到成功的应用。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

[编辑本段]遗传算法的现状进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。

尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。

此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。

遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。

这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。

二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。

三是并行处理的遗传算法的研究十分活跃。

这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。

四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。

所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。

EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。

目前,这三者之间的比较研究和彼此结合的探讨正形成热点。

1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency b ased crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。

D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-cl imbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。

实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。

H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。

同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。

国内也有不少的专家和学者对遗传算法的交叉算子进行改进。

2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。

该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。

2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。

[编辑本段]遗传算法的一般算法遗传算法是基于生物学的,理解或编程都不太难。

下面是遗传算法的一般算法:创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。

评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。

不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。

繁殖(包括子代突变)带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。

后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。

下一代如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。

如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。

并行计算非常容易将遗传算法用到并行计算和群集环境中。

一种方法是直接把每个节点当成一个并行的种群看待。

然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。

另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。

术语说明由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:一、染色体(Chronmosome)染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(populati on),群体中个体的数量叫做群体大小。

二、基因(Gene)基因是串中的元素,基因用于表示个体的特征。

例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。

它们的值称为等位基因(Alletes)。

三、基因地点(Locus)基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。

基因位置由串的左向右计算,例如在串S=1101 中,0的基因位置是3。

四、基因特征值(Gene Feature)在用串表示整数时,基因的特征值与二进制数的权一致;例如在串S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。

五、适应度(Fitness)各个个体对环境的适应程度叫做适应度(fitness)。

相关文档
最新文档