幂指对函数

合集下载

指、对、幂函数知识点

指、对、幂函数知识点

(1指、对、幂函数知识点)指数函数轴对称 比较指数式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论;3. 当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较(2)对数函数(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.(3)幂函数=叫做幂函数,其中x为自变量,α是常数.一般地,函数y xα幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称); 幂函数是奇函数时,图象分布在第一、三象限(图象关于原点对称); 幂函数是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性: 当qpα=(其中,p q 互质,p 和q Z ∈), 若p 为奇数q 为奇数时,则q py x =是奇函数; 若p 为奇数q 为偶数时,则q py x =是偶函数; 若p 为偶数q 为奇数时,则qp y x =是非奇非偶函数.幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:当0>α时,幂函数y x α=有下列性质:(1)图象都通过点(0,0),(1,1); (2)在第一象限内都是增函数;(3)在第一象限内,α>1时,图象是“抛物线”型的;α<<01时,图象是“眉毛”型的; (4)在第一象限内,过点(1,1)后,图象向右上方无限伸展。

幂指对函数及方程

幂指对函数及方程

幂、指、对函数及方程方法指导:一、幂函数1. 幂函数的定义函数(k y x k =为常数,)k ∈Q 称为幂函数,其中x 是自变量,前面的系数为1.2. 幂函数的图像 研究pq y x =的图像特点,其中p q是既约分数(最简分数).3. 幂函数的性质(1) 对于一切幂函数,当0x >时,总有0y >,所以幂函数在第一象限均有图像,且幂函数图像不可能出现在第四象限.(2) 幂函数一定过点(1,1).(3) 当0k >时,k y x =在(0,)+∞上递增,图像过点(0,0),(1,1);① 当01k <<时,k y x =向x 轴正方向递增;② 当1k >时,k y x =向y 轴正方向递增.当0k =时,k y x =是一条不过点(0,1)的直线;当0k <时,k y x =在(0,)+∞上递减,图像过点(1,1),图像向上与y 轴无限接近,向右与x 轴无限接近.(4) 在1x =的右侧由上至下k 递减.二、指数函数1. 指数运算法则(1) (0,)x y x y a a a a x y +⋅=>∈R 、 (2) ()(0,)x y xy a a a x y =>∈R 、(3) ()(0,0,)x x x a b a b a b x ⋅=⋅>>∈R2. 指数函数的定义函数(0,1,)x y a a a x =>≠∈R 称为指数函数.3. 指数函数的图像4. 指数函数的性质(1) 函数图像在x 轴上方,函数值恒大于零,故函数图像不可能在三、四象限.(2) 指数函数的图像经过点(0,1),01a =.(3) 函数定义域为R ,值域为(0,)+∞.(4) 非奇非偶函数(5) 无零点(6) 函数(1)x y a a =>在(,)-∞+∞内是增函数;函数(01)x y a a =<<在(,)-∞+∞内是减函数.(7) 在1a >时,第一象限内1y >,增长速度十分惊人;第二象限内01y <<,增长缓慢;在01a <<时,第一象限内01y <<;第二象限内1y >.(8) 无最值(9) 函数图像与x 轴无限接近,x 轴叫做函数的渐近线.(10) x y a =的图像与1()x y a=的图像关于y 轴对称. 三、指数方程(1) 同底型:()()()()(0,1)f x g x a a f x g x a a =⇔=>≠.(2) 基本型:① ()()log (0,1,0)f x a a b f x b a a b =⇔=>≠>;② ()()()lg ()lg (0,1,0,1)f x g x a b f x a g x b a a b b =⇔=>≠>≠.(3) 代换型:① 20x x Aa Ba C ++=,令x t a =(注意t 的范围),转化为20At Bt C ++=求解; ② 2220()()0x x x x x x a a Aa Ba b Cb A B C b b ++=⇒++=,令()x a t b= (注意t 的范围),转化为20At Bt C ++=求解.(4) 图解型:一般不可直接求解的可利用图象法求近似值.四、对数1. 对数的定义若(0,1)b a N a a =>≠,那么数b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数.注意底数的范围是(0,1)(1,)+∞;真数的取值范围是(0,)+∞.2. 对数的性质若0,1,0,0,0,0,1a a M N n b b >≠>>>>≠,那么(1) 零和负数没有对数(2) log 1a a =,log 10a =,log a N a N =(3) log ()log log a a a MN M N =+,log ()log log a a a M M N N =- (4) log log n a a M n M =,log log m n a a n b b m =(5) log log log a b a N N b =(换底公式),特别地1log log a b b a=【拓展公式】 3. 常用的对数 以10为底的对数叫做常用对数,通常写做lg N ;以无理数 2.71828e =为底的对数叫做自然对数,通常写做ln x .五、对数函数1. 对数函数的定义函数log (0,1,0)a y x a a x =>≠>称为对数函数.2. 对数函数的图像3. 对数函数的性质(1) 对数函数log (0,1)a y x a a =>≠的图像都在y 轴右侧.(2) 对数函数log (0,1)a y x a a =>≠的图像都经过点(1,0).(3) 函数定义域(0,)+∞,值域R .(4) 非奇非偶函数.(5) 对数函数log (1)a y x a =>在(0,)+∞上是增函数,函数值开始增长较快,到了某一值后增长速度变慢;对数函数log (01)a y x a =<<在(0,)+∞上是减函数,函数值开始减小较快,到了某一值后减小速度变慢.(6) 对数函数log (1)a y x a =>,当1x >时,0y >;当01x <<时,0y <; 对数函数log (01)a y x a =<<,当1x >时,0y <;当01x <<时,0y >.(7) y 轴是对数函数的渐近线.(8) 当1a >时,底数越大,图像越靠近x 轴;当01a <<时,底数越小,图像越靠近x 轴.(9) 对数函数log (0,1)a y x a a =>≠与指数函数(0,1)x y a a a =>≠互为反函数.六、对数方程(1) 同底型:()0log ()log ()(0,1)()0()()0()()a a f x f x g x a a g x f x g x f x g x >⎧⎪=>≠⇔>⇔=>⎨⎪=⎩.(2) 基本型:log ()(0,1)()b a f x b a a f x a =>≠⇔=.(3) 代换型:2log ()log ()0a a A f x B f x C ++=,令log ()a t f x =(注意t 的范围),转化为20At Bt C ++=求解.(4) 图解型:一般不可直接求解的可利用图像法求近似值.典型题解:幂、指、对函数的图像及性质特殊方程1.比较下列各题中两个值的大小(1)323()4和233()4 (2)0.63()4-和0.64()3-(3)0.62()5-和1 (4)12π和1()2π 2.若4333423494434334log log log log (log log )()log log x ⋅=+-+,则x =( ). A .4 B .16 C .256 D .813.如图,幂函数223()Z m m y xm --=∈的图像关于y 轴对称,且与x 轴y 轴均无交点,求此函数解析式.4. 关于x 的方程lg 3x x +=,103xx +=的根分别为,αβ.则αβ+=__________.5. 使2log ()1x x -<+成立的x 的取值范围是______.6.方程2log (4)3x x +=实数解的个数是( )A 0B 1C 2D 37.已知关于x 的方程2212730x x a a ---+=有一个根是2,求a 的值和方程的其余的根.8. 已知1(1)()22,x x f x --+=-则1(2)f -=_________.9.若关于x 的方程2(3)24log log x x a +-=的根在区间(3,4)内,则a 的取值范围为______. 10.设集合1{420,},x x A a x R +=-+=∈若A 为单元素集,求实数a 的取值范围.。

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

幂函数、指函数与对函数PPT课件

幂函数、指函数与对函数PPT课件

D. b > a > 1 O
思路二:
1b a
x
数形结合
26
题型三:幂函数性质的应用
3.比较下列各组数的大小:
< 1
1
(1)1.32 ____ 1.4 2
解后反思 两个数比较
(2)0.261
_>____
0.271
大小,何时 用幂函数模
(3)(5.2)2 _<____(5.3)2
型,何时用 指数函数模
即 log2 a log2 b 0 log2 1
a b 1 所以答案选C. 25
能力提升
变②:若0 < loga 2 < logb 2,则
C
()
A. 0 < a < b < 1 y
B. 0 < b < a < 1
1
C. a > b > 1
x=2
y= logb x
y= loga x
解析式 y = a x ( a > 0, a≠1)
y
图 象 0<a<1
y a>1
1
(描点)
1
0
x
0
x
y = log a x ( a > 0, a≠1)
y 0<a<1
y a>1
01
x
01
x
定义域
R
(0 , +∞)
值域
(0 , +∞)
R
定点
都过点(0,1)
都过点(1,0)
范围
x<0时,y>1;x>0时,y>10;<x<1时 x>0时 x<0时 y>0

指、对、幂函数

指、对、幂函数

专题:指、对、幂函数一、知识点总结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。

指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。

性质:见表2对数运算公式1、x N N a a x=⇔=log ; 2、a aNa =log . 3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =. 5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a . 6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .二、课前热身1. 计算:33(lg 2)3lg 2lg5(lg5)++=_______________2. 若函数f (x )=a |x -2|(a >0,a ≠1)满足f (1)=13,则f (x )的单调递减区间是________3. 设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是_______________4. 方程|3x-1|=k 有两解,则k 的范围为________5. 设1a >,函数log a y x =在区间[,2]a a 上的最大值与最小值之差为12,则a =________ 6. 若函数f (x )=xa -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________7. 已知12,x x-+=则1122x x-+=8. 设)0(2)log (2>=x x f x ,则=)log (232f三、典例分析 例1:计算:(1)11203217(0.027)()(2)1)79----+-;(2)132123321().40.1()a b --- (3)2lg 225lg 5.02161.1230++-+-;(4)2log 43774lg 25lg 327log +++【变式演练】(1)已知1>>b a 且310log log =+a b b a ,求a b lob b a log -的值。

幂函数指数函数对数函数总结

幂函数指数函数对数函数总结

幂函数指数函数对数函数总结
幂函数、指数函数和对数函数是数学中常见的函数类型,它们的性质和图像特点有所不同,但也有一些共性。

幂函数的形式为$y=x^a$,其中$a$为常数。

当$a$为正整数时,幂函数的图像经过原点和函数的图像都在第一象限内,且函数值随$x$的增大而增大;当$a$为负整数时,幂函数的图像也经过原点,但它的图像在第二象限内,且函数值随$x$的增大而减小。

当$a$为分数时,幂函数的图像不过原点且不与坐标轴相交。

指数函数的形式为$y=a^x$,其中$a$为常数且$a>0$。

指数函数的图像经过点$(1,a)$,且函数值随$x$的增大而增大。

指数函数的图像与坐标轴没有交点,且当$a>1$时,图像向左平移,当$0<a<1$时,图像向右平移。

对数函数的形式为$y=log_ax$,其中$a$为常数且$a>0$,$a\neq1$。

对数函数的图像经过点$(1,0)$,且函数值随$x$的增大而减小。

对数函数的图像与坐标轴没有交点,且当$a >1$时,图像向右平移,当$0<a<1$时,图像向左平移。

在学习幂函数、指数函数和对数函数时,需要注意它们的定义域、值域、单调性、奇偶性等性质,以及它们的图像和应用。

这些函数在数学、物理、工程等领域都有广泛的应用。

幂、指、对函数的知识要点及提醒

幂、指、对函数的知识要点及提醒

幂、指、对数函数的知识要点及提醒一、幂函数幂函数)(Q k x y k ∈=的定义域、值域、奇偶性、单调性因幂指数的不同而不同. 0>k 时,函数的图像都经过点)0,0(和)1,1(,在),0(+∞上是增函数.0<k 时,函数的图像都经过点)1,1(,在),0(+∞上是减函数.0=k 时,函数的图像是直线1=y ,去掉点)1,0(.能画出幂函数k x y =⎭⎬⎫⎩⎨⎧----∈31,21,31,21,3,2,3,2,1,0k 的图像.二、指数函数指数函数)1,0(≠>=a a a y x 的定义域为R .值域为),0(+∞.恒过定点)1,0(.当1>a 时,在R 上是增函数,当10<<a 时,在R 上是减函数(增减性),指数函数既不是奇函数也不是偶函数.指数函数)1,0()(≠>=a a a x f x 对任意实数y x ,满足)()()(y f x f y x f =+.三、对数的概念及运算1 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记作N b a log =. 根据定义可知:对数的真数N 的范围是),0(+∞,底数a 的范围是),1()1,0(+∞ . 对数的性质:01log =a ,1log =a a ,b a b a =log ,N a N a =log .注意:任意一个实数都可以写成对数的形式,如233log 2-=-;任意一个正实数都可以写成指数的形式,如3log 223=.2 已知R n N M a a ∈>>≠>,0,0,1,0,则 N M N M a a a log log )(log +=⋅. N M N M a a alog log log -=. N n N a n a log log =. 3 换底公式:)1,0,1,0(log log log ≠>≠>=b b a a aN N b b a . 1log log =⋅a b b a ,)0(log log ≠=m b mn b a n a m .特别地, )0(log log ≠=n b b a n a n . 四、反函数 (1)若函数)(x f y =存在反函数,则)(1x f y -=的定义域为)(x f y =的值域.)(1x f y -=的值域为)(x f y =的定义域.(2) 求反函数的步骤:①由)(x f y =求得)(1y fx -=.②求)(x f y =的值域.③交换y x ,写出)(1x f y -=,并注明其定义域.(3) 互为反函数的两个函数)(x f y =与)(1x f y -=的图像关于直线x y =对称.点),(b a P 关于直线x y =对称的对称点为),(a b Q .若点),(b a P 在函数)(x f y =的图像上,则点),(a b Q 在)(1x fy -=的图像上. (4) 若函数)(x f y =的反函数是它本身,即)()(1x f x f=-,则函数)(x f y =的图像关于直线x y =对称.反之,也成立.五、对数函数(1) 对数函数)1,0(log ≠>=a a x y a 的定义域为),0(+∞,值域为R . 1>a 时在),0(+∞上是增函数;10<<a 时在),0(+∞上是减函数. 对数函数既不是奇函数也不是偶函数.(2) 对数函数)1,0(log ≠>=a a x y a 的图像在y 轴右侧,恒过点)0,1(.函数)1,0(log )(≠>=a a x x f a 对任意正实数y x ,都有)()()(y f x f xy f +=成立.六、简单的指数方程和对数方程)1,0(≠>=a a b a x ,若0≤b ,方程无解;若0>b ,b x a log =.换元(令)1,0(≠>=a a a t x )转化为关于t 的一元二次方程02=++r qt pt .注意t 的范围! )1,0(log ≠>=a a b x a 的解为b a x =.换元(令)1,0(log ≠>=a a x t a )转化为关于t 的一元二次方程02=++r qt pt . 解对数方程一定要检验!七、图像变换平移变换:将)(x f y =的图像沿x 轴方向平移h 个单位,得到)(h x f y +=的图像.0>h 是向左平移,0<h 是向右平移.将)(x f y =的图像沿y 轴方向平移k 个单位,得到k x f y +=)(的图像.0>k 是向上平移,0<k 是向下平移.翻折变换:)(x f y =的图像关于y 轴对称,它在y 轴右侧的图像与)(x f y =的图像一样. )(x f y =的图像都在x 轴及其上方,)(x f y =的图像在x 轴下方的图像沿x 轴翻折到x 轴上方.。

指、对、幂函数

指、对、幂函数

指数、对数、幂函数概览:整数指数幂,分数指数幂,实数指数幂;指数函数。

对数,对数函数。

幂函数。

1. 指数幂与根式 有理数指数幂 ①整数指数幂:正整数指数幂,负整数指数幂,零指数幂; ②分数指数幂: 正分数指数幂,负分数指数幂。

注:0的零次幂和负数次幂无意义实数指数幂的运算性质根式的性质〖注:根指数是不小于2的正整数。

奇次方根/偶次方根n na 的化简〗 2. 对数定义,运算法则〖正用,逆用〗3. 指数函数 定义。

例()xxx y y =-=,10不是指函。

图象与性质:两域,特殊点,单调性,图象位置与底数大小的关系〖“逆时针底变大”〗。

x x x x y y a y a y )21(2;)1(====与如与的图象关于y 轴对称。

可将xx a y a y -==化为)1(,对称变换。

比较两个指数式的大小:①底数同-用单调性;②指数同-用“逆时针底变大”看图;③底指都不同-通常分别与“1”相比较。

4. 对数函数定义。

图象与性质:两域,特殊点,单调性,图象位置与底数大小的关系〖“顺时针底变大”〗。

x y x y x y x y aa2121loglog;loglog====与如与的图象关于x 轴对称。

可将x y x y a al o g -l o g 1==化为,对称变换。

比较两个对数式的大小:①底数同-用单调性;②真数同-用“顺时针底变大”看图;③底真都不同-通常分别与“0”或“1”相比较。

注:指函与对函都有单调性,而无奇偶性。

5. 幂函数 定义。

注:指数a 可取任意实数,主要掌握3,31,2,1,21±±±,图象及性质。

所有幂函数在()+∞,0上都有定义,即在第一象限内都有图象,〖第四象限内不可能有图象〗,且恒过定点(1,1);若a <0,则图象在()+∞,0上是减函数,且以两坐标轴为渐近线;若a >0,则图象在()+∞,0上是增函数,并恒过原点(0,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档