《管理运筹学》第7章 运输问题

合集下载

运筹学 运输问题

运筹学 运输问题

运筹学运输问题
运筹学是一门研究如何最优地规划和管理资源以实现预定目标的学科。

在运筹学中,运输问题是其中一个重要的应用领域。

运输问题主要关注如何有效地分配有限的资源到不同的需求点,以最小化总体运输成本或最大化资源利用效率。

这些资源可以是货物、人员或其他物资。

运输问题通常涉及到多个供应地点和多个需求地点之间的物流调度。

运输问题的目标是找到一种最佳的调度方案,使得满足所有需求的同时,总运输成本达到最小。

为了解决运输问题,可以采用线性规划、网络流和启发式算法等方法。

在运输问题中,需要确定以下要素:
1. 供应地点:确定从哪些地点提供资源,例如仓库或生产基地。

2. 需求地点:确定资源需要分配到哪些地点,例如客户或销售点。

3. 运输量:确定每个供应地点与需求地点之间的运输量。

4. 运输成本:确定不同供应地点与需求地点之间运输的成本,可以
包括距离、时间、燃料消耗等因素。

通过数学建模和优化技术,可以对这些要素进行量化和分析,以求得最佳的资源分配方案。

这样可以降低运输成本、提高物流效率,并且满足不同地点的需求。

总而言之,运输问题是运筹学中的一个重要领域,涉及到如何有效地规划和管理资源的物流调度。

通过数学建模和优化方法,可以找到最优的资源分配方案,从而实现成本最小化和效率最大化。

管理运筹学运输问题

管理运筹学运输问题

管理运筹学运输问题引言运筹学是管理学的一个分支,旨在研究和开发决策支持工具和技术,以优化各种问题的决策过程。

其中,运输问题是运筹学领域中一个重要的问题之一,它涉及到如何有效地分配有限的资源,以实现最佳的运输方案。

本文将介绍管理运筹学中的运输问题,并探讨其解决方法。

运输问题概述运输问题是在给定供应地和需求地之间寻找最佳运输方案的数学模型。

一般来说,这个问题可以分为两个主要的组成部分:供应地和需求地。

•供应地:这是物品或产品的来源地,例如工厂或仓库。

每个供应地都有一定数量的可供应物品,同时还有一个运输成本与不同需求地之间的运输。

•需求地:这是物品或产品的目的地,例如商店或客户。

每个需求地都有一定数量的需求,同时还有一个运输成本与不同供应地之间的运输。

运输问题的目标是找到一种分配方案,以最小化总运输成本,并满足供应地和需求地的限制。

运输问题可以用数学模型描述,其中包括以下变量和约束条件:•变量:–xi:从第i个供应地运输的物品数量–yj:向第j个需求地运输的物品数量•约束条件:–供应地约束:∑xi ≤ si,其中si为第i个供应地可供应的物品数量–需求地约束:∑yj ≥ dj,其中dj为第j个需求地的需求物品数量–非负约束:xi ≥ 0,yj ≥ 0,物品数量不能为负数•目标函数:–最小化总运输成本:Minimize ∑(cij * xi * yj),其中cij为从供应地i到需求地j的单位运输成本这个数学模型可以通过线性规划方法进行求解,其中运输问题可以转化为标准线性规划问题,并使用相应的算法和技术进行求解。

求解运输问题的方法可以分为以下几种:1.传统方法:传统的方法包括北西角法、最小元素法、Vogel法等。

这些方法通过逐步分配物品数量,计算运输成本,并根据不同的策略进行调整,直到找到最优解。

2.网络流方法:网络流方法将运输问题转化为最小成本流问题,并利用网络流算法进行求解。

这些算法可以有效地处理大规模的运输问题,并提供较快的求解速度。

管理运筹学 第七章 运输问题之表上作业法

管理运筹学  第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。

运筹学中的运输问题

运筹学中的运输问题

1 运输问题基本概念
例1 某公司有三个加工厂A1、A2、A3生产某产品,每日 的产量分别为:7吨、4吨、9吨;该公司把这些产品分别 运往四个销售点B1、B2、B3、B4,各销售点每日销量分 别为:3吨、6吨、5吨、6吨;从各工厂到各销售点的单 位产品运价如表1所示。问该公司应如何调运这些产品, 在满足各销售点的需要量的前提下,使总运费最少?
(3)销大于产(供不应求)运输问题
(以满足小的产量为准) i
j=
2 运输问题数学模型和电子表格模型
例2 某厂按合同规定须于当年每个季度末分别提供 10,15,25,20台同一规格的柴油机。已知该厂各 季度的生产能力及生产每台柴油机的成本如表所示。 如果生产出来的柴油机当季不交货的,每台每积压 一个季度需储存、维护等费用1500元。要求在完成 合同的情况下,做出使该厂全年生产(包括储存、 维护)费用最小的决策。
表1 各工厂到各销售点的单位产品运价(元/吨)
B1
B2
B3
B4 产量(吨)
A1
3
A2
1
A3
7
销量(吨) 3
11
3
10 7
9
2
84
4
10
5
9
6
5
6
对于例1,其数学模型如下: 首先,三个产地A1、A2、A3的总产量为7+4+9=20;四个
销地B1、B2、B3、B4的总销量为3+6+5+6=20。由于总产 量等于总销量,故该问题是一个产销平衡的运输问题。
3 各种变形的运输问题建模
现实生活中符合产销平衡运输问题每一个条件的情况很少。一 个特征近似但其中的一个或者几个特征却并不符合产销平衡运 输问题条件的运输问题却经常出现。 下面是要讨论的一些特征:

管理运筹学讲义运输问题

管理运筹学讲义运输问题

管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。

无论是物流行业还是供应链管理,运输问题都是必不可少的一环。

运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。

本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。

运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。

通常,问题的目标是找到一种分配方案,使得总运输成本最小。

运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。

每个供应点和需求点都有一个需求量或供应量。

问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。

数学模型运输问题可以用线性规划来建模。

假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。

定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。

解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。

对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。

2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。

算法的核心思想是通过不断寻找增广路径来寻找最大匹配。

《管理运筹学》02-7运输问题

《管理运筹学》02-7运输问题
在运输问题中,混合整数规划可以处理更为复 杂的约束条件和多阶段决策过程。
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。

管理运筹学之第七章 运输问题


2、判断是否最优;——闭回路法、位势法
3、若不是最优,进行调整,直到找到最优解。
例:某公司有三个生产厂商和四个销售公司,运价,产量, 销量如下表: 运
销 地
B1
3 1 7 3
B2
11 9 4 6
B3
3 2 10 5
B4
10 8 5 6
产量
7 4 9 20|20



A1 A2 A3
销量
1、确定初始基本可行解——西北角法 运
目标函数:
min f
c
i 1 j 1
m
n
ij
x ij
约束条件:

j 1 n
x ij s i ( i 1, 2 ,..., m ) x ij d j ( j 1, 2 ,..., n )

i 1
m
x ij 0
注意:
运输问题可能的一些变化:
1、目标函数是求最大值。如运输公司要求营业额最大化。
销 地
B1 2 10 7 2
B2 11 3 8 3
B3 3 5 1 4
B4 4 9 2 6
D 0 0 0 4
产量 7 5 7 19
A1 A2 A3 销量
例:有三个地方B1、B2、B3 分别需要煤3000、1000、2000吨, 由A1,A2两个地方来供应,其供应量分别为4000,1500吨,其 运价如下表:
1 广州
2 大连
解:Xij表示从I到j的运输量。
min f 2 x13 3 x14 3 x 23 x 24 2 x 35 6 x 36 4 x 45 3 x 37 6 x 38 4 x 46 6 x 47 5 x 48 4 x 28

运输经济学 第7章 运输合理化(1)

运输经济学 第7章 运输合理化(1)
第七章 运输合理化
要点:
• 不合理运输及其原因 • 运输优化的基本问题 • 直达运输优化模型
第一节 不合理运输及其原因
一、运输合理的三大要素 成本、速度和一致性是影响运输合理化的
ቤተ መጻሕፍቲ ባይዱ至关重要的三个因素。 从这三个因素出发,具体的运输作业就涉
及到运输方式的选择,运输路线的选择,及计 划运输设备的使用时间,从而使运输工具利用 率达到最佳,并同时符合顾客的服务要求。
2、减少动力投入,增加运输能力
运输的投入主要是能耗和基础设施的建设, 在设施建设已定型和完成的情况下,尽量减少能 源投入,是少投入的核心。
(1)“满载超轴”。“超轴”的含义就是在机 车能力允许情况下,多加挂车皮。
(2)水运拖排和拖带。将无动力驳船编成一定 队形,一般是“纵列”,用拖轮拖带行驶,可以 有比船舶载乘运输运量大的优点,求得合理化。
V2
V1
2
4
V3
7 5 2
V4
5
1
V6
V5
2
若从终点 V6 开始反推,便可得到最短路线,
prior(V6) =V5 prior(V5) =V3 prior(V3) =V2 prior(V2) =V1
因此,图中的最短路线为:
V1――V2――V3――V5――V6,距离为 7 个单位
二、多点之间最短路问题
5.尽量发展直达运输
直达运输是追求运输合理化的重要 形式,可以减少中转过载换装、提高 运输速度、节省装卸费用、降低中转 货损。例如组织多式联运
6.配载运输
充分利用运输工具载重量和容积, 合理安排装载的物品及载运方法,提高 运输工具实载率
由于每辆车的载重量或容积有限, 而各种货物的单位体积与重量又大小不 一,因而为提高货车的利用率,需要对 各种货物的装载进行配装。

第七章-运输问题


运产们费地单办得价到运新销 输的地量 综合表B1格:
B2
B3
产 量 (件)
A1
6
4 x11
6 x12
x13
200
A2 销 量 (件)
6
5 x21
5 x22
x23
300
150
150
200
500 500

min f = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23
s. t.
x11+ x12 + x13 = 200

销地
产地
B1
A1
3
A2
1
3
A3
7
销量
30
4 0,
x21
6 =x11200,
x22
=x013,x23
200 = 200。
A2
6
5 x21
5 x22
x23
300
销 量 (件)
150
150
200
500 500

§7.1 运输问题的模型
1.一般运输问题的线性规划模型
假设 A1,A2,… ,Am 表示某物资的 m 个产地; B1,B2,… ,Bn 表示某物资的 n 个销地;

例.喜庆食品公司有三个生产面包的分厂A1,A2,A3,
有§四个7.销2售运公司输B问1,题B的2,表B3上,B作4,业其法各分厂每日的产
量、各销售公司每日的销量以及各分厂到各销售公司的 单位运价如表所示,在表中产量与销量的单位为吨,运 价的单位为百元/吨。问该公司应如何调运产品在满足各 销点的需求量的前提下总运费最少?

《管理运筹学》第二版习题答案(韩伯棠教授)1

3第 2 章 线性规划的图解法1、解:x 26A B1O 01C6x 1a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O0.1 0.6x 1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 运 输 问 题
• • • • §1 §2 §3 § 4* 运 输 模 型 运输问题的计算机求解 运输问题的应用 运输问题的表上作业法





1
§1 运 输 模 型
例1、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地 、 的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所 示,问:应如何调运可使总运输费用最小?
9





§3 运输问题的应用
三、转运问题: 转运问题: 在原运输问题上增加若干转运站。运输方式有:产地 → 转运站、转 运站 → 销地、产地 → 产地、产地 → 销地、销地 → 转运站、销地 → 产 地等。 例8、腾飞电子仪器公司在大连和广州 有两个分厂生产同一种仪器,大连分厂 每月生产400台,广州分厂每月生产600 台。该公司在上海和天津有两个销售公 司负责对南京、济南、南昌、青岛四个 城市的仪器供应。另外因为大连距离青 岛较近,公司同意大连分厂向青岛直接 供货,运输费用如图,单位是百元。问应该如何调运仪器, 可使总运输费用最低?图中 1- 广州、2 - 大连、 3 - 上海、4 - 天津、5 - 南京、6 - 济南、7 - 南昌、8 - 青岛
管 理 运 筹 学
6
§3 运输问题的应用
一、产销不平衡的运输问题 例5、设有A、B、C三个化肥厂供应1、2、3、4四个地区的农用化肥。假设效果相 、 同,有关数据如下表:
A B C 最低需要量 最高需要量 1 16 14 19 30 50 2 13 13 20 70 70 3 22 19 23 0 30 4 17 15 --10 不限 产量 50 60 50
试求总费用为最低的化肥调拨方案。 解: 根据题意,作出产销平衡与运价表:
A B C D 销量 1’ 16 14 19 M 30 1” 16 14 19 0 20 2 13 13 20 M 70 3 22 19 23 0 30 4’ 17 15 M M 10 4” 17 15 M 0 50 210 产量 50 60 50 50 210
管 理 运 筹 学
2
§1 运 输 模 型
• 一般运输模型: 一般运输模型:产销平衡 A1、 A2、…、 Am 表示某物资的m个产地; B1、B2、…、Bn 表示某物质的 n个销地;si 表示产地Ai的产量; dj 表示销地Bj 的销量; cij 表示把物资从产地 Ai运往销地Bj的单位运价。 设 xij 为从产地Ai运往销地Bj的运输量,得到下列一般运输量问题的模型:
A1 A2 销量 B1 6 6 150 B2 4 5 150 B3 6 5 200 产量 200 300
解: 产销平衡问题: 总产量 = 总销量 设 xij 为从产地Ai运往销地Bj的运输量,得到下列运输量表:
A1 A2 销量 B1 x11 x21 150 B2 x12 x22 150 B3 x13 x23 200 产量 200 300
A1 A2 销量 B1 6 6 250 B2 4 5 200 B3 6 5 200 650 产量 200 300 500
A1 A2 A3 销量
B1 6 6 0 250
B2 4 5 0 200
B3 6 5 0 200
产量 200 300 150 650 650





5
§3 运输问题的应用
一、产销不平衡的运输问题 例4、石家庄北方研究院有一、二、三三个区。每年分别需要用煤3000、1000、 、 2000吨,由河北临城、山西盂县两处煤矿负责供应,价格、质量相同。供 应能力分别为1500、4000吨,运价为:
最低要求必须满足,因此把相应的虚设产地运费取为 M ,而最高要求与最低 要求的差允许按需要安排,因此把相应的虚设产地运费取为 0 。对应 4”的销量 50 是考虑问题本身适当取的数据,根据产销平衡要求确定 D的产量为 50。
管 理 运 筹 学
7
§3 运输问题的应用
二、生产与储存问题 例6、某厂按合同规定须于当年每个季度末分别提供10、15、 、 25、20台同一规格的柴油机。已知该厂各季度的生产能力 及生产每台柴油机的成本如右表。如果生产出来的柴油机 当季不交货,每台每积压一个季度需储存、维护等费用0.15 万元。试求在完成合同的情况下,使该厂全年生产总费用 为最小的决策方案。
第一季度 第二季度 第三季度 第四季度 销量 第一季度 10.80 M M M 10 第二季度 10.95 11.10 M M 15 第三季度 11.10 11.25 11.00 M 25 第四季度 11.25 11.40 11.15 11.30 20 D 0 0 0 0 30 产量 25 35 30 10 100 100
m n

Min
f = ∑ ∑ cij xij
i=1 n j=1
s.t.
∑ xij = si i = 1,2,…,m
j=1 m
∑ xij = dj j = 1,2,…,n
i=1
• 变化: 变化: 1)有时目标函数求最大。如求利润最大或营业额最大等; 2)当某些运输线路上的能力有限制时,在模型中直接加入约束条件 (等式或不等式约束); 3)产销不平衡时,可加入假想的产地(销大于产时)或销地(产大于 销时)。
Min f = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23 s.t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 x12 + x22 = 150 x13 + x23 = 200 xij ≥ 0 ( i = 1、2;j = 1、2、3)
管 理 运 筹 学
10
§3 运输问题的应用
解:设 xij 为从 i 到 j 的运输量,可得到有下列特点的线性规划模型: 目标函数:Min f = 所有可能的运输费用(运输单价与运输量乘积之和) 约束条件: 对产地(发点) i :输出量 - 输入量 = 产量 对转运站(中转点):输入量 - 输出量 = 0 对销地(收点) j :输入量 - 输出量 = 销量 例8.(续) 目标函数: Min f = 2x13+ 3x14+ 3x23+ x24+ 4x28 + 2x35+ 6x36+ 3x37+ 6x38+ 4x45+ 4x46+ 6x47+ 5x48 约束条件: s.t. x13+ x14 ≤ 600 (广州分厂供应量限制) x23+ x24+ x28 ≤ 400 (大连分厂供应量限制) -x13- x23 + x35 + x36+ x37 + x38 = 0 (上海销售公司,转运站) -x14- x24 + x45 + x46+ x47 + x48 = 0 (天津销售公司,转运站) x35+ x45 = 200 (南京的销量) x36+ x46 = 150 (济南的销量) x37+ x47 = 350 (南昌的销量) x38+ x48 + x28 = 300 (青岛的销量) xij ≥ 0 , i,j = 1,2,3,4,5,6,7,8
山西盂县 河北临城 假想生产点 需要量 一区 1.80 1.60 M 2700 一区 1.80 1.60 0 300 二区 1.70 1.50 M 1000 三区 1.55 1.75 M 1500 三区 1.55 1.75 0 500 产量 4000 1500 500 6000 6000
这里 M 代表一个很大的正数,其作用是强迫相应的 x31、 x33、 x34取值为0。
销地 产地 A1 A2 A3 销量 B1 3 1 7 3 B2 11 9 4 6 B3 3 2 10 5 B4 10 8 5 6 产量 7 4 9 20 20
管 理 运 筹 学
13Leabharlann §4* 运输问题的表上作业法
• 例10.喜庆食品公司有三个生产面包的分厂A1,A2,A3,有四个销售公 司B1,B2,B3,B4,其各分厂每日的产量、各销售公司每日的销量以 及各分厂到各销售公司的单位运价如表所示,在表中产量与销量的单 位为吨,运价的单位为百元/吨。问该公司应如何调运产品在满足各销 点的需求量的前提下总运费最少?
管 理 运 筹 学
3
xij ≥ 0 (i = 1,2,…,m ; j = 1,2,…,n)
§2 运输问题的计算机求解
例2、某公司从两个产地A1、A2将物品运往三个销地B1、B2、 、 B3,各产地的产量、各销地的销量和各产地运往各销地每 件物品的运费如下表所示,问:应如何调运可使总运输费 用最小? 解:增加一个 虚设的销地 运输费用为0
一季度 二季度 三季度 四季度 生产能力(台) 单位成本(万元) 25 10.8 35 11.1 30 11.0 10 11.3





8
§3 运输问题的应用
解: 设 xij为第 i 季度生产的第 j 季度交货的柴油机数目,那么应满足: = 10 生产:x11 + x12 + x13 + x14 ≤ 25 交货:x11 x12 + x22 = 15 x22 + x23 + x24 ≤ 35 x13 + x23 + x33 = 25 x33 + x34 ≤ 30 x44 ≤ 10 x14 + x24 + x34 + x44 = 20 把第 i 季度生产的柴油机数目看作第 i 个生产厂的产量;把第 j 季度交 货的柴油机数目看作第 j 个销售点的销量;成本加储存、维护等费用看作 运费。可构造下列产销平衡问题: 目标函数: 目标函数:Min f = 10.8 x11 +10.95 x12 +11.1 x13 +11.25 x14 +11.1 x22 +11.25 x23 +11.4 x24 +11.0 x33 +11.15 x34 +11.3 x44
相关文档
最新文档