第2章 结构的几何构造分析
合集下载
结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4
Ⅰ
1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律
结构力学第2章 结构的几何构造分析

有一根链杆是多余约束
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:从微小运动的角度看,这是一个可变体系;
经微小位移后又成为几何不变体系;
在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移 常变体系:可发生大位移
可变体系
§2-1 几何构造分析的几个概念
6. 瞬铰 O为两根链杆轴线的交点,刚片I
可发生以O为中心的微小转动, O点
称为瞬时转动中心。 两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰 两根平行的链杆把刚片I与基础相
连接, 则两根链杆的交点在无穷远处。
两根链杆所起的约束作用相当于无穷远 处的瞬铰所起的作用。
体系计算自由度:
W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的
若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则 为几何可变 若W<0,则n>0, 体系有多余约束 例 2-4 试计算图示体系的W。 方法一:
m=7,h=9,b=3, g=0
W=3m-2h-b=3×7-2×9-3=0 方法二: j=7,b=14
W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10 体系几何不变,S=0 n=S-W=0-(-10)=10
第2章
§2-1 §2-2
结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰
结构力学第二章结构的几何组成分析

结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'
第二章结构几何构造分析方案

例题:分析图示体系的几何构造(习题2-10b)
将由若干个杆件组成的几何不变体视为一个刚片,然后 运用规律二。
补充例题:分析图示体系的几何构造
利用规律二, 运用了瞬铰的概念。
补充例题:分析图示体系的几何构造
运用规律二形成更大的 刚片,最后装配于基础 (上部简支与基础)。
补充例题:分析图示体系的几何构造
二元体
两个不共线的链杆,由一个节点相连 。
在任何一个体系上增加或减去一个二元体,对体系 的组成性质无影响。
几何体系的组成
刚片
体系
约束
内部无多余约束的刚片 内部有多余约束的刚片
必要约束 多余约束
几何构造分析方法
1.逐步拆去二元体,使结构简单。 2.从基础出发,反复运用规律一、二进行装配。 3.将由若干个杆件组成的几何不变体视为一个刚片,然后反
体系中全部约束数
体系计算自由度的计算
1.当组成体系的部件为刚片时 W=3m-(3g+2h+b) m:内部无多余约束的刚片数,若有多余约束,则将其 计入 3g+2h+b g:单刚结点数 h:单铰结点数 b:单链杆数
2.当组成体系的部件为结点时 W=2j-b
j:具有自由度的点的个数 b:单链杆数
例题 计算体系的W
W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10
例题 计算体系的W
W=3m-(3g+2h+b)=3×9-(3×0+2×12+3)=0 W=2j-b=2 ×6-12=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0 W=2j-b=2 ×7-14=0 W=3m-(3g+2h+b)=3×2-3=3 W=3m-(3g+2h+b)=3×1-3=0
结构力学第二章 结构的几何构造分析

刚片2
例2:
刚片3 没有多余约束的几何不变体系
没有多余约束 的几何不变体系
§2-3 几何构造分析方法
2)分析已组成的体系 例1:
上部作为 刚片1 地基作为刚片2
结论:没有多余 约束的几何不 变体系。
例2:
1 2
二元体
结论:内部没有 多余约束的几何 不变体系。
§2-3 几何构造分析方法
例3:
o
虚铰
难点:
单铰、复铰、实铰、虚铰、瞬铰、无穷铰、的区别。 如何准确计算平面杆系结构的计算自由度,计算自 由度和实际自由度的关系。 如何正确分析平面杆系结构的几何属性。
§2-1 几何构造分析的几个概念
结构是由若干根杆件通过结点间的联接及与支座 联接组成的。结构是用来承受荷载的,因此必须保证 结构的几何构造是不可变的。例如:
例2:
两组 平行
4
2 3 1 5 6 一组 平行
§2-5 几何构造分析举例
例3:
3 1 Ⅱ
2
结论: 杆1、杆2、杆3不交与 一点,因此该体系是无 多余约束的不变体系。
Ⅰ
例4:
1 Ⅰ 3 Ⅱ 2
结论: 杆1、杆2、杆3不交于 一点,该体系是无多余 约束的几何不变体系。
§2-5 几何构造分析举例
例5:
①
②
②
B
D
D
应注意形成虚铰 的两链杆必须连 接相同的两个刚 片
Ⅰ Ⅰ 实铰 1 2 3
Ⅱ
Ⅲ
Ⅱ O 虚铰
虚铰-瞬铰
O .
.
O’
A
C
B
D
无穷铰
实铰 单铰 虚铰(瞬铰) 无穷铰
§2-2 几何不变体系的组成规律
第二章_平面体系的几何组成分析

三、三刚片组成规则
规则三:三个刚片用不在同一直线上的三个 铰两两相联,则组成没有多余约束的几何不 变体系。如图所示。
A
A
O2 O1 O2 O3O1
O3
B
B
C
C
第二章 平面结构的几何构造分析
现在来讨论三刚片联结的特殊情况。如果两个刚
片之间是通过平行链杆联结,则其形成的虚铰将在无 穷远处。三个刚片之间的联结包括一对、两对和三对 平行链杆的情况。
合理,因B而不能限制瞬时运动B 的情况。 C
C
A
B
A'
第二章 平面结构的几何构造分析
二、两刚片组成规则
规则二:两个刚片用一个铰和不通过该铰 的一根链杆或用不交于一点也不互相平行 的三根链杆相联结,则组成没有多余约束 的几何不变体系。如图所示。
O
几何可变体系
O
R P
几何不变体系
A
C
A CE
B
D
变,实际上就是判别该体系 是否存在刚体运动的自由度。 y
所谓体系的自由度,是指体
系运动时可以独立变化的几
何参数的数目,也就是确定
xA
物体位置所需的独立坐标数
目。例如一个点在平面内自 由运动时,其位置要用两个 o
y x
坐标和来确定(右图),所
以一个点的自由度等于2。
第二章 平面结构的几何构造分析
如一个刚片在平面
1
2
A
1
3
2
第二章 平面结构的几何构造分析
体系中的约束有的对组成几何不变体 系来说是必须的,这种约束称为必要约束, 而必要约束之外的约束称之为多余约束。 每一个必要约束都可以使体系的自由度减 少1个,而多余约束并不减少体系的自由 度。
规则三:三个刚片用不在同一直线上的三个 铰两两相联,则组成没有多余约束的几何不 变体系。如图所示。
A
A
O2 O1 O2 O3O1
O3
B
B
C
C
第二章 平面结构的几何构造分析
现在来讨论三刚片联结的特殊情况。如果两个刚
片之间是通过平行链杆联结,则其形成的虚铰将在无 穷远处。三个刚片之间的联结包括一对、两对和三对 平行链杆的情况。
合理,因B而不能限制瞬时运动B 的情况。 C
C
A
B
A'
第二章 平面结构的几何构造分析
二、两刚片组成规则
规则二:两个刚片用一个铰和不通过该铰 的一根链杆或用不交于一点也不互相平行 的三根链杆相联结,则组成没有多余约束 的几何不变体系。如图所示。
O
几何可变体系
O
R P
几何不变体系
A
C
A CE
B
D
变,实际上就是判别该体系 是否存在刚体运动的自由度。 y
所谓体系的自由度,是指体
系运动时可以独立变化的几
何参数的数目,也就是确定
xA
物体位置所需的独立坐标数
目。例如一个点在平面内自 由运动时,其位置要用两个 o
y x
坐标和来确定(右图),所
以一个点的自由度等于2。
第二章 平面结构的几何构造分析
如一个刚片在平面
1
2
A
1
3
2
第二章 平面结构的几何构造分析
体系中的约束有的对组成几何不变体 系来说是必须的,这种约束称为必要约束, 而必要约束之外的约束称之为多余约束。 每一个必要约束都可以使体系的自由度减 少1个,而多余约束并不减少体系的自由 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2-2 平面几何不变体系的组成规律
刚片ⅠⅡ与基础Ⅲ用三个铰两两相连, 其中OⅠ,Ⅱ和OⅡ,Ⅲ 是两个不同方向的无穷远瞬铰,它们对应∞线上的两个不同的 点。铰OⅠ,Ⅲ对应有限点。因有限点不在∞线上,则三铰不共 线,体系为几何不变,且无多余约束。
§2-2 平面几何不变体系的组成规律
刚片ⅠⅡ与基础Ⅲ之间的三个铰都在无穷远瞬点。 由于各∞点都在同一直线上,因此体系是瞬变的。
§2-2 平面几何不变体系的组成规律
例2-2 试分析图示体系的几何构造。
解 (1)分析图(a)中的体系 以刚片ⅠⅡ Ⅲ为对象,由于三个瞬铰不共线,因此体系内部
为几何不变,且无多余约束。作为一个整体,体系对地面有三个 自由度。
(2)分析图(b)中的体系 同样方法进行分析,由于三个瞬铰共线,因此体系内部也是
§2-2 平面几何不变体系的组成规律
瞬变体系(三链杆交于同一点) 图a:不符合“三链杆不共点”,为瞬变体系 图b:三链杆彼此平行,(相交于无限远一点,)为瞬变
§2-2 平面几何不变体系的组成规律
五种基本组成规律
三种基本装配格式
(1)固定一个结点的装配格式:用不共线的两根链杆将结点固定 在基本刚片(或基础)上,称为简单装配格式。如图:
§2-2 平面几何不变体系的组成规律
多次应用上述基本组成规律或基本装配格式,可以组成 各式各样的几何不变,且无多余约束的体系。
装配过程有两种: (1)从基础出发进行装配:取基础作为基本刚片,将周围某
个部件按基本装配格式固定在基本刚片上,形成一个扩 大的基本刚片,直至形成整个体系。如图:
从基础出发,多次应用简单装配格式 组成,用五对链杆(1,2) (3,4) (5,6) (7,8) (9,10)依次固定节点A、B、C、D、E, 其中每一对链杆都不共线,因此整个 体系为无多余约束的几何不变体系。
瞬变的。
§2-2 平三铰拱 的几何不变性。
刚片ⅠⅡ与基础Ⅲ用三个铰OⅠ,Ⅱ、OⅡ,Ⅲ、OⅠ,Ⅲ两两相 连,其中 OⅠ,Ⅱ为无穷远瞬铰。如果另外两铰的连线与链杆 1、2平行,则三铰共线,体系是瞬变的。否则,体系为几何 不变,且无多余约束。
判断体系是否可变,确定S 判断体系中有无多余约束,确定n
对杆件结构进行几何构造分析
结构应是几何不变体系,S=0 结构分为静定(n=0)
和超静定(n>0)
§2-6 小结
2 几何构造分析中采用的方法 经典方法:
主要作法应用组成规律,辅助作法求体系的计算自由度数W。 计算机方法:
利用求解器分析 3 关于三角形规律的运用问题 三角形规律是组成无多余约束的几何不变体系的基本组成规律 学会搭积木的方法:整个体系是搭起来的 装配方式有:从内部刚片出发或从地基出发进行装配 进行等效变换:瞬铰替代两个链杆,直线链杆替代曲线链杆等
§2-3 平面杆件不变体系的计算自由度
例 2-6 试计算图示体系的W。
两个体系 j=6,b=9, W=2j-b=2×6-9=3 图(a)是一个内部几何不变且无多余约束的体系
S-3=0 n=0 图(b)是一个内部瞬变且有多余约束的体系
S-3= n>0
§2-6 小结
1 几何构造分析的两个主要问题 对杆件体系进行几何构造分析
自由度算法二(把体系看作由许多结点受链杆的约束组成)
j—体系中结点的个数 结点自由度个数总和:2j
b—单链杆根数
体系约束总数:
b
体系计算自由度: W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的 若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则为几何可变 若W<0,则n>0, 体系有多余约束
一个支杆相当于一个约束 一个铰相当于两个约束 一个刚结相当于三个约束
§2-3 平面杆件不变体系的计算自由度
图(a)两个刚片ⅠⅡ 间的结合为单结合。
图(b)三个刚片间的结合相 当于两个单结合,n个刚片间的 结合相当于(n-1)个单结合。
§2-3 平面杆件不变体系的计算自由度
单链杆:连接两点的链杆 相当于一个约束
几何不变体系—在不考虑材料应变的条件下,体系的位置 和形状是不能改变的。
几何可变体系—在不考虑材料应变的条件下,体系的位置和 形状是可以改变的。
§2-1 几何构造分析的几个概念
2. 自由度
平面内一点有两种独立运动方式, 即一点在平面内有两个自由度。
一个刚片在平面内有三种独立运动方式, 即一个刚片在平面内有三个自由度。
3. 两个刚片之间的连接 方式
规律2 一个刚片与一个点用 规律3 两个刚片用一个
两根链杆相连,且三个铰不在一 铰和一根链杆相连,且三
直线上,则组成几何不变的整体, 个铰不在一直线上,则组
且没有多余约束。
成几何不变的整体,且没
有多余约束。
§2-2 平面几何不变体系的组成规律
4. 三个刚片之间的连接方式 规律4 三个刚片用三个铰两两相连, 且三个铰不在一直线上,则组成几何不 变的整体,且没有多余约束。如图(a)。
§2-2 平面几何不变体系的组成规律
从基础出发,多次应用联合装配格式组成,先用铰A和 链杆1将AB梁固定于基础,形成扩大的基本刚片,再用铰 B和链杆2将BC梁固定于扩大后的基本刚片上,最后,用 铰C和链杆3固定CD。在每个装配格式所用的约束中,链 杆和铰都不共线,因此,整个体系为无多余约束的几何 不变体系。
§2-2 平面几何不变体系的组成规律
总结
(1)体系一般是由多个构造单元逐步形成的。 (2)要注意约束的等效替换。 (3)体系的装配方式可以不同。
§2-3 平面杆件体系的计算自由度
体系是否几何可变?体系自由度的个数S是多少? 体系有无多余约束?体系多余约束的个数n是多少? 引进计算自由度W概念
体系是由部件加约束组成: a—各部件的自由度数的总和 c—全部约束中的非多余约束数
铰结三角形规律:如果三个铰不共线,则一个铰结三角形的 形状是不变的,而且没有多余约束。
§2-2 平面几何不变体系的组成规律
两根链杆的约束作用相当于一个瞬铰的约束作用。因此,铰结 三角形规律中的每个铰都可以用两根链杆替换。 规律5:两个刚片用三根链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,且没有多余约束。 三链杆不交于同一点;三铰不在一直线上; 三铰不共线;三链杆不共点。
图(a)A点有两个自由 度,链杆1、2把A点与基 础相连,A点被固定,1、 2均为非多余约束;
图(b)如用三根链杆把A点与基础相连,仍减少两个自由度, 肯定有一根链杆是多余约束
只有非多余约束才对体系的自由度有影响,而多余约束对体系 的自由度没有影响。
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:1.图c从微小运动的角度看,这是一个可变体系; 2.经微小位移后又成为几何不变体系—瞬变体系; 3.图C中, 在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移
两根平行的链杆把刚片I与基础相连 接, 则两根链杆的交点在无穷远处。两 根链杆所起的约束作用相当于无穷远处 的瞬铰所起的作用。
无穷远处的含义 (1)每一个方向有一个∞点; (2)不同方向有不同的∞点; (3) 各∞点都在同一直线上,此直线称为∞线; (4)各有限点都不在线∞上。
§2-2 平面几何不变体系的组成规律
可变体系 常变体系:可发生大位移
§2-1 几何构造分析的几个概念
6. 瞬铰
O为两根链杆轴线的交点,刚片I 可发生以O为中心的微小转动, O点 称为瞬时转动中心。
两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰
例 2-4 试计算图示体系的W。
方法一: m=7,h=9,b=3, g=0 W=3m-2h-b=3×7-2×9-3=0
方法二: j=7,b=14 W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)= -10 体系几何不变,S=0 n=S-W=0-(-10)=10 具有10个多余约束的几何不变体系
复链杆:连接n个点的链杆 相当于2n-3个单链杆
§2-3 平面杆件不变体系的计算自由度
自由度算法一(把体系看作由许多刚片受铰结、刚结和链杆的约束组成。)
m—体系中刚片的个数 刚片自由度个数总和:3m
g—单刚结个数
h—单铰结个数
体系约束总数: 3g+2h+b
b—单链杆根数
体系计算自由度:W=3m-(3g+2h+b)
§2-6 小结
4 关于计算自由度数W
W的数值 W>0 W=0
W<0
几何构造特性 对象的自由度数大于约束数 体系为几何可变,不能用作结构 对象的自由度数等于约束数 如体系为几何不变,则无多余约束,为静定结构 如体系为几何可变,则有多余约束
对象的自由度数小于约束数 体系有多余约束 如体系为几何可变,则为超静定结构
§2-2 平面几何不变体系的组成规律
(2)固定一个刚片的装配格式:用不共线的铰和一根链杆,或用 不共点的三根链杆将一个刚片II固定在基本刚片I上,称为联 合装配格式。如图:
§2-2 平面几何不变体系的组成规律
(3)固定两个刚片的装配格式:用不共线的三个铰将两个刚片 Ⅱ、Ⅲ固定在基本刚片I上,称为复合装配格式。如图:
1.三个点之间的连接方式
&主要课题:无多余约束的几 何不变体系的组成规律,
只讨论:平面杆件体系最基本 的组成规律—铰结三角形规律
规律1:不共线的三个点用 三个链杆两两相连,则所组成 的铰结三角形体系是一个几何 不变的整体,且没有多余约束。