初一数学尺规作图

合集下载

七年级数学同步拔高第四讲《尺规作图》讲义

七年级数学同步拔高第四讲《尺规作图》讲义

第四讲尺规作图(讲义)一、知识点睛1.五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知线段的垂直平分线;④作已知角的角平分线;⑤过平面内一点,作已知直线的垂线.书写作法时注意:________________,________________.2.应用作图:①______________________,设计作图方案;②调用__________________完成图形.二、精讲精练1.作一条线段等于已知线段.已知:如图,线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)以为圆心,为半径作弧,交射线AP于点B;___________即为所求.2.作一个角等于已知角.已知:如图,∠ABC.求作:∠DEF,使∠DEF=∠ABC.作法:(1)作射线EF;(2)以_____为圆心,______为半径作弧,交BA于点M,交BC于点N;(3)以____为圆心,_____为半径作弧,交EF于点P;(4)___________,___________作弧,交前弧于点D;(5)作射线ED.∠DEF______________.证明:连接_____,_____.在______和______中___________()___________()___________()⎧⎪⎨⎪⎩已作已作已作∴_______________()∴_______________3.作已知线段的垂直平分线.已知:线段MN .求作:直线AB ,使AB 垂直平分MN.作法:(1)分别以_______,______为圆心,___________为半径作弧,两弧相交于点A 和点B ;(2)_______________________________________._______________________________________.4.作已知角的角平分线.已知:如图,∠AOB .求作:射线OP ,使∠AOP =∠BOP (即OP 平分∠AOB).作法:(1)________________,________________作弧,交OA 于点M ,交OB 于点N ;(2)分别以_______,_______为圆心,_________为半径作弧,两弧在交于点P ;(3)_____________________________________._____________________________________.5.(1)过直线上一点,作已知直线的垂线.已知:A为直线MN上一点.求作:直线AB,使AB⊥MN.作法:(1)___________________________________________ ______________________________________;(2)__________________________________________ ______________________________________;(3)________________________________________.___________________________________________.5.(2)过直线外一点,作已知直线的垂线.已知:A为直线MN外一点.求作:直线AB,使AB⊥MN.作法:(1)__________________________________________ _______________________________________;(2)__________________________________________;_______________________________________;(3)__________________________________________;(4)__________________________________________.____________________________________.6.已知三边作三角形.已知:如图,线段a,b,c.求作:△ABC,使AB=c,AC=b,BC=a.作法:(1)作线段__________;(2)___________________作弧,_______________作弧与前弧相交于点B;(3)连接AB,BC.__________________.7.过直线外一点作已知直线的平行线.已知:如图,A是直线MN外一点.求作:直线AB,使AB∥MN.作法:(1)过点A作_____________________________;(2)过点A作_____________________________.直线AB即为所求.8.已知两边及夹角作三角形.已知:如图,线段m,n,∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.作法:(1)___________________;(2)在射线______上截取__________,在射线______上截取____________;(3)连接BC.___________________.9.以下叙述的作图方法中能够实现的有____________.①过点A作直线BC的垂线;②过点A作线段BC的垂直平分线;③作∠AOB的平分线;④延长AB交CD的中点于E;⑤延长AB使AB⊥CD.10.电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m,n的距离也必须相等,发射塔P应修建在什么位置?11.为打造“宜居城市”,某市拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图所示.请在题目给的原图上利用尺规作图作出音乐喷泉M的位置.12.请画出草图,解决下列问题:(1)已知:在△ABC中,CE平分∠ACB交AB于E,过点E 作ED∥AC交BC于D,过D作DF∥CE交AB于F,则∠EDF和∠BDF的数量关系是______________________.(2)在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,则∠AED和∠EDB的数量关系是____________________________.(3)已知:在△ABC中,BO平分∠ABC,CO平分∠ACB,BO与CO交于点O,过点O作DE∥BC交AB于D,交AC 于E,则DE_____BD+CE(选填“>”、“<”或“=”)(4)已知:在Rt△ABC中,∠C=90º,BD平分∠B交AC于点D,在AB边上取一点E,使BE=BC,连结ED.则∠BED=_________.三、回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________。

初中尺规作图详细讲解(含图)

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。

最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。

历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。

直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。

还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。

初中中考尺规作图十例(打印)

初中中考尺规作图十例(打印)

BPAaOQPNM 尺规作图【常识归纳】1.尺规作图的界说:尺规作图是指用没有刻度的直尺和圆规作图.最根本,最经常应用的尺规作图,平日称根本作图.一些庞杂的尺规作图都是由根本作图构成的.2.五种根本作图:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知线段的垂直等分线;4.作已知角的角等分线;5.过一点作已知直线的垂线; (1)标题一:作一条线段等于已知线段. 已知:如图,线段a . 求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形.(2)标题二:作已知线段的中点. 已知:如图,线段MN.求作:点O,使MO=NO (即O 是MN 的中点). 作法:(1)分离以M.N 为圆心,大于的雷同线段为半径画弧,ON MBPA NM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'两弧订交于P,Q;(2)衔接PQ 交MN 于O .则点O 就是所求作的MN的中点.(3)标题三:作已知角的角等分线. 已知:如图,∠AOB,求作:射线OP, 使∠AOP =∠BOP (即OP 等分∠AOB ). 作法:(1)以O 为圆心,随意率性长度为半径画弧,分离交OA,OB 于M,N;(2)分离以M.N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP.则射线OP 就是∠AOB 的角等分线.(4)标题四:作一个角等于已知角. 已知:如图,∠AOB. 求作:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB作法:(1)作射线O ´A ´;(2)以O 为圆心,随意率性长度为半径画弧,交OA 于M,交OB 于N;PBBAP(3)以O ´为圆心,以OM 的长为半径画弧,交O ´A ´于M ´; (4)以M ´为圆心,以MN 的长为半径画弧,交前弧于N ´; (5)衔接O ´N ´并延伸到B ´. 则∠A ´O ´B ´就是所求作的角.(5)标题五:经由直线上一点做已知直线的垂线. 已知:如图,P 是直线AB 上一点. 求作:直线CD,是CD 经由点P,且CD ⊥AB. 作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q;(3)过D.Q 作直线CD. 则直线CD 是求作的直线.(6)标题六:经由直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P.求作:直线CD,使CD 经由点P,且CD ⊥AB.作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 圆心,大于MN 21长度的一半为半径画弧,两弧交于点Q;(3)过P.Q 作直线CD.ca bmn 则直线CD 就是所求作的直线.(7)标题七:已知三边作三角形. 已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a. 作法:(1) 作线段AB = c;(2) 以A 为圆心,以b 为半径作弧,以B 为圆心,以a 为半径作弧与 前弧订交于C;(3) 衔接AC,BC.则△ABC 就是所求作的三角形.(8)标题八:已知双方及夹角作三角形. 已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法:(1) 作∠A=∠α;(2) 在AB 上截取AB=m ,AC=n; (3) 衔接BC.则△ABC 就是所求作的三角形.(9)标题九:已知两角及夹边作三角形. 已知:如图,∠α,∠β,线段m .求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.作法:(1)作线段AB=m;在AB的同旁作∠A=∠α,作∠B=∠β,∠A与∠B的另一边订交于C.则△ABC就是所求作的图形(三角形).(10)标题十:已知三角形,作三角形的外接圆和内切圆.已知:如图,△ABC.求作:△ABC外接圆和内切圆.作法:(1)外接圆的圆心是△ABC三条边的垂直等分线的交点(转化为作AB.BC的垂直等分线交点,半径是交点与△ABC个中一个极点的长度)(2)内切圆的圆心是△ABC三个角的角等分线的交点(转化为作∠B.∠C的角等分线交点,半径是交点到△ABC个中一条边的长度)。

初一数学第四章《几何图形初步》尺规作图——作线段

初一数学第四章《几何图形初步》尺规作图——作线段

教案尺规作图——线段一、学习目标:1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质;4.体验运用“两点之间,线段最短”解决生活中的问题;5.了解两点之间的距离的定义,并会求两点之间的距离.二、知识回顾:1.已知一条线段,如何画一条线段等于已知线段?先量出已知线段的长,再画一条这个长度的线段.2. 怎样比较两条线段的长短?用刻度尺分别量出两条线段的长度来比较.三、知识梳理:1.尺规作图和基本作图在几何里,把只用直尺和圆规画图的方法称为尺规作图;最基本、最常用的尺规作图,通常成为基本作图. 2.作一条线段等于已知线段已知线段a,画一条线段等于已知线段.作法:(1)作射线AM(2)在AM上截取AB= a.则线段AB为所求.3.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如下图)4.线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB.如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点.类似地,还有四等分点,等等.5.线段的性质两点所连的线中,线段最短.简单地说成:两点之间,线段最短.6.两点间的距离连接两点间的线段的长度,叫做这两点的距离.注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身.四、典例探究1.用尺规作已知线段的和、差【例1】如下图,已知线段a,b,画一条线段,使它等于a+b.总结:1.画线段的和时,一般在第一条线段向右的延长线上画,画图工具可选用直尺和圆规,注意保留圆弧的痕迹.2.画线段的差时,一般从被减的那线段的右端点向左在线段上画.3.所画线段含已知线段的和、差时,通常先画和,再画差.4.画完线段后,最后别忘了写结论.练1如图,已知线段a,b,c,画一条线段,使它等于a-b+c.2.线段中点的有关计算【例2】如图,已知线段AD=6,线段AC=BD=4,E、F分别是线段AB,CD的中点,求线段EF的长.总结:1.一条线段的中点只有一个.2.某一点要成为一条线段的中点,必须同时满足两个条件:①点必须在这条线段上;②它把这条线段分为相等的两条线段.3.若点C是线段AB 的中点,则AB=2AC=2BC,或AC=BC=12AB.反之,若AB=2AC=2BC,或AC=BC=12AB,则点C是线段AB 的中点.练2已知线段AB=12,直线AB上有一点C,且BC=6,M是线段AC的中点,求线段AM的长.3.两点之间线段最短的实际应用【例3】如图,A、B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在l上标注出点P的位置,并说明理由.总结:解决平面图形中最短路径(即最小距离或距离之和最小)问题时,通常会运用到线段的基本性质:两点之间,线段最短.练3如下图,一只壁虎要从圆柱体A点沿着表面尽快地爬到B点,因为B点有它要吃的一只蚊子,而它饿的十分厉害,问壁虎怎样爬行路线最短?4.两点之间的距离问题【例4】A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对总结:对于题目中没有给出图的几何问题,要注意考虑全面,必要时需分类讨论. 结合题目已知条件正确画图很重要,既直观形象,又不易漏掉情况.练4已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm五、课后小测一、选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm3.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm4.如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是()A.3cm B.3.5cm C.4cm D.4.5cm5.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b7.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A.0.5 B.1 C.1.5 D.28.已知A,B两点之间距离是10cm,C是线段AB上任意一点,则AC的中点与BC的中点距离是()A.3cm B.4cm C.5cm D.不能确定9.下列说法中,正确的有()A.两点之间,直线最短 B.连结两点的线段叫做两点的距离C.过两点有且只有一条直线 D.AB=BC,则点B是线段AC的中点10.下列说法错误的是()A.若AP=BP,则点P是线段的中点 B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外 D.两点之间,线段最短11.A、B两点的距离是()A.连接A、B两点的线段 B.连接A、B两点间的线段的长度C.过A、B两点的直线 D.过A、B两点的射线12.下列说法正确的是()A.两点之间的连线中,直线最短 B.如果AP=BP,那么点P是线段AB的中点C.两点之间的线段叫做这两点之间的距离 D.如果点P是线段AB的中点,那么AP=BP13.下列说法中,正确的是()A.若AC=12AB,则C是AB的中点 B.若AC=BC,则C是AB的中点C.若C在线段AB上,且AC=BC,则C是AB的中点 D.若C在直线AB上,且AC=12AB,则C是线段AB的中点二.填空题14.已知线段AB=10,如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD的长度是.15.(1)线段的大小比较可以用测量出它们的长度来比较,也可以把一条线段另一条线段上来比较;(2)将一条线段分成两条相等的线段的点叫做_________,若P是AB•的中点,•则PA=12_____,或AB=2________.三、解答题16.如图,已知线段a,b,c,画一条线段,使它等于a+3b-2c.17.如图,P是线段AB上一点,M,N分别是线段AB,AP•的中点,若AB=16,BP=6,求线段MN的长.18.知识是用来为人类服务的,我们应该把它们用于有意义的方面.从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.19.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?20.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.21.如图所示,A,B,C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A,C两树的正中间O处,请你计算一下小亮距离树B多远?22.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.六、小结。

新北师大版七年级数学下册第二章《尺规作图》公开课课件.ppt

新北师大版七年级数学下册第二章《尺规作图》公开课课件.ppt
• 10、人的志向通常和他们的能力成正比例。2021/1/142021/1/142021/1/141/14/2021 3:25:40 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/142021/1/142021/1/14Jan-2114-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/142021/1/142021/1/14Thursday, January 14, 2021 • 13、志不立,天下无可成之事。2021/1/142021/1/142021/1/142021/1/141/14/2021

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/142021/1/142021/1/142021/1/14
谢谢观看
。2021年1月14日星期四2021/1/142021/1/142021/1/14
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/142021/1/142021/1/141/14/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/142021/1/14January 14, 2021
尺规作图
用没有刻度的直尺和圆规画图 (不能使用测量工具测量)
z```xxk
1、已知线段a,作线段AB=a,保留作图痕迹, 不写做法。
a
2、已知∠ABC,作∠A’B’C’, 使得∠A’B’C’=∠ABC,保留作图痕迹, 不写做法。
A
B
C
3、已知∠ABC,作∠A’B’C’, 使得和∠2,作∠ABC和∠DEF z``xxk
使得∠ABC= ∠1+∠2,∠DEF= ∠2 -∠1

尺规作图(含五种基本作图)

尺规作图(含五种基本作图)
角平分线定义:把一个角分成两个相等的 角的射线,叫做这个角的平分线。
O
c
B
第十三页,共32页。
探索
基本作图3 "平分已知角".
(1)以O 为圆心,以适当长为半径画弧,交OA 于C 点,交OB 于D 点;
(2)分别以C、D 为圆心,以大于
1 C2 D
长为半
径画弧,两弧相交于P 点;
A
(3)作射线OP ,
你想自己画出它来吗?
那就让我们从最初的步骤开始吧!
1、 以点O为圆心, r 为半径作圆O;
以2、圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去,
在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗?
第十二页,共32页。
什么叫做角平分线?
D、作线段AB,使它等于已知线段m
第四页,共32页。
基本作图1、“作一条线段等于已知线段。”
已知:线段a.
求作:线段AB,使AB=a.
作法与示范:
a
(1) 作射线AC ;
(2) 以点A为圆心,
以a的长为半径 画弧,
交射线AC 于点B,
则:AB即所求。
A
第五页,共32页。
BC
练习:
求作一条线段AB,使AB=2a.
O
A
C
O`
C`
A`
证明:
,由作法可知
△C`O`D`≌△COD(SSS),
∴∠C`O`D`=∠COD(全等三角形的对 应角相等),
即∠A`O`B`=∠AOB。
第九页,共32页。
练习
1、已知: ∠AOB。 求作: ∠A’O’B’ ,使∠A’O’B’=2∠AOB。

七年级数学用尺规作线段和角

七年级数学用尺规作线段和角

04 尺规作图的实践应用
作几何图形的中线
作几何图形的中线
首先确定给定图形的顶点,然后使用尺规按照中线的定义进 行作图。对于三角形,中线连接顶点与对边中点;对于平行 四边形,中线连接对角顶点。
注意事项
在作图过程中,要确保尺规的准确性,避免误差。同时,要 理解中线的性质和作用,以便更好地应用。
作三角形的高
作三角形的高
首先确定三角形的顶点,然后使 用尺规按照高的定义进行作图。 高是从三角形的一个顶点垂直到 对边的线段。
注意事项
在作图过程中,要确保尺规的准 确性,避免误差。同时,要理解 高的性质和作用,以便更好地应 用。
作平行四边形的对角线
作平行四边形的对角线
首先确定平行四边形的顶点,然后使 用尺规按照对角线的定义进行作图。 对角线连接平行四边形的相对顶点。
03
通过角的顶点,以角的边为半径,向外作弧,交角的两边于两点,连接这两点的线段即为角的角平分 线。
详细描述
首先,确定角的顶点和角的两边。然后,使用圆规,以角的边为半径,从角的顶点向外作弧。接着, 将圆规的另一脚放在角的另一边上,同样以角的边为半径,从角的顶点向外作弧。最后,连接两个弧 的交点和角的顶点,得到的线段即为角的角平分线。
02 用尺规作线段
作已知线段的延长线
总结词
通过延长已知线段,我们可以得到新的线段。
详细描述
首先,确定已知线段的两个端点。然后,使用直尺,从已知线段的一个端点出 发,沿着与已知线段相同的方向,延长一定的距离,得到新的端点。这样,我 们就得到了已知线段的延长线。
过一点作已知直线的垂线
总结词
通过使用直角三角形的性质,我们可以找到一个点,使得该点到已知直线的距离 为定值。

初中数学总复习尺规作图

初中数学总复习尺规作图

尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

已知:如图,线段 a .求作:线段AB,使AB = a .作法:①作射线AP;②在射线AP上截取AB=a .则线段AB就是所求作的图形。

题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:①分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q;②连接PQ交MN于O.则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系?)题目三:作已知角的角平分线。

已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:①以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交∠AOB内于P;③作射线OP。

则射线OP就是∠AOB的角平分线。

题目四:作一个角等于已知角。

(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。

已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:①作线段AB = c;②以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;③连接AC,BC。

则△ABC就是所求作的三角形。

题目六:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠.求作:△ABC,使∠A=∠,AB=m,AC=n.作法:①作∠A=∠;②在AB上截取AB=m ,AC=n;③连接BC。

则△ABC就是所求作的三角形。

题目七:已知两角及夹边作三角形。

已知:如图,∠,∠,线段m .求作:△ABC,使∠A=∠,∠B=∠,AB=m.作法:①作线段AB=m;②在AB的同旁作∠A=∠,作∠B=∠,∠A与∠B的另一边相交于C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
P
A
a
O
Q
P
N
M
O N M
B
P
A 七年级数学期末复习资料(七)
尺规作图
【知识回顾】
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ;
(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。




P B
B
A
P
(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(5)题目五:经过直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于
MN 2
1
的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。

则直线CD 是求作的直线。

(6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。

c a
b
m
n
作法:
(1)以P为圆心,任意长为半径画弧,交AB于M、N;
(2)分别以M、N圆心,大于MN
2
1
长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD。

则直线CD就是所求作的直线。

(5)题目七:已知三边作三角形。

已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
(1)作线段AB = c;
(2)以A为圆心,以b为半径作弧,
以B为圆心,以a为半径作弧与
前弧相交于C;
(3)连接AC,BC。

则△ABC就是所求作的三角形。

题目八:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。

则△ABC就是所求作的三角形。

题目九:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
(1)作线段AB=m;
(2)在AB的同旁
作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。

则△ABC就是所求作的图形(三角形)。

【考点练习】
1、如图:107国道OA和320国道OB在某市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作法,保留作图痕迹,写出结论)
2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。

3、过点C作一条线平行于AB。

4、如图,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点。

张老师请同学们将纸条的下半部分平行四边形ABEF沿EF翻折,得到一个V字形图案。

请你在原图中画出翻折后的图形平行四边形A1B1FE;(用尺规作图,不写画法,保留作图痕迹)。

5、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB的平分线。

O
B
A
6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB 为直径,O 为圆心(要求用尺规作图,保留作图痕迹)。

7、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.
8、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.
9、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h
a
H G F
E B A
10、如图,有A ,B ,C 三个村庄,现要修建一所希望小学,•使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(•保留作图痕迹).
11、如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A .
12、如图,A 为∠MON 内一点,试在OM 、ON 边上分别作出一点B 、C ,使△ABC 的周长最小.
13、如图,已知两点P 、Q 在锐角∠AOB 内,分别在OA 、OB 上求点M 、N ,使PM +MN +NQ 最短.
18.如图所示,EFGH 是一矩形的台球台面,有黑白两球分别位于A 、B 两点位置上,试问:怎样撞击黑球A ,使黑球先碰撞台边EF 反弹后再击中白球B ?
N
A
O
M Q P
B O A。

相关文档
最新文档