高三数学等差和等比数列的运用1
数学高考复习名师精品教案:第23课时:第三章 数列-等差数列、等比数列的性质及应用

数学高考复习名师精品教案第23课时:第三章 数列——等差数列、等比数列的性质及应用一.课题:等差数列、等比数列的性质及应用二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识: 有关等差、等比数列的结论1.等差数列{}n a 的任意连续m 项的和构成的数列232,,,m m m m m S S S S S -- 仍为等差数列.2.等差数列{}n a 中,若m n p q +=+,则q p n ma a a a +=+3.等比数列{}n a 中,若m n p q+=+,则mn p q aa a a ⋅=⋅4.等比数列{a n }的任意连续m 项的和构成的数列232,,,m m m m m S S S S S -- 仍为等比数列.5.两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. 6.两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎫⎩⎨⎧n b 1仍为等比数列.(二)主要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.(三)例题分析:例1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有13 项;(2)已知数列{}n a 是等比数列,且>0n a ,*n N ∈,354657281a a a a a a ++=,则46a a +=9 .(3)等差数列前m 项和是30,前2m 项和是100,则它的前3m 项和是 210 .例2.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n mS +.解:(法一)基本量法(略);(法二)设2n S An Bn =+,则22(1)(2)An Bn m Am Bm n⎧+=⎪⎨+=⎪⎩(1)(2)-得:22()()n m A n m B m n -+-=-,m n ≠ , ∴()1m n A B ++=-,∴2()()()n mS n m A n m B n m +=+++=-+.例3.等差数列{}n a 中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,11a =,求其项数和中间项.解:设数列的项数为21n +项, 则121(1)()772n n a a S +++==奇,22()662n n a a S+==偶∴17766S n S n+==奇偶,∴6n =,∴数列的项数为13,中间项为第7项,且711a =.说明:(1)在项数为21n +项的等差数列{}na 中,2+1=(+1),=,=(2+1)n Sn a S na S n a 奇中偶中中;(2)在项数为2n 项的等差数列{}n a 中2+11=,=,=()n n n n n S na S na S n a a +++1奇偶.例4.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++ *()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410nna-=,∴lg 4na n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列, ∴12(1)lg lg lg 32k k k aa a k -+++=-,∴1(1)7[3]22nn n n bn n--=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==(2)由(1)当7n ≤时,0nb ≥,当7n >时,0nb <,∴当7n ≤时,212731132()244n n n S b b b n n n-+'=+++==-+当7n >时,12789n n S b b b b b b '=+++---- 27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例5*.若n S 和n T 分别表示数列{}n a 和{b }n 的前n 项和,对任意自然数n ,有232n n a +=-,41213n nT S n-=,(1)求数列{b }n 的通项公式;(2)设集合*{|2,}n A x x a n N ==∈,*{|4,}n B y y b n N ==∈.若等差数列{}n c 任一项1,n c A B c ∈ 是A B 中的最大数,且10265125c -<<-,求{}n c 的通项公式.解:(1)当*2,n n N ≥∈时:114121341213(1)n n n n T S nT S n ---=⎧⎨-=-⎩,两式相减得:41213n n b a -=,∴1334n n b a =+534n =--,又1174b=-也适合上式,∴数列{b }n 的通项公式为n b 534n =--.(2)对任意*n N ∈,223,41252(61)3nn a n b n n =--=--=-+-,∴B A⊂,∴A BB=∵1c 是A B 中的最大数,∴1c 17=-,设等差数列{}n c 的公差为d ,则10179c d=-+,∴265179125d -<-+<-,即527129d -<<-,又4n b 是一个以12-为公差的等差数列,∴*12()d k k N =-∈,∴24d =-,∴724nc n=-.(四)巩固练习:1.若数列{}n a (N n ∈*)是等差数列,则有数列12nna a a bn+++=(N n ∈*)也为等差数列,类比上述性质,相应地:若数列n {c }是等比数列,且n c >0(N n ∈*),则有n d=N n ∈*)也是等比数列.2.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n nS n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43.说明:2121n n nn a S b T --=.。
高三数学第一轮总复习课件: 等差、等比数列

Sn
a1 an n na
2
q 1 na1 等比数列前n项和 S n a1 1 q n q 1 1 q n 1 S1 2.如果某个数列前n项和为Sn,则 an S n S n1 n 2
nn 1 d 1 2
3.下列命题中正确的是( B
)
A.数列{an}的前n项和是Sn=n2+2n-1,则{an}为等差数列 B. 数列 {an} 的前 n 项和是 Sn=3n-c,则 c=1 是 { an} 为等比数列的 充要条件 C.数列既是等差数列,又是等比数列
D.等比数列{an}是递增数列,则公比q大于1
4. 等差数列 { an} 中, a1>0,且 3 a8=5a13,则 Sn 中最大的是 C ( ) (A)S10 (B)S11 (C)S20 (D)S21
(2n-1)an,当{an}为等比数列时其结论可类似推导得出.
4. 已知数列 { an} 的前 n 项和 Sn=32n-n2,求数列 { |an|} 的前 n 项 Sn 和S’n .
【解题回顾】
:当ak≥0 一般地,数列{an}与数列{|an|}的前n项和Sn与 S n
时,有 S n ak<0时, S n S(n k =1,2,…,n).若在 S;当 n
高三数学第一轮总复习四:等差、等比数列
等差、等比数列的通项及求和公式 等差、等比数列的运用
等差、等比数列的应用 数列的通项与求和
第1课时 等差、等比数列的通项及求 和公式
• • • •
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
•误 解 分 析
要点·疑点·考点
1.等差数列前n项和
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零, 设其和分别为S+、S-,则有Sn=S++S-,所以
SXC039高考数学必修_等差等比数列下标和的性质运用

等差、等比数列“下标和”性质的运用定理:等差数列{a n }中,m+n=i+j ,则a m +a n =a i +a j ,等比数列{a n }中,m+n=i+j ,则a m ·a n =a i ·a j (m 、n 、i 、j ∈+N )。
证明:若{a n }是等差数列,a m +a n =2a 1+(m+n -2)d, a i +a j =2a 1+(i+j -2)d ,∵m+n=i+j ,∴(m+n -2)d=(i+j -2)d,即a m +a n = a i +a j (其中d 为公差)若{a n }是等比数列,a m ·a n =a 12q m+n-2, a i ·a j = a 12q i+j-2, ∵ m+n=i+j ∴q m+n-2= q m+n-2 即a m ·a n =a i ·a j (其中q 为公比)。
这一性质可表述为:等差数列的下标和相等则相应的项的和相等,等比数列的下标和相等则相应的项的积相等;但必须注意:两项和(积)只能等于两项和(积),三项和只能等于三项和……。
等差(等比)数列中简化运算的技巧多源于这条性质。
例1.在等差数列{}n a 中,972a a a ++为常数,则其前( )项和也为常数(A )6 (B )7 (C )11 (D )12解析:等差数列{}n a 的前k 项和为常数即k a a +1为常数,而972a a a ++=36a 为常数, ∴26a =111a a + 为常数,即前11项和为常数,选C 。
注意:千万不要以为972a a a ++= 18a =171a a +,那就大错特错了!等差数列中“n 项和”与“两项和(转化为a 1+a n )”有关,某一项或某几项和均需转化为“两项和”才能与“n 项和”联系起来。
例2.等比数列{n a }中,a 4+a 6=3,则a 5(a 3+2a 5+a 7)=解析:a 5(a 3+2a 5+a 7)=a 5a 3+2a 52+a 5a 7=a 42+2a 4a 6+a 62=(a 4+a 6)2=9例3.在正项的等差数列{n a }和正项的等比数列{n b }中,有11b a =,1212--=k k b a ,试比较k a 与k b 的大小。
高三数学等差等比数列综合运用

1 n ( a 2 a 2 n ) 1 n (1 4 n 3) 2n 1 , n n 2 2
bn 1 bn
2( n 1) 1 (2 n 1)
2 . b n 是等差数列.
作业: 《全案》 P
速度训练: 1.已知等差数列{an},{bn}前 n 项和分别是 Sn、Tn, a1 1 Sn 2n 若 ,则 等于( C ) b1 1 Tn 3n 1 (A)
a n 是等差数列,记其前 n 项
和 为 S n , 若 a1 8 , 且 a 8 2 0 , 则
S
15
300 _________.
三、数列与其他数学分支的综合问题
数列的综合问题,是数列的概 念、性质在其他知识领域的穿插与 渗透。数列与函数、方程、三角、 不等式等知识相互联系,优化组合, 无形中加大了综合力度。
an
联系
差数列; ⑵
a n 为等差数列 b 为等比数列.
注:等差、等比数列的证明须用定义证明 .
二、等比数列与等差数列的综合计算问题 数列计算是本章的中心内容,利用等差数 列和等比数列的通项公式、前项和公式及其性 质熟练地进行计算,是高考命题重点考查的内 容.
例如:已知
a n S n S n 1 ( n 2 n )
2 2 ( n 1)
2( n 1) 2 n 3 ,
∴ a n 2 n 3 ,即 a n 是首项为 1 ,公差为 2
1 的等差数列.∴ b n ( a 2 a 4 a 2 n ) n
11 17
73
训练 3 、 预测 1
等差数列和等比数列的概念关系

等差数列和等比数列的概念关系等差数列和等比数列是初中数学中非常基础的概念,但是它们在高中数学和大学数学中也有着非常重要的地位。
这两种数列之间有着一定的联系和关系,本文将从定义、性质和应用等方面探讨等差数列和等比数列的概念关系。
一、等差数列的定义和性质等差数列是指一个数列中相邻两项之差相等的数列,这个公差常用字母d表示。
例如,1,3,5,7,9就是一个公差为2的等差数列。
等差数列的通项公式是an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列有许多重要的性质。
首先,等差数列的前n项和Sn可以用下面的公式表示:Sn=n(a1+an)/2。
其次,对于等差数列中的任意一项ai,它的前后两项之和等于首项和末项之和,即ai+ai+1=a1+an。
最后,等差数列的任意三项构成的差分数列仍是等差数列。
二、等比数列的定义和性质等比数列是指一个数列中相邻两项之比相等的数列,这个公比常用字母q表示。
例如,1,2,4,8,16就是一个公比为2的等比数列。
等比数列的通项公式是an=a1q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
等比数列同样也有许多重要的性质。
首先,等比数列的前n项和Sn可以用下面的公式表示:Sn=a1(q^n-1)/(q-1)。
其次,对于等比数列中的任意一项ai,它的前后两项之比等于首项和末项之比,即ai/ai+1=a1/an。
最后,等比数列的任意三项构成的比分数列仍是等比数列。
三、等差数列和等比数列的关系等差数列和等比数列之间有着一定的联系和关系。
首先,等差数列和等比数列都是数列的特殊形式,它们是数列的两种常见形式。
其次,等差数列和等比数列都有着通项公式和前n项和公式,这些公式都可以用来计算数列中的任意一项或前n项和。
最后,等差数列和等比数列都有着一些重要的应用,例如在数学、物理、经济学等领域都有着广泛的应用。
另外,等差数列和等比数列之间还有一些有趣的关系。
代数中的等差数列与等比数列

代数中的等差数列与等比数列代数中的等差数列(Arithmetic Progression,简称AP)和等比数列(Geometric Progression,简称GP)是数学中常见的两种数列。
它们在数学和实际应用中都起着重要的作用。
本文将对这两种数列进行介绍和比较,并讨论它们在不同领域中的应用。
一、等差数列等差数列是指一个数列中的任意两个相邻的数之差都相等的数列。
用公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
例如,1,3,5,7,9就是一个等差数列,公差为2。
在这个数列中,相邻两项之差始终为2。
等差数列具有以下特点:1. 公差确定性:等差数列的公差确定了数列中任意两项之间的差值。
2. 递推性:通过知道首项和公差,可以逐步计算其他项。
3. 对称性:等差数列关于中间项对称,即an = a(n+1-m),其中m为正整数。
4. 求和公式:等差数列的前n项和可表示为Sn = (n/2)(a1 + an)。
等差数列在代数中的应用非常广泛,例如:1. 数学问题中:常用于求和、求未知项和求平均数等计算。
2. 经济学中:用于描述投资收益率中的等差增长。
3. 物理学中:常用于描述匀速直线运动的位移变化。
二、等比数列等比数列是指一个数列中的任意两个相邻的数之比都相等的数列。
用公式表示为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r 表示公比。
例如,2,6,18,54,162就是一个等比数列,公比为3。
在这个数列中,任意两项之比始终为3。
等比数列具有以下特点:1. 公比确定性:等比数列的公比确定了数列中任意两项之比值。
2. 递推性:通过知道首项和公比,可以逐步计算其他项。
3. 比率可逆性:等比数列的逆数也是等比数列,即1/an也是等比数列。
4. 求和公式:等比数列的前n项和可表示为Sn = (a1 * (r^n - 1)) / (r - 1)。
等比数列在代数中的应用也非常广泛,例如:1. 数学问题中:常用于求和、求未知项和求平均数等计算。
2022高考数学满分讲义:第三章 数列 第1讲 等差数列与等比数列

2022高考数学满分讲义:第三章 数列第1讲 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺 B .12.5尺 C .10.5尺 D .9.5尺 答案 A解析 从冬至起,十二个节气的日影长依次记为a 1,a 2,a 3,…,a 12,由题意,有a 1+a 4+a 7=37.5,根据等差数列的性质,得a 4=12.5,而a 12=4.5,设公差为d ,则⎩⎪⎨⎪⎧a 1+3d =12.5,a 1+11d =4.5,解得⎩⎪⎨⎪⎧a 1=15.5,d =-1,所以冬至的日影长为15.5尺.(2)已知点(n ,a n )在函数f (x )=2x-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =2164n s +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30解析 ∵点(n ,a n )在函数f (x )=2x -1的图象上,∴a n =2n -1(n ∈N *),∴{a n }是首项为a 1=1,公比q =2的等比数列,∴S n =1×(1-2n )1-2=2n-1,则b n =264n=2n -12(n ∈N *), ∴{b n }是首项为-10,公差为2的等差数列, ∴T n =-10n +n (n -1)2×2=n 2-11n =⎝⎛⎭⎫n -1122-1214. 又n ∈N *,∴T n 的最小值为T 5=T 6=⎝⎛⎭⎫122-1214=-30. 规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2 B .3 C .4 D .5 答案 C解析 ∵a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,2为公比的等比数列, ∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +1(1-210)1-2=215-25,即2k +1(210-1)=25(210-1), ∴2k +1=25,∴k +1=5,∴k =4.(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0 答案 ABC解析 设等差数列{a n }的公差为d ,由S 10=S 20,得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d .因为a 1>0,所以d <0,故A 正确;因为a 16=a 1+15d =-292d +15d =12d ,又d <0,所以a 16<0,故B 正确;因为a 15=a 1+14d =-292d +14d =-12d >0,a 16<0,所以S 15最大,即S n ≤S 15,故C 正确;S n =na 1+n (n -1)2d =n (n -30)2d ,若S n <0,又d <0,则n >30,故当且仅当n ≥31时,S n <0,故D 错误.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k . 2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( ) A .11 B .12 C .20 D .22 答案 D解析 结合等差数列的性质,可得a 5+a 7=2a 6=a 26, 又该数列为正项数列,可得a 6=2, 所以由S 2n +1=(2n +1)a n +1, 可得S 11=S 2×5+1=11a 6=22.(2)已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于( )A .2 020B .1 010C .2 D.12答案 A解析 ∵a 1a 2 020=1, ∴f (a 1)+f (a 2 020)=21+a 21+21+a 22 020=21+a 21+21+1a 21=21+a 21+2a 211+a 21=2, ∵{a n }为等比数列,则a 1a 2 020=a 2a 2 019=…=a 1 010a 1 011=1, ∴f (a 2)+f (a 2 019)=2,…,f (a 1 010)+f (a 1 011)=2, 即f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)=2×1 010=2 020. 规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( )A .12B .24C .30D .32 答案 D解析 设等比数列{a n }的公比为q , 则q =a 2+a 3+a 4a 1+a 2+a 3=21=2,所以a 6+a 7+a 8=(a 1+a 2+a 3)·q 5=1×25=32.(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40答案 B解析 ∵正项等比数列{a n }的前n 项和为S n , ∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等比数列, ∴10×(130-S 20)=(S 20-10)2, 解得S 20=40或S 20=-30(舍), 故S 40-S 30=270,∴S 40=400.考点三 等差数列、等比数列的探索与证明 核心提炼等差数列 等比数列 定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法 a n =a 1+(n -1)d a n =a 1·q n -1 中项法2a n =a n -1+a n +1a 2n =a n -1a n +1证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12(n ∈N *),b n =12[(a n +b n )-(a n -b n )]=12n -n +12(n ∈N *).易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1(n ∈N *).专题强化练一、单项选择题1.在等比数列{a n }中,若a 3=2,a 7=8,则a 5等于( ) A .4 B .-4 C .±4 D .5 答案 A解析 ∵数列{a n }为等比数列,且a 3=2,a 7=8, ∴a 25=a 3·a 7=2×8=16,则a 5=±4, ∵等比数列奇数项的符号相同,∴a 5=4.2.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n 等于( )A .2n -1B .2-21-n C .2-2n -1 D .21-n -1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2.由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 1(1-q n )1-q=2n-1,所以S n a n =2n -12n -1=2-21-n .方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12, ①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.3.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( ) A .a 6≤b 6 B .a 6≥b 6 C .a 12≤b 12 D .a 12≥b 12 答案 B解析 因为等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11,所以a 1+a 11=b 1+b 11=2a 6,所以a 6=a 1+a 112=b 1+b 112≥b 1b 11=b 6.当且仅当b 1=b 11时,取等号,此时数列{b n }的公比为1. 4.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C解析 由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,n -1(n ≥2)取代, 累加得a n n -a 11=ln n -ln 1,即a nn =2+ln n ,即a n =2n +n ln n (n ≥2),又a 1=2符合上式,故a n =2n +n ln n .5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=19C .S 9=81D .S 10=91 答案 D解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n >1,n ∈N *时是等差数列,公差为2, 又a 1=1,a 2=2,a n =2+(n -2)×2=2n -2(n >1,n ∈N *),∴a 9=2×9-2=16,a 10=2×10-2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选D.6.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m ,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为S n ,则( )A .S n 无限大B .S n <3(3+5)mC .S n =3(3+5)mD .S n 可以取100m答案 B解析 由题意可得,外围第2个正方形的边长为⎝⎛⎭⎫13m 2+⎝⎛⎭⎫23m 2=53m ; 外围第3个正方形的边长为⎝⎛⎭⎫13×53m 2+⎝⎛⎭⎫23×53m 2=59m ; ……外围第n 个正方形的边长为⎝⎛⎭⎫53n -1m .所以蜘蛛网的长度 S n =4m ⎣⎡⎦⎤1+53+59+…+⎝⎛⎭⎫53n -1 =4m ×1-⎝⎛⎭⎫53n1-53<4m ×11-53=3(3+5)m .故选B. 二、多项选择题7.(2020·厦门模拟)记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0 B .S n 的最大值为S 3 C .S 1=S 6 D .|a 3|<|a 5|答案 AC解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,则a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的取值情况不清楚,故S 3可能为最大值也可能为最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.8.已知等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项中正确的是( )A .0<q <1B .a 6>1C .T 12>1D .T 13>1答案 ABC解析 由于等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,所以(a 6-1)(a 7-1)<0,由题意得a 6>1,a 7<1,所以0<q <1,A ,B 正确;因为a 6a 7+1>2,所以a 6a 7>1,T 12=a 1·a 2·…·a 11·a 12=(a 6a 7)6>1,T 13=a 137<1,所以满足T n >1的最大正整数n 的值为12,C 正确,D 错误. 三、填空题9.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________. 答案 4解析 由题意知q ≠1,所以S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =na 1+n (n -1)2d +b 1(1-q n )1-q=d 2n 2+⎝⎛⎭⎫a 1-d 2n +b 11-q -b 1q n1-q =n 2-n +2n -1,所以⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,b11-q =-1,-b11-q q n=2n,解得d =2,q =2,所以d +q =4.10.(2020·北京市顺义区质检)设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =________,S 4S 2=________.答案 3 10解析 设等比数列的通项公式a n =a 1q n -1,又因为3a 1,2a 2,a 3成等差数列,所以2×2a 2=3a 1+a 3,即4a 1q =3a 1+a 1q 2,解得q =3或q =1(舍),S 4S 2=a 1(1-34)1-3a 1(1-32)1-3=1-341-32=10.11.(2020·潍坊模拟)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用a n表示解下n (n ≤9,n ∈N *)个圆环所需移动的最少次数,{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1(n 为偶数),2a n -1+2(n 为奇数),则解下5个圆环需最少移动________次. 答案 16解析 因为a 5=2a 4+2=2(2a 3-1)+2=4a 3,所以a 5=4a 3=4(2a 2+2)=8a 2+8=8(2a 1-1)+8=16a 1=16, 所以解下5个圆环需最少移动的次数为16.12.已知等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,且对任意的n ∈N *,都有A ≤2S n-1S n ≤B 恒成立,则B -A 的最小值为________. 答案136解析 ∵等比数列{a n }的首项为32,公比为-12,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12=1-⎝⎛⎭⎫-12n , 令t =⎝⎛⎭⎫-12n ,则-12≤t ≤14,S n =1-t , ∴34≤S n ≤32, ∴2S n -1S n 的最小值为16,最大值为73,又A ≤2S n -1S n ≤B 对任意n ∈N *恒成立,∴B -A 的最小值为73-16=136.四、解答题13.(2020·聊城模拟)在①a 5=b 3+b 5,②S 3=87,③a 9-a 10=b 1+b 2这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,________,a 1=b 6,若对于任意n ∈N *都有T n =2b n -1,且S n ≤S k (k 为常数),求正整数k 的值. 解 由T n =2b n -1,n ∈N *得, 当n =1时,b 1=1;当n ≥2时,T n -1=2b n -1-1, 从而b n =2b n -2b n -1,即b n =2b n -1,由此可知,数列{b n }是首项为1,公比为2的等比数列,故b n =2n -1.①当a 5=b 3+b 5时,a 1=32,a 5=20,设数列{a n }的公差为d ,则a 5=a 1+4d ,即20=32+4d ,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值.因此,正整数k 的值为11.②当S 3=87时,a 1=32,3a 2=87,设数列{a n }的公差为d ,则3(32+d )=87,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.③当a 9-a 10=b 1+b 2时,a 1=32,a 9-a 10=3,设数列{a n }的公差为d ,则-d =3,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.14.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0,所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2), 当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式), 所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列, 所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。
等差数列与等比数列的证明方法

等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。
一、 定义法01.证明数列是等差数列的充要条件的方法:{}1()n n n a a d a +-=⇔常数是等差数列{}2222()n n n a a d a +-=⇔常数是等差数列 {}3333()n n n a a d a +-=⇔常数是等差数列02.证明数列是等差数列的充分条件的方法:{}1(2)n n n a a a d n --=≥⇒是等差数列 {}11(2)n n n n n a n a a a a +--=-≥⇒是等差数列03.证明数列是等比数列的充要条件的方法:{}1(00)n n na q q a a +=≠≠⇔1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:1nn a q a -=(n>2,q 为常数且≠0){}n a ⇒为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有1nn a qa -==(常数0≠);②n *∈N 时,有1n na q a +==(常数0≠).例1. 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=。
证明:先证必要性设{}n a 为等差数列,公差为d ,则当d=0时,显然命题成立当d≠0时,∵111111n n n na a d a a++⎛⎫=-⎪⎝⎭∴再证充分性:∵122334111a a a a a a++⋅⋅⋅1111n n nna a a a++++=⋅⋅………①∴122334111a a a a a a++⋅⋅⋅11212111n n n n nna a a a a a++++++++=⋅⋅⋅………②②﹣①得:12121111n n n nn na a a a a a+++++=-⋅⋅⋅两边同以11n na a a+得:112(1)n na n a na++=+-………③同理:11(1)n na na n a+=--………④③—④得:122()n n nna n a a++=+即:211n n n na a a a+++-=-{}n a为等差数列例2.设数列}{na的前n项和为n S,试证}{na为等差数列的充要条件是)(,2)(*1NnaanS nn∈+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可平刷的后三600大底
[单选,A1型题]健康喂养的3个月婴儿,体重5kg。用牛奶喂养,每天应给予()A.8%糖牛奶(ml)5.50另给水分(ml)200B.8%糖牛奶(ml)450另给水分(ml)200C.8%糖牛奶(ml)600另给水分(ml)100D.8%糖牛奶(ml)500另给水分(ml)300E.8%糖牛奶(ml)650另给水分(ml)200 [单选,A2型题,A1/A2型题]脑卒中患者偏瘫侧肢体分级处于BrunnstromⅡ期,康复治疗措施正确的是()A.控制肌痉挛和异常运动模式,促进分离运动的出现B.增强患侧肢体肌力、耐力训练C.增强患侧肢体平衡和协调性训练D.恢复提高肌张力,诱发主动运动E.控制肌痉挛,促进选择性运动和速度 [单选]腹腔镜检查的适应证,错误的是()A.腹水原因待查B.各种原发或继发的不孕症C.生殖器发育异常D.弥漫性腹膜炎E.来源不明的腹腔内出血 [单选]船舶在涨潮末的转潮期间,或在弱回流区中,由于航道狭窄,或为了避免复杂的掉头操纵,可采用:()。A.抛锚驶靠B.横移驶靠C.顺流驶靠D.滑行驶靠 [单选,A1型题]有大毒,而功专拔毒祛腐的药是()A.铅丹B.升药C.白矾D.硼砂E.朱砂 [单选,A2型题,A1/A2型题]Wegener肉芽肿引起的鼻中隔穿孔宜采用的治疗方法是()。A.全身或局部抗炎B.鼻中隔黏膜减张缝合鼻中隔修补术C.带蒂黏骨膜瓣转移缝合鼻中隔修补术D.放射治疗E.糖皮质激素治疗 [单选]调查某“时点”的患龋率时,该时点的长度一般不应超过()A.1小时B.1月C.1周D.1天E.1年 [问答题,简答题]PT一次保险器的作用? [单选]某患者进食后发生恶心、呕吐、腹泻。关于该菌生化反应,叙述错误的是()A.在3%、7%氯化钠中生长良好B.在10%氯化钠中不生长C.无氯化钠的培养基中生长良好D.神奈川现象阳性E.碱性蛋白胨水可做该菌增菌培养 [填空题]乙炔装置AR476分析仪预处理系统应该()天切换一次。 [单选]在设置竞赛项目以及奖励办法的原则中,设置奖励的面要()A、宽B、窄C、无所谓D、其他 [单选,A2型题,A1/A2型题]下列哪项体征不属于Horner征()。A.眼裂变小B.瞳孔缩小C.面部出汗增加D.眼球内陷E.用力睁眼时双侧眼裂等大 [多选]下列各项中,属于事业单位净资产的有()。A.结余B.专用基金C.事业基金D.固定基金 [单选]钩体病发病机制中错误的是()A.钩体经皮肤进入人体B.钩体存在的数量与器官受损的程度完全一致C.基本病理改变是全身性毛细血管损害D.后发症状主要与变态反应有关E.主要受累器官为肝、肾、肺、脑 [多选]施工现场临时用水量计算包括()。A.现场施工用水量B.施工机械用水量C.施工现场生活用水量D.基坑降水计算量E.消防用水量 [单选]声卡是多媒体计算机不可缺少的硬件设备,以下(1)采样频率是其不支持的,(2)功能也是声卡不支持的。空白(1)处应选择()A.11.025kHzB.22.05kHzC.33.075kHzD.44.1kHz [单选,A1型题]β射线要用原子序数小的材料,如塑料等进行防护,这是因为()A.β射线在原子序数小的材料中射程短B.β射线对原子序数小的物质电离作用小C.β射线在原子序数小的材料中韧致辐射作用弱D.原子序数小的材料对β射线吸收作用强E.β射线在原子序数小的材料中能量损失大 [单选,A型题]可作片剂助流剂的是()A、糊精B、聚维酮C、糖粉D、硬脂酸镁E、微粉硅胶 [单选,A2型题,A1/A2型题]双气囊三腔管压迫止血适用于()A.食管静脉曲张破裂出血B.急性出血性糜烂性胃炎出血C.胃癌并出血D.胆道出血E.消化性溃疡并发出血 [单选]和心导管所测肺毛细血管楔压呈线性相关的超声参数是()。A.DTB.IVRTC.E/AD.E/EaE.S/D [单选]将两个或两个不同的元素并竖在一起时,能看出差异,这是()构成。A、近似B、特异C、对比D、密集 [单选,A1型题]下列关于膀胱损伤的说法,正确的是()A.通过导尿管注入生理盐水,如抽出液体量与注入的不相同即可排除膀胱损伤B.膀胱破裂时,应尽快进行手术修补C.通过导尿管注入生理盐水,如抽出液体量与注入的差异很大,则提示有膀胱破裂D.腹膜外膀胱破裂因无尿液漏入腹腔,一般 [单选]下列几种疾病,RF检出率最高的是()A.类风湿关节炎B.SLEC.干燥综合征D.硬皮病E.皮肌炎 [单选]车辆辅修时,新装磨耗板与侧架立柱的间隙,用厚度()的塞尺检查,不得触及铆钉杆或螺杆。A.1mmB.2mmC.3mmD.4mm [单选]使用“货运票据封套”的(),应左右对齐折叠。A、装载清单B、货物运单和货票C、证明文件D、杂费收据 [单选,A1型题]对危急患者,医师应该采取的救治措施是()A.积极措施B.紧急措施C.适当措施D.最佳措施E.一切可能的措施 [单选]下列关于矿业工程量变更计算的规定表述错误的是()。A.工程量清单漏项或由于设计变更引起的新的工程量清单项目,其相应综合单价由承包方提出,经发包方确认后作为结算的依据B.由于设计变更引起工程量增减部分,属于合同约定幅度以内的,应执行原有的综合单价C.增减工程量属 [填空题]涂料是有机高分子材料的混合物,通常由()、油料、()、()及助剂等组成。 [单选]看小说时产生的想象活动主要是()A.表象B.再造想象C.创造想象D.无意想象 [单选]在下列害虫中,属于完全变态的是()。A、黄刺蛾B、蚜虫C、蚧D、蝗虫 [单选,B1型题]新生儿湿肺多见于()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿 [单选]测血压时,应该注意A.测量时血压计"0"点与心脏、肱动脉在同一水平B.固定袖带时应紧贴肘窝,松紧能放入一指为宜C.听诊器胸件应塞在袖带内便于固定D.测量前嘱患者先休题]从胎儿娩出到胎盘娩出,不应超过()A.15分钟B.20分钟C.30分钟D.45分钟E.60分钟 [单选,A型题]咽假膜的形成提示下列哪种疾病()A.军团病B.李斯特菌病C.白喉D.艰难梭菌感染E.鹅口疮 [单选,A2型题,A1/A2型题]右旋糖酐每天最大用量为()。A.500mlB.1000mlC.1500mlD.2000mlE.2500ml [单选]下列哪一项不是化脑的并发症()A.脑室内出血B.脑室管膜炎C.脑积水D.脑性低钠综合征E.硬脑膜下积液 [单选]健康城市是指()。A.从城市规划、建设到管理各个方面都以人的健康为中心B.营造高质量的自然环境和更加舒适的生活环境C.保障广大市民健康生活和工作D.成为健康人群、健康环境和健康社会有机结合的人类社会发展整体E.以上都是 [单选]低频信号发生器的频率波段钮在100~1KHz,“×1”钮在“4”,“×0.1”钮在“6”,“×0.01”钮在“5”则此时仪器输出信号的频率为()。A、465HZB、465KHZC、46.5HZD、46.5KHZ [单选]下列哪一种是急性扁桃体炎的主要并发症()A.扁桃体周围脓肿B.急性喉炎C.心肌炎D.关节炎E.咽旁脓肿 [单选]一级航行通告中,应填写().A.设施、空域或报告情况所在地的机场或飞行情报区4字地名代码B.设施、空域或报告情况所在地的3字地名代码C.设施、空域或报告情况所在地的大写的汉语拼音