德力西变频器在恒压供水上的应用.

德力西变频器在恒压供水上的应用.
德力西变频器在恒压供水上的应用.

德力西变频器在恒压供水上的应用

一、概述

恒压供水是指在供水网中用水量发生变化时,出口压力保持不变的供水方式。供水网系出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高位水箱、气压罐等设施实现的。随着变频调速技术的日益成熟和广泛应用,利用变频器、PID调节器、单片机、PLC等器件的有机结合,构成控制系统,调节水泵的输出流量,实现恒压供水。该技术已在供水行业普及。变频恒压供水系统主要特点:

1、节电:变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。

2、运行可靠:变频恒压供水系统实现了系统供水压力稳定,由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。

3、卫生节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象;系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。

4、控制灵活:分段供水,定时供水,手动选择工作方式。

5、自我保护功能完善:新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、低液位保护、主泵定时轮换控制等功能,功能完善,全自动控制,自动运行,泵房不设岗位,只需派人定期检查、保养如某台泵出现故障,主动向上位机发出报警信息,同时启动备用泵,以维持供水平衡。万一自控系统出现故障,用户可以直接操作手动系统,以保护供水。

6、延长设备寿命、保护电网稳定:使用变频器后,机泵的转速不再是长期维持额定转速运行,减少了机械磨损,降低了机泵故障率,而且主泵定时轮换控制功能自动定时轮换主泵运行,保证各泵磨损均匀且不锈死,延长了机泵使用寿命。变频器的无级调速运行,实现了机泵软启动,避免了电机开停时的大电流对电机线圈和电网的冲击,消除了水泵的水锤效应。

二、变频恒压供水系统组成

变频恒压供水系统通常是由水源、离心泵、压力传感器、PID调节器、变频器、管网组成。工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化,及时将信号(4-20mA或0-10V)反馈PID

调节器,PID调节器对比设定控制压力进行运算后给出相应的变频指令,改变水泵的运行或转速,使得管网的水压与控制压力一致。

用变频器进行恒压供水时有两种方式,一种是一台变频器控制一台

水泵;另一种是一台变频器控制几台水泵。前种方法是根据压力反馈信号,通过PID运算自动调整变频器输出频率,改变电动机转速,最终达到管网恒压的目的,就一个闭环回路,较简单。后种需要利用恒压供水器PLC(如图),当变频器被投入自动运行时,1#泵电机接触器首先被控制导通,变频器输出频率上升,同时管网压力信号逐渐增加,出水管网的压力信号与恒压供水器PLC管网压力设定信号负反馈闭环,当电机频率上升到最高频率,而管网压力达不到设定要求时,变频器立即控制工频接通1#泵,使1#泵全速投入运行,同时变频器经过时间延迟,对2#泵进行变频控制。当管网压力与设定压力基本平衡时,变频器控制当前变频电机维持在一定的频率,当水需求量减少,管网压力逐渐升高,变频器输出频率降低,当变频器输出频率低至0HZ,而管网在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统可靠性。

恒压供水控制系统框图

三、系统应用范围

1、自来水厂、加压泵房。

2、高层建筑,城乡居民小区,企事业等生活用水。

3、企业生产用水:各类工业需要恒压控制的用水,冷却水循环,热力网水循环,锅炉循环水,锅炉补水等。

4、农田灌溉系统。

5、中央空调系统。

6、农田灌溉,污水处理,人造喷泉

PLC变频恒压供水的背景和意义

PLC变频恒压供水的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需 大量消耗能量,提高泵站效率:降低能耗,对国民经济有重 大意义。我国泵站的特点是数量大、范围广、类型多、发展 速度快,在工程规模上也有一定水平,但由于设计中忽视动 能经济观点以及机电产品类型和质量上存在的一些问题等 等原因,致使在技术水平、工程标准以及经济效益指标等方 面与国外先进水平相比,还有一定的差距。目前,大量的电 能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电 量在这类负载中占了相当的比例。这一方面是由于我国居民 多,用水量大,造成用电量大:另一方面是因为我国供水设 备工作效率低,控制方式不够科学合理。造成不必要的能量 浪费。因此,研究提水系统的能量模型,找出能够节能的控 制策略方法,这里大有潜力可挖,是减少能耗,保障供水的 一个很有意义的工作。 以变频器为核心结合PLC组成的控制系统具有高可靠性、 强抗干扰能力、组合灵活、编程简单、维修方便和低成本等 诸多特点,变频恒压供水系统集变频技术、电气技术、防雷 避雷技术、现代控制、远程监控技术于一体。采用该系统进 行供水可以提高供水系统的稳定性和可靠性,方便地实现供 水系统的集中管理与监控;同时系统具有良好节能性,这在 能量日益紧缺的今天尤为重要,所以研究设计该系统,对于

提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。 国内外研究概况 变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞典、瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC

德力西变频器在恒压供水上的应用.

德力西变频器在恒压供水上的应用 一、概述 恒压供水是指在供水网中用水量发生变化时,出口压力保持不变的供水方式。供水网系出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高位水箱、气压罐等设施实现的。随着变频调速技术的日益成熟和广泛应用,利用变频器、PID调节器、单片机、PLC等器件的有机结合,构成控制系统,调节水泵的输出流量,实现恒压供水。该技术已在供水行业普及。变频恒压供水系统主要特点: 1、节电:变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。 2、运行可靠:变频恒压供水系统实现了系统供水压力稳定,由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。 3、卫生节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象;系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。 4、控制灵活:分段供水,定时供水,手动选择工作方式。 5、自我保护功能完善:新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、低液位保护、主泵定时轮换控制等功能,功能完善,全自动控制,自动运行,泵房不设岗位,只需派人定期检查、保养如某台泵出现故障,主动向上位机发出报警信息,同时启动备用泵,以维持供水平衡。万一自控系统出现故障,用户可以直接操作手动系统,以保护供水。 6、延长设备寿命、保护电网稳定:使用变频器后,机泵的转速不再是长期维持额定转速运行,减少了机械磨损,降低了机泵故障率,而且主泵定时轮换控制功能自动定时轮换主泵运行,保证各泵磨损均匀且不锈死,延长了机泵使用寿命。变频器的无级调速运行,实现了机泵软启动,避免了电机开停时的大电流对电机线圈和电网的冲击,消除了水泵的水锤效应。 二、变频恒压供水系统组成 变频恒压供水系统通常是由水源、离心泵、压力传感器、PID调节器、变频器、管网组成。工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化,及时将信号(4-20mA或0-10V)反馈PID 调节器,PID调节器对比设定控制压力进行运算后给出相应的变频指令,改变水泵的运行或转速,使得管网的水压与控制压力一致。 用变频器进行恒压供水时有两种方式,一种是一台变频器控制一台

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

德力西变频器RS485通讯协议

德力西变频器RS485通讯协议 一.德力西变频器通讯协议简介 德力西变频器有两种通讯协议:一种为国际上通用的标准MODBUS协议。另一种为德力西公司自己开发的类MODBUS ASCII格式协议。而在德力西变频器系列中,只有9200系列RTU程序支持标准MODBUS协议(只支持功能码06和03),9100-SC系列只支持标准MODBUS ASCII协议(不支持标准MODBUS RTU协议,只支持功能码06和03),其他系列皆不支持标准MODBUS协议,只支持德力西公司自己开发的类MODBUS ASCII格式协议。 二.德力西变频器标准MODBUS协议说明 1. RS-485串行通讯端子定义如下: SG+:信号正端 SG-:信号负端 使用RS-485串行通讯前,必须先用键盘设置变频器的“运行方式”、“波特率”、“数据格式”及“通讯地址”。 2.标准MODBUS通讯格式说明

3.通讯协议参数地址定义:

4.举例 例1、正转启动1号变频器 ASCII模式 RTU模式 主机发送数据包回复数据包主机发送数据包回

例2、设定1号变频器频率(存储) 要设定1#变频器的频率的值为50.00HZ。 方法如下:50.00去掉小数点为5000D=1388H ASCII模式 RTU模式 主机发送数据包回复数据包主机发送数据包回

例4、查询1号变频器运行频率 1#变频器在运行状态下查询它的“输出频率”。 方法如下:输出频率的参数标号为P05.00 0500D=01F4H 若1#变频器的“输出频率”为50.00HZ。 5000D=1388H ASCII模式 RTU模式 主机发送数据包回复数据包主机发送数据包回

国内外各种变频器恒压供水参数设置以及远传压力表接线.doc

如对你有帮助,请购买下载打赏,谢谢! 安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F3.05=1 停机方式选择 自由停车 F4.00=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10 公斤)压力设定值40,则设定压力为4公斤 F0.12=1 恢复出厂设置 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F16=50 上限频率 F17= 下限频率,休眠启动模式下为休眠频率 F28=30 加速时间 F29=30 减速时间 F74=1 自由停车 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 F66=1 恢复出厂设置 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 调试 在试运行时,可以先通过操作面板的上下键调一个比较小的值,比如10.0,然后通过端子运行,等压力稳定了,看变频器的运行情况,等运行正常后,看着远传压力表,这时候根据所需要的压力通过调节操作面板的上下键调节;调到所需要的压力;若压力不稳定,可通过调节参数F87(PID 的比例增益),参数F88(PID 的积分)使压力趋于稳定; 1、休眠功能的调试 1.1、进入休眠功能的调试:将变频器的压力设定值调到所需要的设定值,再把参数F76调成6,让变频器运行,在没有用户用水的情况下,看变频器的运行频率,把看到的频率值再给上稍微加个几HZ(如2HZ)设定到F17下限频率中;当变频器的运行频率小于下限频率时,再经过时间F114的延时,变频器进入休眠状态; 1.2、进入唤醒功能的调试:将变频器的压力设定值调到所需要的设定值,再把参数F76调成0,让变频器运行,看变频器的反馈压力值,把看到的反馈值再给稍微减去个点儿(如2)设定到F115唤醒压力中;当实际压力小于F115唤醒压力时,变频器进入运行状态; 欧陆EV500变频器PID 供水参数 参数设置: P0.00 设为1 P 机型 P0.02 面板运行时设为0,端子运行时设为1 P0.04 设为20 加速时间(根据机型设定)(秒) P0.05 设为20 减速时间(根据机型设定)(秒) P0.10 设为20 最小频率(Hz ) P0.11 设为50 最大频率(Hz ) P1.05 设为1 自由停止 P6.00 设为 1 PID 控制 P6.01 设为2 比例,积分控制 P6.02 设为 1 压力设定通道 1面板数字设定 P6.03 设为0 反馈通道选择 V1(0-10V ) P6.07 设为0.5 比例增益 P6.08 设为 1 积分时间常数 P6.15 设为0—F6.16 PID 睡眠频率 P6.16 设为F6.16—最大频率 PID 苏醒频率(设置范围为0-100压力百分数。例如,压力设定值d-08设为30,P6.16设为25,假设远程压力表为10公斤,则当压力降为2.5公斤时变频器苏醒) P6.18 设为 30 预置频率,开始运行频率(Hz ) P6.19 设为 10 预置频率运行时间(秒)(本变频器为使系统快速达到稳定状态,避免对管网的冲击,可先预置30 Hz 运行,10秒钟后在闭环运行) d-08 设定压力值(此值为百分比形式,例:压力表量程为1Mpa(10公斤),如果想设定压力为3公斤,则此值应设为30) P0.13 1初始化动作 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 日业SY3200供水参数 0017 PI 控制反馈值 0100=1 端子FWD 与COM 短接启动变频器 运行命令选择 0105=30 加速时间,如启动过程中出现过流报警现象请加大此值 0106=30 减速时间 0107=50 上限频率 (0211=1 停电后电压恢复后再自动启动) (0212=0.0 允许停电的最大时间) 0216=1 自由停止 变频器停止方式 0500=1 PID 闭环控制 0501=0 PI 调节误差极性(正极性,反馈值减小,PI 输出频率增加) 0502=0 PI 给定信号选择(数字给定) 0503= PI 数字给定值(0.0-100.0%) 压力设定(100%对应压力表满量程)1.0Mpa (10公斤)压力表设定值为40,则设定压力为4公斤 0504=2 PI 反馈信号(外部VF ) 0506=0.4 比例增益P 0507=6 积分增益TI 0509= PI 调节最小运行频率 1017 睡眠延时 0.0—600.0S 0.1S 0.0S 1018 唤醒差值 0.0—10.0% 0.1% 10.0% 1000 22恢复出厂值设定 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 三肯变频器IPF (同SPF )恒压供水参数(一拖一) 1=2 外部端子信号操作面板 7=50 上限频率 8=15 下限频率 55=50 增益频率 71=3 内置PID 控制模式 120=1 122=1 PID 控制比例增益 123=0.5 PID 控制积分增益

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.360docs.net/doc/00608229.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.360docs.net/doc/00608229.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

V20变频器PID控制恒压供水操作指南(DOC)

V20变频器PID控制恒压供水操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤

2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。) 2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇

变频恒压供水控制系统设计完整

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示:

PLC 图1 恒压供水变频控制系统原理图 三、系统设备选型 1主要电气元件参数指标 水泵:35KW,三相异步电动机 恒压设定点:1.0Mpa 压力变送器:0-1.6Mpa,两线制,4-20mA电流输出 变频器:VVVF变频器 (1)水泵 根据设计要求水泵正常供水20m3/小时,最大供水量35m3/小时,扬程45m。参考相关资料选择型号为IS50-32-125(扬程50m,流量50 m3/小时)的水泵即可满足要求。 (2)远传压力表 由于远传压力表具有价格低、有数据读取表盘等优点,结合具体

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

基于 PLC 和变频器控制的恒压供水系统设计

基于PLC和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID功能的恒压供水 系统,采用了PLC控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID控制功能;供水系统方案如图1所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC控制的交流接触器组负责水泵的切换工作; PLC是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

关于ABB变频器的恒压供水PID控制详细讲解(精品范文).doc

【最新整理,下载后即可编辑】 关于ABB变频器的恒压供水PID控制详细讲解 本人在造纸行业工作多年,对造纸行业的控制有一定的了解,平时苦恼于手下的员工对于造纸行业的电控了解不够.后来将造纸行业常用的控制汇编成一本培训资料,发给部门的所有工人熟读.收到一定的效果,本培训材料完全针对造纸行业的控制按照实际的电路来详细讲解其工作原理和工作的过程,涵盖造纸电控的外围设备控制,包括电机的直接启动,变频控制,软启动控制,正反转控制,多速电机控制.两地控制,纸机传动控制,复卷机.切纸机,复合机,包装输送系统.行车控制.可以说覆盖了造纸厂所有的电气控制.现先将其中的一小节发上来和大家交流,希望高手指正. 恒压供水PID控制 PID控制 P:比例环节。也称为放大环节,它的输出量与输入量之间任何时候都是一个固定的比例关系。 I: 积分环节:指输出量等于输入量对时间的积分。 D: 微分环节:指输出等于输入的微分。微分只与变化率有关,而与变化率的绝对值无关,偏差越大,控制越强。其主要作用就是对变化的波动有更强的抑制能力。 PID:比例积分微分调节器。 工作过程:当波动作用的瞬间,由于微分的超前作用,使微分的输出量最大,同时比例控制也开始作用。然后由于波动的变化率为零(理想状态)。故微分输出开始衰减,曲线开始下降。这时由于偏差的作用。积分开始作用,使曲线上升,。随着微分作用的逐渐消失,积分起主导作用,直到偏差完全消失(理想状态)。积分的输出也不再增加。而比例的控制是贯穿始终的。 ABB变频器的过程PID控制 ABB变频器内部有一个内置的PID控制器,它可用于控制压力,流量和液位等过程变量。启动过程PID控制后,过程给定信号将取代速度给定信号。另外一个实际值(过程反馈值)也会反馈给传动单元,过程PID控制会调节传动单元的速度使实际测量值等于给定值。

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

A 变频器的恒压供水PID控制详细讲解

关于ABB变频器的恒压供水PID控制详细讲解 本人在造纸行业工作多年,对造纸行业的控制有一定的了解,平时苦恼于手下的员工对 于造纸行业的电控了解不够.后来将造纸行业常用的控制汇编成一本培训资料,发给部 门的所有工人熟读.收到一定的效果,本培训材料完全针对造纸行业的控制按照实际的 电路来详细讲解其工作原理和工作的过程,涵盖造纸电控的外围设备控制,包括电机的 直接启动,变频控制,软启动控制,正反转控制,多速电机控制.两地控制,纸机传动控制,复卷机.切纸机,复合机,包装输送系统.行车控制.可以说覆盖了造纸厂所有的电气控制.现先将其中的一小节发上来和大家交流,希望高手指正. 恒压供水PID控制 PID控制 P:比例环节。也称为放大环节,它的输出量与输入量之间任何时候都是一个固定的比例关系。 I: 积分环节:指输出量等于输入量对时间的积分。 D: 微分环节:指输出等于输入的微分。微分只与变化率有关,而与变化率的绝对值无关,偏差越大,控制越强。其主要作用就是对变化的波动有更强的抑制能力。 PID:比例积分微分调节器。 工作过程:当波动作用的瞬间,由于微分的超前作用,使微分的输出量最大,同时比例控制也开始作用。然后由于波动的变化率为零(理想状态)。故微分输出开始衰减,曲线开始下降。这时由于偏差的作用。积分开始作用,使曲线上升,。随着微分作用的逐渐消失,积分起主导作用,直到偏差完全消失(理想状态)。积分的输出也不再增加。而比例的控制是贯穿始终的。 ABB变频器的过程PID控制 ABB变频器内部有一个内置的PID控制器,它可用于控制压力,流量和液位等过程变量。启动过程PID控制后,过程给定信号将取代速度给定信号。另外一个实际值(过程反馈值)也会反馈给传动单元,过程PID控制会调节传动单元的速度使实际测量值等于给定值。 下图是一个不带PLC控制的一脱二恒压供水电气原理图: 变频器通过3个24V中间继电器来控制外部备用泵。 假设:当前水压的期望值为4.2kg。压力变送器PT的量程为0-10kg。变送器的输出为0 -20mA的电流信号。水泵为2台,一主一备。 要求:供水压力需长期保持在4.2kg,压力波动小于正负0.3kg。当水压小于3.6kg需启动备用泵(此泵为直接启动),当水压高于5.5kg时,停止备用泵。平时有单台主泵保持压力,根据压力不同调节电机的转速。

V20-变频器PID-控制恒压供水操作指南

V20-变频器PID-控制恒压供水 操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤 2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。)

2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见 P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇 P0507 应用宏=10: 普通水泵应用 P0625 电机环境温度范围:-40... 80℃(工厂设置20) P0640[0] 电机过载系数[%] 范围:10.0 ... 400.0 (工厂缺省值:150.0 ) 说明:该参数相对于P0305 (电机额定电 流)定义电机过载电流极限值。建议 保留工厂缺省值。

一个最简单的变频恒压供水实例

恒压供水 接线: 按图五所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数: 电阻满量程:400?(蓝、红) 零压力起始电阻值:≤20?(黄、红) 满量程压力上限电阻值:≤360?(黄、红) 接线端外加电压:≤6V(蓝、红) 图五 恒压供水接线图 开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5公斤)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。

参数设定: F1.01出厂值为0.0,设定为1 F1.23出厂值为0,设定为30.0 F2.05出厂值为0,设定为1 F2.19出厂值为0,设定为1 F4.00出厂值为0,设定为1 F4.06出厂值为0,设定为3.10 按电机名牌设定电机参数:F1.21、F5.00~F5.04 闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5KG。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。

变频器恒压供水怎么调试

变频器恒压供水调试教程 首先要明白恒压供水系统中的几个参数。 >>>>兆帕与公斤 “1兆帕”是压强的单位,即1兆帕=1000000帕的。 一平方米的面积上受到的压力是一牛顿时所产生的压强为一帕斯卡[1Pa=1N/(M×M)]。 而公斤力是力的单位:1公斤力=9.8牛顿。 这是两个不同概念的物理量,没法说“1兆帕等于多少公斤力”。 但彼此有一定的关系:要产生“1兆帕”的压强,需在1平方厘米的面积上,施加的压力约是10公斤。 1公斤压力=0.098兆帕, 所以:1兆帕(MPA)≈10.2公斤压力(KG/CM^2) 1MPa=10.197公斤/厘米2=101.97m水柱,可以让水升高101.97m。 >>>>变频器中PID的定义 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 基本的PID算法,需要整定的系数是Kp(比例系数),Ki(积分系数),Kd(微分系数)三个。这三个参数对系统性能的影响如下: >>>>比例系数Kp ① 对动态性能的影响比例系数Kp加大,使系统的动作灵敏,速度加快,Kp偏大,振荡次数加多,调节时间加长。当Kp太大时,系统会趋于不稳定,若Kp太小,又会使系统的动作缓慢; ② 对稳态性能的影响加大比例系数Kp,在系统稳定的情况下,可以减小静差,提高控制精度,但是加大Kp只是减少静差,不能完全消除。 >>>>积分系数Ki ① 对动态性能的影响积分系数Ki通常使系统的稳定性下降。Ki太大,系统将不稳定;Ki 偏大,振荡次数较多;Ki太小,对系统性能的影响减少;而当Ki合适时,过渡特性比较理想; ② 对稳态性能的影响积分系数能消除系统的静差,提高控制系统的控制精度。但是若Ki 太小时,积分作用太弱,以致不能减小静差。 >>>>微分系数Kd 微分控制可以改善动态特性,如超调量减少,调节时间缩短,允许加大比例控制,使静差减小,提高控制精度。但当Kd偏大或偏小时,超调量较大,调节时间较长,只有合适的时候,才可以得到比较满意的过渡过程。对系数实行“先比例,后积分,再微分”的整定步骤。 (1) 首先只整定比例部分。即将比例系数由小到大,并观察相应的系统响应,直到得到反应快,超调小的响应。

德力西9600变频器说明书第二版

前言 感谢您选用德力西(杭州)变频器有限公司生产的CDI 9600系列小功率矢量变频器。 在使用CDI9600系列小功率矢量变频器之前,请您仔细阅读本手册,以保证正确使用。不正确的使用可能会造成变频器运行不正常、发生故障或降低使用寿命,乃至发生人身伤害事故。因此使用前应认真阅读本说明书,严格按说明使用。本手册为标准附件,务必请您阅读后妥善保管,以备今后对变频器进行检修和维护时使用。 本手册除叙述操作说明外,还提供接线图供您参考。如果您对本产品的使用存在疑难或有特殊要求,可以联系本公司各地办事处或经销商,当然您也可以直接致电我公司总部客户服务中心,我们将竭诚为您服务。 本手册包含0.75kW~5.5kW功率等级的CDI9600系列小功率矢量变频器使用说明,内容如有变动,恕不另行通知。 开箱时,请认真确认以下内容: 1、产品在运输过程中是否有破损,零部件是否有损坏、脱落,主体是否有碰伤现象。

2、本机铭牌所标注的额定值是否与您的订货要求一致,箱内是否包含您订购的机器、产品合格证、用户操作手册及保修单。 本公司在产品的制造及包装出厂方面,质量保证体系严格,但若发现有某种检验遗漏,请速与本公司或您的供货商联系解决。 警告 未经书面许可,不得翻印、 传播或使用本手册及其相 关内容,违者将对所造成的 损害追究法律责任。

目录 前言 第一章安全运行及注意事项 (1) 第二章产品信息 (3) 2.1 铭牌数据及命名规则 (3) 2.2 技术规范 (4) 2.3 CDI9600系列小功率矢量变频器 (6) 2.4 外型及安装尺寸 (7) 2.5 日常使用的保养与维护 (8) 第三章变频器的安装及接线 (12) 3.1 变频器前盖与数字操作键盘的安装 (12) 3.1.1 变频器前盖的安装 (12) 3.1.2 数字操作键盘的安装 (12) 3.2 安装地点及空间的选择 (13) 3.3 安装地点及空间的选择 (15) 3.3.1 主回路输入侧的接线注意事项 (15) 3.3.2 主回路输出侧的接线注意事项 (16) 3.3.3 主回路输出侧的接线注意事项 (18) 3.4 控制电路的接线 (20) 3.4.1控制电路端子排列及接线图 (20) 3.4.2 控制电路端子的功能 (22) 3.5 接地 (24) 第四章键盘操作与运行 (25)

相关文档
最新文档