六年级数学一元一次方程
3.2 一元一次方程及其解法(第1课时一元一次方程)(课件)六年级数学上册(沪教版2024)

可以发现,平衡的天平两边物体的质量分别
变为了原来的一半,天平也保持平衡.
新知探究
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
课本例题
例1 判断下列方程是不是一元一次方程,如果不是,请说明理由:
1 4 − 36 = 0;
2 − 2 = 56;
3 4 2 − 9 = 2 − 7;
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
9 − − 9 = 5 − 9.
合并同类项,得 − = −4.
根据等式性质2,在等式两边同除以 − 1, 得
− ÷ −1 = −4 ÷ −1
解得
= 4.
所以,原方程的解是 = 4.
分层练习-基础
1.下列方程的变形正确的是( A )
A.3x-6=0,变形为 3x=6
B.x+5=3-3x,变形为 4x=2
(1)8+x=-7;
解:两边减8得x=-15;
1
(2)- x=16;
2
解:两边乘以-2得x=-32;
六年级数学下册解方程大全

解方程是数学中的一个重要部分,也是数学学习的难点之一、下面是六年级数学下册解方程的详细解法及示例题,供你参考。
一、一元一次方程一元一次方程是指只有一个未知数的一次方程,其一般形式为ax+b=0,其中a、b为已知数,a≠0。
解一元一次方程的基本步骤:1.将方程的各项移项,使方程化为ax=c的形式,其中,a是未知数的系数,c是已知常数。
2.将a移到等号右边,得到x=c/a。
示例题1:5x+3=0解:将3移到等号右边,得到5x=-3再将5移到等号右边,得到x=-3/5所以方程的解为x=-3/5二、一元一次方程组一元一次方程组是由多个一元一次方程组成的方程组,其一般形式如下:a1x+b1y=c1a2x+b2y=c2解一元一次方程组的基本步骤:1.将方程组的各项移项,使方程组化为a1x+c1=a2x+c22.将未知数系数移到一个侧边,已知常数移到另一个侧边,得到a1x-a2x=c2-c13.合并同类项,得到(x的系数之差)x=(c2-c1)。
4.解出方程中的x的值。
5.将x的值代入其中一个方程,解出y的值。
示例题2:(1)2x+3y=8x-2y=3解:将方程组的第二个方程的左边移到第一个方程的右边,得到2x+3y-8=0。
将方程组的第一个方程的左边移到第二个方程的右边,得到x-2y-3=0。
将方程组化为2x+3y-8=x-2y-3,得到x-5y=5将方程中的x移动到等号右边,得到-5y=5-x。
将方程中的5移到等号左边,得到-x-5y=-5合并同类项,得到-x-5y=-5将方程中的x移动到等号左边,得到x+5y=5解出方程中的y的值:y=(5-x)/5将y的值代入第一个方程:2x+3(5-x)/5=8解出x的值:x=10/7将x的值代入y=(5-x)/5,解出y的值:y=9/7所以方程组的解为x=10/7,y=9/7三、一元二次方程一元二次方程是指含有一个未知数的二次方程,其一般形式为ax²+bx+c=0,其中a、b、c为已知数,a≠0。
3.2.一元一次方程及其解法(第2课时+移项、合并同类项 六年级数学上册(沪教版2024)

解: 1 不正确,改正:移项,得3 − 2 = 9 + 18.
2 正确.
课堂练习
2.解下列方程:
1 + 8 = −17;
3 + 6 = −5;
解: 1 + 8 = −17.
移项,得 = −17 − 8.
合并同类项,得 = −25,
所以,原方程的解是 = −25.
3 + 6 = −5
C. ②①③
D. ②③①
)
3. 小明在做题时不小心用墨水把方程污染了,污染后的方
程: x -3= x +
,答案显示此方程的解是 x =-8,
被墨水遮盖的是一个常数,则这个常数是(
2
A )
4. [2024汕头澄海区期末]甲、乙两人在300 m的环形跑道上
跑步,甲每分钟跑100 m,乙每分钟跑80 m,若他们从同
移项,得 + 5 = −6.
合并同类项,得6 = −6.
两边同除以的系数6,得
= −1.
所以,原方程的解是 = −1.
2 4 = 20;
4 3 − 15 = − 19.
2 4 = 20.
两边同除以的系数4,得
= 5.
所以,原方程的解是 = 5;
(4 3 − 15 = − 19.
程.(重点)
3.进一步认识解方程的基本变形—移项,感悟解方程过程中的转化
思想.
新知探究
如何求方程4 = 18 − 2的解?
我们可以用等式性质将原方程转化为 = ≠ 0 的形式. 根据等式性质1,
在等式4 = 18 − 2的两边同时加上2, 得
4 + 2 = 18 − 2 + 2.
人教版六年级下 一元一次方程式

人教版六年级下一元一次方程式
在这一部分,我们将介绍人教版六年级下册关于一元一次方程式的课程大纲。
通过研究这门课程,学生将能够掌握一元一次方程式的基本概念和解题方法。
他们将学会如何代入数值、化简等步骤来解决方程式,并能够在日常生活中运用这些知识解决实际问题。
本课程将包括以下主要内容:
一元一次方程式的定义
解一元一次方程式的基本步骤
代入数值和化简方程式
实际问题中的一元一次方程式应用
解决一元一次方程式的技巧和策略
本课程将采用多种教学方法来激发学生的研
究兴趣和提高他们的解题能力。
教师将进行讲解、示范、练、小组合作等多种形式的教学活动,使
学生能够全面理解和掌握一元一次方程式的知识。
此外,教师还将提供一些有趣的例题和实际问题,鼓励学生进行思考和讨论,培养他们的问题解决
能力。
在课程的研究过程中,学生将参与课堂练、
小组合作活动和个人作业。
通过这些活动,教师
将评估学生对一元一次方程式的理解和应用能力。
此外,还将进行定期的考试和测验,以检验学生
的研究成果和进步。
在课程的学习过程中,学生将参与课堂练习、小组合作活动和
个人作业。
通过这些活动,教师将评估学生对一元一次方程式的理
解和应用能力。
此外,还将进行定期的考试和测验,以检验学生的
学习成果和进步。
六年级上册数学解一元一次方程

六年级上册数学解一元一次方程
基本步骤
1.移项:将方程中的项移到等号的一侧,使另一侧只剩下一个未知数。
2.合并同类项:将方程中的相同项合并。
3.系数化为1:通过除以未知数的系数,使未知数的系数为1。
示例
例1:解方程2x + 3 = 7
1.移项:将3移到等号的另一侧,得到2x = 7 - 3
2.合并同类项:7 - 3 = 4,所以2x = 4
3.系数化为1:除以2,得到x = 2
例2:解方程3x - 5 = 2x + 1
1.移项:将2x移到等号左侧,将-5移到等号右侧,得到3x - 2x = 1 + 5
2.合并同类项:3x - 2x = x,1 + 5 = 6,所以x = 6
注意事项
•在移项时,注意等号两侧要保持平衡,即加变减,减变加。
•在合并同类项时,确保只合并具有相同未知数和相同次数的项。
•在系数化为1时,如果未知数的系数是分数,可以通过乘以分数的倒数来消去分母。
第六讲六年级一元一次方程的定义

第六讲 一元一次方程的定义【知识网络】模块一:一元一次方程【引例】你能用你学过的知识解决一下几个问题吗?有哪些方法?1.一本笔记本1.2元。
小红有6元钱,那么她最多能买到基本这样的笔记本呢?2.某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?3.在课外活动中,张老师发发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”【知识导航】方程的有关概念1. 方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
【典型例题】例1.(1) 判断下列哪些是一元一次方程34 x =12 3x -2 13 x -15 =2x3 -l 12-3=95x 2-3x+1=0 2x+y =l -3y 1x-1 =5 3x -2>1(2)下列方程中,一元一次方程一共有( ) ①92x +;②12x =;③()()113-+=x x ;④1315123x x x -=-()A .1个B .2个C .3个D .4个例2. 根据下列条件列出方程:(1)某数比它大4倍小3;(2)某数的1/3与15的差的3倍等于2;(3)比某数的5倍大2 的数是17;(4)某数的3/4与它的1/2的和为5.(5)x 的2倍与3的差是5。
(6) 长方形的长比宽大5,周长为36,求长方形的宽。
小学数学六年级上册教案:解方程的方法与技巧

小学数学六年级上册教案:解方程的方法与技巧解方程的方法与技巧解方程是小学六年级数学学习的重点之一,既涉及到基本的代数知识,又需要灵活运用数学思维和方法,因此很多同学在这方面会遇到一些困难。
本篇文章将详细介绍六年上册解方程的方法与技巧,供同学们参考。
一、解一元一次方程1.1 原理一元一次方程的一般形式为:ax+b=c,其中a、b、c都是已知数,x是未知数。
解方程的过程就是求出未知数x的值使得等式成立。
要解一元一次方程,可以运用两种主要的方法:以图形法和代数法。
1.2 图形法图形法是一种基本的解方程方法,它通过几何图形的方式来解决方程。
解一元一次方程时,把等式两边看成两调线段,转化成求相等长度,然后利用几何图形,选取合适的图形来解决问题。
通常利用平行四边形、三角形等图形求解。
1.3 代数法代数法是一种通用的解方程方法,它可以应用到各种类型的一元一次方程。
代数法是通过移项、相乘、去分、对等牵连等基本代数运算方法,将方程变成x=常数式、常数式x=常数式、常数式÷x=常数式等,从而得出解法。
还可以利用分配律、合并同类项、因式分解等代数方法进一步简化式子,尽可能让x的系数为1,使求解变得更加简单易懂。
1.4 解题技巧在解题时,需要注意以下几点:(1)方程两边进行的任何变形,都必须同步进行,确保等式两边都变化了。
(2)方程两边变化的符号必须相反。
(3)解出的结果必须带入原方程,验证等式是否成立。
(4)注意避免分母为0的情况。
(5)方程式中系数为整数时,方式好记,一般只需按基本代数运算法则逐步对变量x进行移动和运算即可。
上述技巧将大大方便同学们在解方程时的思维和操作。
二、解一元一次方程组2.1 原理一元一次方程组是由多个一元一次方程组成的,是一个比较高级的解方程形式。
解一元一次方程组的方法有代数解法和消元法两种。
2.2 代数解法代数解法就是通过我们刚才学过的代数知识,将方程组转换为一元一次方程求解,然后将解代入另一个方程中,不断验证得到结果。
鲁教版(五四制) 六年级上册 4.2 解一元一次方程( 20张PPT)

④
原方程中的5x改变符号后从方程的右边移到了左边
感 受新知
解一元一次方程 7
移项:把方程中的某些项改变符号后,从方程的 一边移到另一边,这种变形叫做移项 。
5x –2 = 8
2x = 5x - 21
5x 移项依据
移项注意
= 8 +2
2x - 5x = -21
等式的性质1
变号 (没有移动的项不变号)
选做:第2题
(4) 由方程5+2x=x-9, 移项得2x-x=9-5
不对
2x-x= 9-5
知 识抢答
解一元一次方程 9
将下列方程进行移项变形
1、2x-5=12 移项得 2x=12__+_5__
2、2y=11-6y 移项得 2y_+__6_y_=11
3、2x=5x-21 移项得 4、-x+3=-9x+7 移项得
火 眼金睛
解一元一次方程 8
判断下面的移项对不对,如果不对,错在哪里?应怎样改正?
(1)由方程 x 5 7 移项得 x 7 5
不对
x=7 5
(2)由方程5x=
(3) 由方程3x+4=-5x+6, 移项得3x+5x=6+4
不对
3x+5x=6 4
颗 粒归仓
探索之旅结束
谈谈自己沿途的收获。
解一元一次方程 15
颗 粒归仓
:一般地,把方程中的某些
项改变符号后,从方程的一边
1
移到另一边,这种变形叫做移项。
3
移项要改变符号
解一元一次方程 16
2
移项规则 含未知数的项一般 移到方程左边, 常数项移到方程右 边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 页,共 1页
一元一次方程
一、选择题
1.在方程23=-y x ,021
=-+x
x ,2121=x ,0322=--x x 中一元一次方程的个数为
( ) A .1个 B .2个 C .3个 D .4个
2.解方程3
1
12-=-x x 时,去分母正确的是——————————————————( )
A .2233-=-x x
B .2263-=-x x
C .1263-=-x x
D .1233-=-x x 3.方程x x -=-22的解是————————————————————————( ) A .1=x B .1-=x C .2=x D .0=x
4.下列两个方程的解相同的是———————————————————————( ) A .方程635=+x 与方程42=x B .方程13+=x x 与方程142-=x x C .方程021=+
x 与方程02
1=+x D .方程5)25(36=--x x 与3156=-x x 5.下列等式变形正确的是————————————————————————( ) A.如果ab s =,那么a
s
b =
; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y
6.下列图形都是由同样大小的长方形按一定的规律组成,其中第(1)个图形的面积为2cm 2
,第
(2)个图形的面积为8 cm 2,第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为( )
A .196 cm 2
B .200 cm 2
C .216 cm 2
D . 256 cm 2
二、填空题
1.比a 的3倍大5的数是9,列出方程式是__________________。
2.如果0631
2=+--a x
是一元一次方程,那么=a 。
3. 若x =2是方程2x -a =7的解,那么a =____ ___ 4.如果)12(3
1
2
5+m b
a 与)3(21
22
1
+-m b a 是同类项,则=m 。
5.某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天中最后一天的日期是
________.
6.已知当1x =时,2
2ax bx +的值为3,则当2x =时,2
ax bx + 的值为________. 7、已知1-=
,
-=
,
-=
,
-=
…
根据这些等式求值.
三、解答题 1解方程
(1)x x -=+212 (2) 2(x-1)-(4x-1)=1
(3)3)31(35=--y (4)14
2
312-+=-y y
(5) 12136x x x -+-
=- (6)35
.01
2.02x =+--x
20.若a 与2a-9互为相反数,求a 的值。
(6分)。