高中数学关键知识点整理

合集下载

高中数学必考知识点

高中数学必考知识点
高中数学必考知识点
章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。

掌握实数的分类和复数的基本概念。

1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。

包括因式分解、公式法解方程、分式方程的解法等。

1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。

理解不等式的性质和解不等式的一般步骤。

1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。

了解函数的极限和连续性概念。

1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。

掌握无穷等比数列的和的计算方法。

1.6 排列组合与概率排列、组合的基本概念和公式。

概率的定义、性质及计算方法。

理解条件概率和独立事件的概念。

二、几何与测量2.1 平面几何点、线、面的基本性质。

掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。

2.2 空间几何空间直线和平面的位置关系。

柱面、锥面、旋转体等常见立体图形的性质和计算。

2.3 解析几何坐标系的建立和应用。

通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。

2.4 三角学三角比的概念、三角函数的定义和性质。

掌握正弦定理、余弦定理及其在解三角形中的应用。

2.5 向量向量的基本概念、线性运算、数量积和向量积。

理解向量在几何和代数中的应用。

三、统计与概率3.1 统计基本概念数据的收集、整理和描述。

理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。

3.2 概率分布离散型随机变量和连续型随机变量的概念。

熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。

3.3 抽样与估计抽样方法、样本容量的确定。

参数估计的基本概念和方法,包括点估计和区间估计。

3.4 假设检验假设检验的基本思想和步骤。

理解显著性水平、第一类错误和第二类错误的概念。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

高中数学必考知识点归纳整理

高中数学必考知识点归纳整理

高中数学必考知识点归纳整理高中数学必考知识点必修一:1、集合与函数的概念 (部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

高中数学知识点总结归纳

高中数学知识点总结归纳

高中数学知识点总结归纳一、集合。

1. 集合的概念。

- 集合是由确定的元素组成的总体。

元素具有确定性、互异性、无序性。

例如,集合A = {1,2,3},其中1、2、3是元素,这三个元素是确定的,互不相同(互异性),{1,2,3}和{3,2,1}表示同一个集合(无序性)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内,如A={a,b,c}。

- 描述法:用确定的条件表示某些对象是否属于这个集合的方法,如A = {xx^2 - 1=0}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B。

- 真子集:如果A⊆ B,且A≠ B,那么A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊆ B且B⊆ A,那么A = B。

4. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的三要素。

- 定义域:自变量x的取值范围。

例如y=(1)/(x)的定义域是{xx≠0}。

- 值域:函数值y的取值范围。

- 对应关系:如y = x^2中的y与x的平方关系。

3. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易逻辑:
1.命题的改写:a.逆命题:否命题:逆否命题的改写(强调:条件和结论)
b.命题的否定(只是改写结论:否定)
c.存在性命题,全称性命题的改写。

(矩形的对角线相等)
2.四种大题:
的真假。

(交集画数轴帮助求解)
充要条件的证明(分清充分性,必要性):求什么的充要条件
命题p是命题g的充分必要条件(搞淸楚集合A,集合B的关系一子集;
端点值要单独考虑)
3.恒成立问题的类型与解法
a.不等式在R上恒成立(二次的)一…l.a=O: 2.开口方向,△<()或△<()
b.额外有区间
首先选择变量分离若不可以变量分离就转化为求函数的最值
c.注意元的变化
d.定义域为R,解集为R,解集为0
4.不等式有解
M > /(X)有解,则M > /(x)min。

其他类似。

5.方程的解
a.零点存在性泄理1•画图确怎解的大致区间:2用二分法缩小范围。

b.方程的解得个数(画图看交点的个数)
复数
1•复数为实数虚数的条件(尤其是纯虚数的区别于点在虚轴上)
2.复数的一些零碎知识
①实部,虚部:②实轴,虚轴:③模;④复平而上的点
3.复数的几何意义:
的意义-…由此得到一些特殊的图形【求最值】
②已知GEWC,且忆+胡=2、伍,忆| =巧花| =血,则|勺一2 2〔的值
导数
平均变化率T瞬时变化率(导数),割线的斜率T切线的斜率(导数)
导数的定义式
曲线的切线:注意"在”与“过”的区别
切点的导数是直线的斜率「
切点在切线上L核心(切点)
切点在曲线上J
导数的物理意义:
1•瞬时变化率(a.表示成时间的函数:b求时间的导数)
2•瞬时速度--位移的一次导数;
3•瞬时加速度一速度的一次导数,(位移的二次导数)
4.几何意义:曲线上点的切线的斜率
导数的应用:
1•求极值,最值,单调区间
注意:列表:
非常函数f(x)f(x)>0(/f(x)<0)是函数为单调增(减)的充要条件
若x有范羽则先研究原函数,在将范弗I在试图标上去(形成动轴龙区间的问题)
2.根据单调性求(单调增o广(x)no)
讨论,主要在于极值点的有无以及在不在题中所给的区域内
圆锥曲线
X2V2
1 •表达式在表示圆锥曲线时的应满足的条件——+—一= 1
d +1 2_a
2•关于圆锥曲线的基本量:长短轴,焦距(区别于a, b, c);离心率
准线,渐近线,焦点(注意焦点所在的坐标轴)
尤其含参数的:

3.离心率:1.条件的等量关系
2.求曲线上一点的坐标代入曲
线方程 a.将a, b, c都用一个表示
3.PF、+ PF2 =2a [
b.齐次式的处理
1.求点的坐标一a<x<a丿
2.求PF, a-c< PF<a+c
4•直线与圆锥曲线的关系问题
A.联立方程组 ------- 韦达世理(设直线时,注意先讨论斜率的不存在)
B.注意过焦点的时候转化为到准线的距离
立体几何
1•平而直观图变化前后的面积,长度的变化
2•求长度的和的最小值一一展成平而(以点所在的直线为轴)
3•关于球的几点:a.正方体与球
b.正四而体与球
c.PA,PB, PC相互垂直的外接球
4.三角形的几个心
考试的注意点:
1.填空题注意书写的形式,单位
2.范用问题注意端点值
3.注意时间的分配以及先易后难的处理。

相关文档
最新文档